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RESUME

Soit le probléme : Lu(x) = f(x,u), 0 < x < 1, u®(©0) = u®(1) = 0,0 <k < n — 1,
ou L = :‘J Dj(pj(x)Di), On suppose de plus que f (x,u) 2 — v > — X, v étant une cons-
=0

tante, et olt A est la premiére valeur propre de L associé aux conditions aux limites ci-
dessus. Ce probléme équivaut & rendre minimum une certaine fonctionnelle F(w) sur un
espace S de fonctions assez “réguliéres”. La minimisation de cette fonctionnelle sur des
sous-espaces Sy de S convenablement choisis conduit & des “approximations” &,,(x), qui
convergent vers 'unique solution ¢(x) du probléme original, et ce, avec des hypothéses trés
faibles sur le comportement “asymptotique” des sous-espaces Sy. De plus, avec un choix
particulier des sous-espaces S, (que I'on associe alors & un maillage de pas h sur [0,1])
Perreur est de la forme O(h2™*1) dans la norme du Sup, et m peut étre choisi aussi grand
qu’on le veut.

SUMMARY

Let Lu(x) = f(x,u), 0<x <1 ; u®0) = u®(1) =0, 0 <k <n - 1, where
N .
L= ,Eu Dj(pj(x)D’). Assume further that f (x,u) > — v > — A, for some constant v,

where X\ is the first eigenvalue of L associated with the above boundary conditions.
This problem is equivalent to minimizing a certain functional Flw] over a space S of
smooth functions. Minimizing F[w] over appropriate finite-dimensional subspaces Sy of S
leads to “approximations® ¢y,(x), which are shown to converge to the unique solution p(x)
of the above problem, under mild asymptotic properties of the subspaces S,;. Moreover,
with an appropriate choice of the subspaces Sy (associated with a mesh spacing h on [0,1])
the error is of order O(h*™") in the sup-norm, where m can be chosen arbitrarily large.
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1. INTRODUCTION

This paper is the extension to a nonlinear case of the results contained
in Varga (1966), where the following type of problem was considered
(p. 365) :

u” = o(xu — f(ix), 0 < x < 1 ;u0) =u(l) =0 , N

under the major assumption :
o(x) >0 . (2)
Otherwise, o(x) and f(x) were assumed to be sufficiently smooth functions.

Thus, we will link our results with those in the above reference, and we
will adopt the same notations, whenever it is possible.

We now consider more general problems of the following form :
u’ = fxu), 0< x < 1 ;u0) =uw(l) =0 , 3)
under the major assumption that there exists a constant v such that :

of
-é—(x,u)>—'y>——7r2;0<x<1;~°°<u<+°°. 4
u

For convenience, we will assume that f(x,u) is of class C' on the strip
([0,1] X R), although the following hypotheses are also sufficient :

f(x,u) € C°([0,1] X R) @)

f(x9u1 ) I f(X:u2) >_

'y>—1r2;O<x<1;—~oc><u1,u2 <+oou, #Eu,, (47)
U — U,

and there exists a constant M = M(c) depending only on ¢ such that
@) uy # uy, luyl < lu,l < ¢ implies

f(x,u,) — f(x,u,)
U —u,

< M) < + o | (Cle]

for all x € [0,1].

It is known (Lees (1965)) that under the hypothesis (4) or the weaker
hypotheses (4’) — (4”) — (4), the problem (3) has a unique solution.
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2. FORMULATION AS A VARIATIONAL PROBLEM

DEFINITION 1.— Let S be the class of piecewise C'-functions defined
over [0,1] and which moreover vanish at the end points.

THEOREM 1.— Let ¢(x) be the unique solution of (3). Then, ¢(x) mini-

mizes strictly the following functional :

1
Flw] = [} 35 WP + [0 f(t,n)dng at, 5)

over the space S.

Proof.— The proof is achieved by showing that :

Py

2

Flw] — Flo] = —— [1{w(®) — o) dt

for any function w(x) € S.

3. APPROXIMATION SCHEME

It is then quite natural to define an approximation scheme as follows :

Take any finite dimensional subspace Sy, of S, of dimension M, that
is, we are given M linearly independent functions {Wi(M,x)}i}f1 which are
in S. Then we try to minimize the functional F[w] over S and the first
result is the following, which is somehow the finite-dimensional equivalent
of Theorem 1 :

THEOREM 2.— In S, there exists one and only one function which mini-
mizes the functional (5) over S,.

M
Proof.— Any function in Sy, can be written as wy(x) = '21 U5 W (M,x).
p=

Hence,Mthe functional (5), when expressed over S, becomes a functional
over R™, which we denote Flu]l = Flu,, u,,..., uyl.

First, it is clear that this functional F[u] is bounded below, since
Flu] > Flyp] by Theorem 1. In fact, letting :
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JIL= Sup If(x,0) ,
[o.1]
it can be proved directly that :
— e M
Ful 2 ——— ue r" .
W= e
Next, it can be shown that, given any norm lull over R™ .

lim  Flu] = + o .
lluf =+ =

Therefore, the two previous facts imply that F[u] attains its minimum
over R for at least one vector.

Finally, F[u] attains its minimum for a unique vector, denoted 0. This
is achieved by proving that the matrix Bu) = (bij(g)), where

2

ou, auj

b;) = (W)

1

is uniformly positive definite, which in turn implies that F[u] represents
a strictly convex surface, thus implying uniqueness of the minimizing
vector,

Our approximating problem reduces now to writing the equations :

oF

T =01<i< M.
au,

By Theorem 2, this system of (nonlinear) equations has a unique solution
{0, 4,,..., 0y}, to which is associated a function :

M
() = 2 0w (Mx) |

An interesting feature is that the above system of nonlinear equations
satisfies all the conditions required to apply the Gauss-Seidel-type or SOR-
type methods described in Schechter (1962).
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4. CONVERGENCE

We have seen that given any finite-dimensional subspace S, of §,
we can find in S, an element W, (x) which is the best approximation to the
solution ¢(x), in the sense of minimizing the functional (5). It is then
quite natural to expect that the difference [p(x) — Wy(x)] might converge
to zero (in some topology) if we have a sequence of subspaces {Sl\,[i}"i":1
(where lim SMi = 4 o0) satisfying appropriate asymptotic properties.

i=oo

It turns out that the topology most appropriate for our problem is
induced by the Sobolev-type norm :

i, = {} tw(©1* dg'/* )

Notice that this is indeed a norm on the space S since the boundary
values are zero.

Our aim now is to derive an upper bound for ||[¥,, — ¢llp. To do this,
we need first prove two basic lemmas :

LEMMA 1.— Let p(x) be a continuous function defined on [0,1] such
that p(x) = — v > — 7%, for all x € [0,1]. Then, the following quantity :

Iwllgy = (XKW ®P + p©) (W]’ do'’?
is a norm (in the space S) which is equivalent to the norm (7).

Proof.— The proof is very simple and left to the reader. Notice the exact
similarity with the norm introduced in Varga (1966) in equation (3)p.366.

LEMMA 2.— The solution ¢(x) and the approximate solution wy(x) both
verify the same a priori bound :

Sup Wy ()] < D(y)INL 9)
[0.1]

Sup lp(x)| < D{y) I, (10)
[0.1]

where J1U was defined in (6) and D(y) is a constant depending only on 7.
Proof.— This is easily derived from the fact that :

Flwyl, Fle] < F[0] = 0 .
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Now, we come to the key fact : in Varga (1966) it was shown that
the element of best approximation Wy(x) in S, could be considered as a
projection of the solution ¢(x) on Sy, in the sense of an inner-product
associated with a norm of type (8). Basically, this was possible because
the problem was linear. However, we are still able now to view Wy, (x)
as a projection of ¢(x) over S,; in the sense of an inner-product of the
form (8) which will now vary with each Sy, and this is achieved in the
following fashion : The vector & = {@;, y,..., G} is the unique solution
of the M equations :

Equivalently the function :

~ M A~
wy(x) = 5§1 0;w;(M,x)

satisfies the M equations :

fol (W OWMD) + f(t, W) w, M)} dt =0, 1 < i< M. (11)
Similarly, it is readily seen that :

LAPOWMY + f(te®) wMb} dt =0, 1 <i<M. (12)
Thus, by simply subtracting (12) to (11), we obtain :
I Dirg(®) — e WiM,1) + iy ® [Wyy (1) — o] wyM,t) dt=0,1<i<M,(13)

where :
of .
pu(t) = —5&(’(, O,0(t) + (1 — 6 wy(t), with 0<6,<1.

Thus by hypothesis (4), it follows that this is now an orthogonality relation
in the sense of the norm ||wl} a2 defined in Lemma 1. As we noted

earlier, the inner-product varies which each subspace Sy, but by Lemma 2,
pu(x) satisfies bounds of the form :

~ M <—4<py(x) <K({), 0<x<1, (14)

where K(v) is a constant depending only on .
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Thus, we have by (13) :

llo — V‘VMH{pM} = wIGnSfM e — W”{pm} , (15)

(Notice the similarity with equation (8) p. 366 in Varga (1966)). Moreover,
by Lemma 1 and inequality (14), there exists a constant L(y) depending
only on 7y such that :

lp — WMH{pM} L(y) Inf llp — wily . (16)

weS M
Finally, since there exists a constant C(y) depending only on v such that :

Sup [w(x)| < C(y) liwlly,, forall weES, (17)
fo.1]

we have proved

THEOREM 3.— The following error bound holds :

Sup lp(x) — Wy(x) | < M(y) Inf Jlo — Wi, , (18)
[0.1] weSy

where the constant M(y) depends only on <y and [[wll, is the norm defined
in (7).

Remark.— The constant M(y) can be explicitly determined a priori.

As an immediate consequence, we have now.

THEOREM 4.— Given a (non-necessarily nested) sequence {SMi}fwl, the
i=

best approximations W, (x) converge uniformly to the solution if :
1

lim { inf |lw —gllp} =0

i+ weS M

for all g(x) in S.
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5. HIGH-ORDER ACCURACY METHOD

As an example of subspaces satlsfymg the sufficient condition of
Theorem 4, consider the spaces Sy (Hermlte Interpolation spaces),
for m = 0, introduced in Varga (1966) (p. 365). By the fundamental
inequality (18), we will obtain an error bound by plugging in the right-
side of (18) any trial function. In Varga (1966), p. 368, inequality (20),
an element w(x) in Hgn) is constructed such that :

e — Wiy <K My, B2, (19)
where :
Mymia = Sup lp®™ 200 (20)
[o.1]

and K is a constant depending only on m.

It is clear that given the problem (3), it is possible to see the order
of differentiability of ¢(x) ; moreover, as was proved in Lees (1965), it is
possible to derive a complete a priori bound for M, ...

Thus, we have proved.

THEOREM 5.— When S,, = H", the following inequality hold :

Sup lp(x) — Wy () < N(y,m) h?™** | 2N
[0,1]

where N(y,m) is a constant which can be completely determined a priori.

Remark.— Notice the exact similarity with Varga (1966), Theorem 1
p. 368.

Remark.— From Theorem 5, the error is at least O(h*™!) when the Her
mite. Interpolation spaces H ™ are used. In fact, for m = 0 HN) coin
cides with the space of piecew1se linear continuous functions associatec

1
with a mesh spacing h = Wf) the error is O(h?) (instead of O(hl) a

of
expected) wheneverwg— (x,u) = — v > — 8, and at least O(h3/2) wheneve:
u

— 8>—y>—nx*. A similar improvement might extend to higher values o
m, although it has not been proved yet.

224



Remark.— All of the above results extend to more general problems such as :

4 %p(x) du i= fx), 0 < x < 1; o4u(0) — w(0) =0, gy >0;
dx dx
ou(l) +u () = 0,0, >0,

where p(x) is only piecewise continuous and p(x) 2 w> 0, 0 < x < 1,
for some constant w.
Then the functional (5) is to be replaced by :

(1)
2

p(t)

0
~7;IWTUV+Jf“Wﬁth&dt+GOE%)[WGDF+01 [w(DI".

ﬂm=g§

of )
Similarly, m (x,u) has to be uniformly bounded away (as in (4)) from the
u

d d .
first eigenvalue of the operator e %p(x) d_x% associated with the boundary
X

conditions o,u(0) — w(0) = ogu(l) + w() = 0. As in Section 5, we can
get u.c.(h®™*1) accuracy provided the mesh spacing is conveniently chosen
(with respect to the discontinuties of p(x)) and the basis functions of H;,m)
are slightly modified.
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