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1. INTRODUCTION

Tf we consider the solution ¢(x, £) of the simple heat conduction equation
e(x,t) = ¢ (x,t) + K, 0<x<<l, t>0 (1.1

where K is a positive constant, subject to the boundary conditions that
e(x,0) =0, 0L 21, c(0,8) =c¢(1,8) =0, >0, (1.2)

then ¢(x, t), for any fixed » in [0, 1], increases monotonically in t to the
steady state solution ¢(x) = Kux(l — x)(2, ie., '

0 < elx, ) < cofx, t 4 0) < E(w) (1.3)
for all £=0, all >0, any xe[0,1].

The problem to be treated here is to what extent semidiscretizations (in
which the time variable is left continuous) and full discretizations of
(1.1), (1.2) possess a monotone behavior analogous to that of (1.3). One
of our results (Theorem 10) shows that this problem is closely related to
stability in the uniform norm of matrix approximations of (1.1), (1.2).

Our technique for developing these results is in part based on a connec-
tion between completely monotonic functions and nonnegative Tunctions of
nonnegative matrices. As this gives rise to new proofs of known results on

* Dedicated to Professor A. M. Ostrowski on his 75th birthday.
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330 R. S. VARGA

nonnegative matrices (cf. Theorems 3 and 4) as well assome new results
(Theorems 1, 2, and 5), this connection may be of interest by itself.

The author is indebted to Dr. Harvey S. Price of the Gulf Research
Laboratories who posed the problem and indicated that such considerations
are of importance in practical computation in the petroleum industry.

9. COMPLETELY MONOTONIC FUNCTIONS AND BERNSTEIN'S THEOREM
We begin with

Derinttion 1. Let G(x) be defined in the interval (a, ) where
— o< a<b<+ oo Then, G(x) is said to be completely monotonic
in (a, b) if and only if

(— 1)/GV(x) =0  for all a<<x<band all /=0,1,2,.... (2.1)

Tt is known [12, p. 146] that if G(x) is completely monotonic in {(a, b),
then it can be extended to an analytic function in the open disk |z — b] <
b — a when b is finite, and when b = oo, G is analytic in Re(z) > a.
Thus, for each y with a < v < b, G(z) is analytic in the open disk lr— v <
R(y), where R(y) denotes the radius of convergence of G(z) about the
point z = y. It is clear that R(y) =y —a for a <<y < b.

We now make the change of variables z =y — . Writing
Gly — ) = 25,08, [T <R() (2.2)
i=0

it follows that the coefficients b;(y) are given by
—1yiGH ,
by) — T ET O o1 2.3)

Thus, if G(x) is completely monotonic in (a, by and y satisfies a <Z y < b,
then the coefficients b]-(y) are, from (2.1), all nonnegative, i.e.,

bi(y) =0 for 7=01,2,.... (2.4)

J

We now make use of some matrix notation. Let p(C) denote the spectral
radius of any »n x n complex matrix C, ie., p(C) = maX; e, A;| where
the A, are eigenvalues of C. Next, let C == 0 (C > 0) denote any 7 X %
matrix with nonnegative (positive) entries. Finally, if ¢ =0, let 7(C)

denote the order of the largest Jordan block for the eigenvalue p(C) in
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NONNEGATIVELY POSED PROBLEMS 331

the Jordan normal form for the matrix C. If C > 0 is irreducible,* then
we know that j(C) = 1. With this notation, we now prove

THEOREM 1. Let G(x) be completely monotonic in (a, b), let C be any
n % n matrix with C = 0, and let v be any number with a <y << b. Then,

o0

Gyl — C) = 3 b(y)C7 (2.5)

i=0

is a convergent as a matrix sevies and defines a matrix with nonnegative
entries if and only if p(C) < R(y), with p(C) = R(y) only if the series

are convergent for all 0 < m < j(C) — L.

Proof. 1f » >0 is the radius of convergence of the power series
f(z) = Zfzo ocjzf, then we make use of the well-known fact (cf. [13,
p. 17]) that the matrix series f(4) = > 7,0’ for an 2 x n matrix
A is convergent if and only if p(4) < 7, with p(4) = 7 only if the series
for f(4),. .., f™ (4, are all convergent for any A; with Al = p(4) =7,
where m; is the largest order of the Jordan blocks for the eigenvalue 4,
for the matrix 4. If the coefficients «; of the power series are all non-
negative numbers and if A4 is itself a nonnegative matrix, it is clear that
the above result can be simplified to state that f(4) = 2;‘;0 ochj is
convergent if and only if p(4) < 7, with p(4) = 7 only if the series for
/") (#) are all convergent for 0 << m < j(4) — 1. Now, by tne hypotheses
of the theorem, it is evident ihat the coefficicius b(y) of (2.5) are all
nonnegative, and that C >> 0. Thus, to complete the proof, we simply
apply the above result, noting that the series of (2.5), when convergent,
defines a nonnegative matrix. Q.E.D.

To extend Theorem 1, it is convenient to make the following

DerFINITION 2. Let G(x) be defined in the interval (a, b) where
—oo<a<b< too. Then, G(x) is said to be s-completely monotonic

* An m x » matrix A is said to be irreducible if and only if there is no % X
. . A Are
permutation matrix P such that PAPT =

, where A isan7 X 7
0 Ass ’
submatrix, 1 <7 < n.
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in (a, b) if and only if

(— 1)iGY(x) >0  forall a<x<b andall j=012.... (2.6)

TugorEM 2. Let G(x) be s-completely monotonic in (a, b), let C be any

n KN matrix with C > 0, and let v be any number with a <y < b. Then,

Gyl — C) = 272, 0,()C i is comvergent as a matrix series and defines

a matrix wzth positive entries if and onby if C is irreducible and p(C) < R(y),
with p(C) = R(y) only if the series of (2.5") is convergent for m = 0.

Proof. TFirst, assuming that p(C) << R(y), with p(C) = R(y) only if
the series of (2.5} are convergent for all 0 << m < H{C) — 1, we know from
Theorem 1 that the matrix G(yI — C), defined by the convergent power
series of (2.5), is a nonnegative matrix. But as C >0 and G(y) is s-
completely monotonic, there exists a positive constant K such that

Gyl —C :Z Y€ = K(I 4 )y
=
If C is irreducible, it follows that j(C) = 1 and that (I + =0
(8, p. 26], whence G(yI — C) > 0. Conversely, assume that the matrix
series of (2.5) is convergent and defines a positive matrix. Using the
result of Theorem 1, it is only necessary to show that C is irreducible.
Assume the contrary Then, there exists a pair of integers ¢ and j, with
i and 1<C4, ] <<n such that (C");, ;=0 for all m =0,1,2,....
Tt is clear that thlS implies that (G(yI — C)),; = 0 also, which contradicts
the assumption that Gyl — C)>0. Q.ED.

Perhaps tue simplest way to show that a function is completely
monotonic in (0, oc) is to use a result of Bernstein [1]. Bernstein proved
(cf. [12, p. 1617) that G(x) is completely monotonic in (0, o) if and only
if G(x) is the Laplace-Stieltjes transform of aft):

Glx) = Sﬂt duft), @2.7)
Q

where o) is nondecreasing and the integral of (2.7) converges for all
0 < x < oo. In this case, G(z) is analytic in Re(z) >0, and R(s) = s
Next, if G(x) is completely monotonic on (0, oo), then G(x) is s-completely
monotonic if and only if the nondecreasing function «(f) of (2.7) has at
least one positive point of increase, i.e., there exists a # > 0 such that

Linear Algebva and Its Applications 1, 329347 (1968)
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alty + 0) — ally) >0 for any 6 > 0. (2.8)

This follows from the inequalities of

w in»‘.k(s
(— 1)GY (%) = gf“tfda(t) > S e~ dult)
b

= expl— xlio + )0ty + 0) — alte) >0 (29)

for all 0 < x <oo and all 7=0,1,2,.... More simply stated, this
shows that if G(x) is completely monotonic in (0, co), then G(x) is s-
completely monotonic there if and only if G () does not identically reduce
to a constant [14]. Finally, if G(x) is completely monotonic on (0, o),
suppose that the nondecreasing function a(f) of (2.7) is such that for
some ¢, > 0, af) = a(ty) for all £ =14, where «(t;) is finite. It then follows
from (2.9) that
y
|GY(x)| = ge“”tjdcx(t) <t [alty) — 2(0)] (2.10)
i

for 0<{o<<oo, 1==0,1,2,....

Thus, since

‘,GE])@)J ty/ [on(t) — 2(0)] for all j=0,1,2,..., (211

7! 7!

N

it follows that G(z) in this case is an entire function, i.e., G(z) is analytic
for all complex numbers z. Consequently, for any s with 0 <{'s <C o0, We
have that R(s) = - oo,

The above observations, connected with Bernstein’s result on complete-
ly monotonic functions, can be used to obtain several known results on
functions of nonnegative matrices as simple cases of Theorems 1 and 2.
As our first example, we have

TaporeM 3. Let C == 0 be an n X n matrix. If A = yI — C where
0 < vy < oo, then A is nonsingular and A-1>= 0 if and only if p(C) < y.
Moreover, A=Y >0 if and only if p(C) <y and C is irreducible.

Proof. TiwewriteGy(x) = (1/x) = [ ™ doy(f) for0 < & <oo, where
oy(t) = t for ¢ =0, then Gy(x) is s-completely monotonic on (0, o), and

Linear Algebva and Its Applications 1, 329— 347 (1968)
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R(y) =y for y > 0. Since G,(x) is unbounded for x = 0, the series
(2.5") for G,(0) = Gy(v — R(y)) is divergent. Then, apply Theorems 1
and 2. Q.E.D.

The first part of Theorem 3 is due to Frobenius [5], while the second
part is known and can be found in [10, p. 84]. Our next example is
a known result of [2].

THEOREM 4. Let B be any essentially nonnegative n X n matrix, i.c.,
B -+ sI = 0 for all veal s sufficiently large. Then, for all 1 2 0, exp(iB) =

>0 tB)fj! = 0. Moreover, exp(tB) > 0 for some (and hence all) t > 0
if and only if B is irveducible.

Proof. Writing Gy(x) = ¢ % = [ e™ ™ doy(f) for 0 < x < oo, where
ay(t) = 0 for 0 <t << 1, and ay(f) = 1 for £ > 1, then Gy(x) is s-completely
monotonic on (0, co) and G,(z) is an entire function. Thus, R{y) = 4-c
for any 0 << y <oo. By hypothesis, for any ¢ >0, C =B + s is a
nonnegative matrix for all positive s sufficiently large, and thus
Go(sI — C) = exp(tB) = 0 from Theorem 1. The remainder follows from
Theorem 2. Q.E.D.

While it is true that not all results on functions of nonnegative matrices
fall out as consequences of Theorems 1 and 2, as is shown by an interesting
result of Fan [4, Theorem 6] which involves additional assumptions on
the principal submatrices, we nevertheless can generate some apparently
new results, such as

THEOREM 5. Let B be any essentially nonnegative n X n matrix. Then
{I — exp(tB)}(— B)~1=0 for all t =0. Moreover, {I — exp(tB)}(— B)~'>0
for all ¢ > 0 if and only if B is wrreducible.

Proof. Writing Gy(x) = (1 — ¢ %)[x = [ e ™ doy(t) for 0 < x << oo,
where ay(t) = ¢ for 0 <{/ <1 and o4(f) = 1 for { > 1, then Gy(x) is s-
completely monotonic on (0, co) and Gy(2) is an entire function. By
hypothesis, for any ¢>>0, C =tB + sI is a nonnegative matrix for
all positive s sufficiently large, and the conclusions follow from Theorems
1 and 2. Q.E.D.

If A = (a;;) is an n X n M-matrix, as introduced by Ostrowski [7],
ie,a, ;<0 foralli = §, 1 < 7,7 < n, and 4 is nonsingular with 4-1 > 0,
then — A is evidently an essentially nonnegative matrix. Thus, we have
from Theorem 5 the
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COROLLARY. Let A beann X n M-matriz. Then, {I —exp(—t4)}A=1=0
for all t =0, and {I — exp(— tAV}A=1 > O jor all t > 0 ¢f and only if A
is trreducible.

This last Corollary will be useful in the next section.
3. NONNEGATIVELY AND POSITIVELY POSED SEMIDISCRETE PROBLEMS

We consider the following semidiscrete form of (1.1), (1.2):

‘,Z%g)ﬁ — —Act) g 10, (3.1)

subject to the initial condition that

c(0) = 0. (3.2)

Here, 4 = (a;;

with # components.

) is an # X n matrix, and ¢(#) and g are column vectors

DerFINITION 3. Given a nonsingular # X » matrix 4, the semidiscrete
problem of (3.1), (3.2) is said to be nonnegatively posed if and only if
the solution ¢(#) of (3.1), (3.2) satisfies

0 ety <Ag for all real £ >0 and all vectors g = 0. (3.3)

Similarly, the semidiscrete problem of (3.1), (3.2) is said to be positively
posed if and only if the solution ¢(t) of (3.1), (3.2) satisfies

0 < ()< A-ig (3.4)

for all real £ >0 and all vectors g > 0 with g+ 0.
Because ¢(0) = 0 in (3.2), the solution of (3.1), (3.2) can be expressed as
o) = {I — exp(— tA)}A-tg  for all real t=0, (3.5)
and thus
A*lér — ¢(t) = exp(—t4) - A“lig for all real ¢2=0. (3.5
Hence, as the inequalities of (3.3) hold for all vectors g 2> 0, then necessary

Linear Algebva and Iis Applications 1, 329347 (1968)
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and sufficient conditions that the semidiscrete problem of (3.1), (3.2)
be nonnegatively posed are that

{I —exp(—1tA)}A—1 >0 for all real =0, (3.6)
and
exp(—t4)-A-1>=0 for all real ¢>0. (3.6")

Note that with ¢ = 0 in (3.6"), we necessarily have that 4-* >0, i.e.,
A is a monotone matrix. Similarly, necessary and sufficient conditions
that the semidiscrete problem of (3.1), (3.2) be positively posed are that

{I — exp(—t4)}A-1>0 for all real >0, (3.7
and
exp(—t4)- A=t >0 for all real ¢>0. (3.7

We now examine the conditions of (3.6) and (3.6").

Lemma 1. Let A = (a;;) be an n X n wmonotone matriz, i.e., A is
nonsingular and A= 2= 0. Then, (I — exp(— t4))- A1 >0 for all t =0
of and only if A is an M-matriz. Similarly, (I — exp(—$4))- A1 >0
for all t > 0 if and only if A is an srreducible M-matrix.

Proof. Writing (I — exp(— #4))4~ = (4, (1), 1 <4, < n, then
d;,i(t) = t{ém — —;— a;,; + O(tz)} ) 1<s,7<<n, as t—>0. (3.8

Thus, if d; ;({) = 0 for all £ > 0, it is evident that a,; ; < 0 for all 7 % j.
But a monotone matrix 4 = (a, ;) with nonpositive off-diagonal entries
is by definition an M-matrix (cf. [7] and [10, p. 85]). Conversely, if
A is an M-matrix, then, as a consequence of the Corollary of Theorem 5,
(I — exp(— t4))A~1 = 0 for any ¢ >> 0. The second part of this lemma
follows similarly from the Corollary of Theorem 5. Q.E.D.

With this lemma, we then prove

Turorem 6. The semidiscrete problem (3.1), (3.2) s nonnegatively
posed if and only if the matrix A of (3.1) is an M-matrix. Similarly, the
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semidiscrete problem (3.1), (3.2) is positively posed if and only if 4 is an
srreductble M-matrix.

Proof. If the semidiscrete problem (3.1), (3.2) is nonnegatively posed,
then (3.6) is valid for all ¢ 2> 0. Hence, from Lemma 1, 4 is necessarily
ann X n M-matrix. Conversely, if 4 isann x n M-matrix, then A= > 0,
exp(— t4) = 0 forall¢ = 0 from Theorem 4, and (I — exp(— t4))A~ =0
for all £ > 0 from the Corollary of Theorem 5. Thus, (3.6) and (3.6") are
satisfied, proving that (3.1), (3.2) is nonnegatively posed. The remainder
follows in a similar fashion. Q.E.D.

COROLLARY. I} the semidiscrete problem of (3.1), (3.2) #s nonnegatively
posed, then the solution c(t) of (3.1), (3.2) satisfies the following sharpened
Jorm of (3.3):

0< ) < clt+8) <dg (3.9)

for all t = 0, all 6 = 0, and all vectors g == 0.

Stmilarly, if the semidiscrete problem of (3.1), (3.2) ¢s positively posed, then
the solution c(f) of (3.1), (3.2) satisfies

0<cl)<clt+d) <Ay (3.10)

Jor all t>0, all 0>0, and all vectors g=0 with g+ 9.

Proof. If (3.1), (3.2) is nonnegatively posed, then 4 is an M-matrix
from Theorem 6, and consequently exp(— {4) >0 and {I —
exp(— 04)}4-1 = 0forall{ = 0and § > 0. Hence, from (3.5), ¢(f + 0) —
c(t) = exp(— t4){I — exp(— 04)}A*¢ >0 forall £ >0, 4 = 0, and all
vectors g > 0, which establishes (3,9)-. The proof of the second part

follows in a similar fashion. Q.E.D.
4. NONNEGATIVELY AND POSITIVELY POSED FULLY DISCRETE PROBLEMS

We now consider general matrix approximations S(f) of exp(— t4).
For any fixed t, > 0, the fully discrete problem corresponding to (3.1),
(3.2) is defined by the sequence of vectors {w(mly)}_o, where

w(lm + L)i) = Stwimty) + (I — S)A~™g,  m=0,12..., (41)
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and where, in analogy with (3.2), we put

@(0) = 0. (4.2)

DerinitioNn 4. Given a nonsingular # x # matrix A4, the fully
discrete problem of (4.1), (4.2) is said to be nonnegatively posed for 0 <
ty < T (0 < T < oo) if and only if the sequence of vectors {w(mity)}_,
defined by (4.1), (4.2) satisfies

0 < wimty) < A-g (4.3)

for all m=0,1,2,..., all 0<¢{ << T, and all vectors g_>= 0.

Similarly, the fully discrete problem of (4.1), (4.2) is said to be positively
posed for 0 < t, < T (0 << T < oo) if and only if the sequence of vectors
{w(mty)}ye_, defined by (4.1), (4.2) satisfies

0 < w(mty) < A“l_7 (4.4)
forall m =1,2,..., all 0<{#< T, andall vectors g} 0, g#0.
Because ©(0) = 0 from (4.2), the solution of (4.1), (4.2) can be expressed

as
w(mty) = (I — S™(t,))Ag for all m=20,1,2,..., (4.5)

and thus,

At — wimty) = S™(t,)A g for all m=0,1,2,.... (4.5

Since the vectors of (4.5) and (4.5) are to be nonnegative for any vector
g = 0, it is clear that necessary and sufficient conditions that the fully

discrete problem (4.1), (4.2) be nonnegatively posed for 0 <C ¢, << T are
that

(I — St A2 =0 (4.6)
for all m=0,1,2,..., and all 0 < T,

and

S"(t) A1 =0 (4.6)
for all m==0,1,2,..., and all 0<<{ << T,
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which are the discrete analogs of (3.6) and (3.6"). Notice again that the
particular case 7 = 0 of (4.6") necessarily gives that 4 is a monotone
matrix. Similarly, necessary and sufficient conditions that the fully
discrete problem (4.1), (4.2) be positively posed for 0 << {; << 1" are that

(I — S™tnA"1>0 4.7)
for all m=1,2,..., and all 0<<f,<< T,
and
S"™Mt) At >0 (4.7
for all m=0,1,2,..., and all 0<{, < T,

which are the discrete analogs of (3.7) and (3.7').

If 4 is an »n X n M-matrix, then S(t;) = exp(— f{,4) satisfies (4.6),
(4.6") for all £, = 0, and consequently the existence of matrices in this
case for which (4.1), (4.2) is nonnegatively posed is obviously guaranteed.
To determine other solutions, suppose that S(¢) is a consistent approxima-
tion of exp(— t4), Le., if we write

S@ =1 —tA+B@t) forall 0<t<T (T>0), (48)

then S(£) is a consistent approximation of exp(— ¢4) if and only if || B(f) | =
oty as t — 0, ie., for any matrix norm,

lim Hli(t)ll = 0. (4.9)

t—0

The analog of Theorem 6 is

TurorReEM 7. The fully discrete problem (4.1), (4.2) is nonnegairvely
posed for some consistent approximation S(t) of exp(— tA) for 0 <t T
(T > 0) if and only if A is an M-matrix. Similarly, the fully discrete
problem is positively posed for some consistent approximation of exp(— t4)
jor 0 < t< T if and only if A is an irveducible M-matrix.

Proof. If Aisann x n M-matrix, then S(f) = exp(— t4) is a trivially
consistent approximation of exp(— t4) for all 0 <t < oo, and (4.1), (4.2)
is obviously nonnegatively posed for all 0 < #, <co. Conversely, assume
that (4.1), (4.2) is nonnegatively posed for some consistent approximation
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S(t) of exp(— td) for 0 <I < T (T =>0). It then lollows from (4.6)
that for any 4, =0,

7 ; .
(I —S" <72>> A1t>=0 for all positive integers m sufficiently large.
(4.10)

Since S{t) is a consistent approximation of exp(— tA), it can be verified
from (4.8), (4.9) that

Sm<~i—2> —exp(— td) as M — 00, (4.11)

Thus, letting m — oo in (4.10) yields (I — exp(— t,A)) A~ = 0 for any
o = 0. But then, it follows from Lemma 1 that 4 is an M -matrix.
Similarly, the second part of this result follows from (4.7) and Lemma 1.
Q.ED.

We now give sufficient conditions for a particular matrix approxima-
tion S(f) of exp(— t4) to be nonnegatively or positively posed.

TuEOREM 8. Let A be an n X n monotone matrix. If the n X n matrix
S(ty) satisfies S(ty) = 0 and (I — S(ty) A~ = 0 for all 0 <ty L T(T >0),
then the fully discrete problem (4.1), (4.2) s nonnegatively posed for 0 <
ty < T. Similarly, let A be an n X n matrix with A= > 0. If them X n
matrix S(ty) satisfies S(tg) >0 and (I — S(tg))A—1 >0 for all 0 < tg<< T,
then the fully discrete problem of (4.1), (4.2) is positively posed for 0<ty<T.

Prooj. 1f A is a monotone matrix, then 4=1 > 0. Thus, if S{¢g) =0
for 0 <ty< T, so are the products S™(f)A~t If, in addition,
(I — Si)N4a—+=0 for 0<t,<<T, then so are the products
S™ty) - (I — S(ty)A~—". But, as

(I — S™(t) A~ = (I — St A" + S(I — Slig) A~
A - Sm_l(’fo)u - S(to))Aml (4“'12)

is the sum of nonnegative matrices, then (I — St A~ 2= 0 for all
m >0, and all 0 < t, << T. Hence, from (4.6), (4.6"), the fully discrete
problem (4.1), (4.2) is nonnegatively posed for 0 <y < T. The second
part follows similarly from (4.12) and (4.7), (7). Q.E.D.
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As is easily seen, the converse of Theorem 8 is false, i.e., there exist
n X m matrices S(t,) with negative entries for all ¢, > 0 sufficiently small
such that (4.1), (4.2) is nonnegatively posed.

The conditions S{,) >0 and (I — S{t))A"1 =0 for 0 <, < T
(7" > 0) can be connected with the results of Section 2 by

THEOREM 9. Let A beany n X n M-matrix, and let h(x) and (1 — h(x))/x
be both completely monotonic in (0, 8] where 6 > 0. Then, if S(t,) = h(t,4),
there exists a T > O such that (4.1), (4.2) is nonnegatively posed for 0 <
ty << T, Similarly, let A be any drreducible n X nw M-matrix, and lel h(x)
and (1 — h(x))/x be both s-completely monotonic in (0, 6) where § > 0.
Then, if S(ty) = MtyA), there exists a T > 0 such that (4.1), (4.2) 4s positively
posed for 0 <ty < T.

Proof. It A = (a;;) is an n X n M-matrix, then a;; >0 for all
1<e<<n. Thus, if C =06] —{d, then C =0 for all 0 <<
miny ;. ,(6/a,,). Next, since A(x) and (1 — A(x))/x are both by hypothesis
completely monotonic on (0, 6], their associated radii of comvergence
Ry(v) and Ry(v) satisfy R,(y) =y for 0 <y <6, 7 =1,2. Thus, if
p(C) < 0, we can apply Theorem 1 with y = 6 to both A(x) and (1 — A(x))/x.
But, as 4 is an M-matrix, its eigenvalues y; satisfy Re(y;) > 0 for all
1 <+ << #n [10, p. 87]. Thus, it can be verified that p(C) << § if

0 <<ty < min . [

1<i<n
If we define
S i 1L ;QR_GW} -0, (4.13)
1<i<nlai,i
then Theorem 1 with y = 0 gives us that (I — A({,4))4~* >0 and
h(teA) = 0 for all 0 < ¢, < T. We now show that (I — A{t;d))A—1 =0
and A(ty4) = 0 for the closed interval 0 <{ ¢, < 1. By hypothesis, A4(x)
and (1 — A(x))/x are both completely monotonic in (0, 8]. Thus, we know
that A(z) is analytic in |z — §] < 6, and that for |z < 6,

7

WO —2) = D b0)s  where b(3)>0 forall j=0.
7=0

If the radius of convergence R,(8) of this series were 6, then the fact that
the 0,()’s are nonnegative would imply that the above series diverges
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for z = 0, i.e., lim, | A(e) = - oo, and hence 1 — A(x) would be negative
for all x > 0 sufficiently small. But (1 — /(x))/x is completely monotonic
in (0,0], and hence 1 — A(x) =0 for all 0 < x < 4. Consequently,
R(d) > 0 and Theorem 1 can be applied with p(C) < . This argument
incidentally shows that A(x) is completely monotonic in [0, 8]. Thus,
h(tyA) is continuous as a function of £, for 0 <C 4, < 7', and consequently
(I — h{tyd))A=1 = 0 and A{tyd) = 0 for all 0 <4y << 7. The desired
conclusion for the first part then follows from Theorem 8. In a similar
fashion, the second part follows from Theorems 2 and 8. Q.E.D.

The next result, an extension of Theorem 8, establishes the stability
of the matrix S({,) in the uniform norm.

THEOREM 10. Let A be an n X n monotone matriz, and let the n X n
matrix S(ty) satisfy S(ty) = 0 and (I — S(tg))A=1 =0 for all 0 < t, < T
(T'=>0). If e=1,1,...,0)" and Ae = n 2= 0, then the fully discrete
problem (4.1), (4.2) 7s nonnegatively posed, and

M Hw 1 Jor all 0ty << T. (4.14)

Proof.  The first part, of course, follows from Theorem 8. Next, we
recall that if B = (b, ) is any # X n complex matrix, then ||B]|, =
max, ;. >0 b ;| = max,_,_(|B|e);, where |B| denotes the n x n

matrix with entries |b, ;|. We can write S(f)) = 1 — [(I — S(t,))A=114,
and thus, as S({) = 0 and (I — S({,))4=* = 0, then

0 Sl)e=¢— [ — S(t()))AmlJ(/ < ¢

since 5 = 0 by hypothesis. Hence, [[S(f,)!|, <1 for all 0 <¢, < 7.
Q.E.D.

With the hypotheses of this theorem, we see that we obtain stability
of the matrix S(f) in the uniform or maximum norm. In this regard,
see also Thomée [9], who has established similar results for general pure
initial value problems with no boundaries.

5. APPLICATIONS

To give some concrete applications of the previous results, we consider
first the partial sums of e

— X,
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3 (__ X)k
Eon(%) = 2, T n=20,12.... (6.1)
k=0 :
LemMA 2. For each nonnegative integer n, E, (%) and (1 — E, (%))/x
are both completely monotonic tn (— oo, -+ 1].

Proof. We recall [12, p. 145} that a function f(x) defined on the
interval (a, b), a < b, is said to be absolutely monotonic in (a, b) if and
only if /(— x) is completely monotonic in (— b, — a). As is readily
verified, f(x) is absolutely monotonic in [0, R) if and only if /{x) can be
extended to an analytic function, expressed by the power series f(z) =
S ovid, in gl < R and y, =0 for all k0. Hence, to establish
this lemma, we must equivalently show that £, (1 —{) and
(Eg 1

I

— &) — 1)/(¢ — 1) are, as functions of {, both absolutely monotonic
in [0, 4-o00). If we write

-1
Eopll = ) = BIE— 1) = Dol 5.2
H—r—1 ?,__i‘[ (m 1)l
where ¢,(n) = = < , )([41,”'_1)[)

then (I — E, ,(¥))/x is completely monotonic in (— oo, |- 1] if and only
if ¢,(n) 20 for all 0 <7 <{n — 1. Now, group successive pairs of terms
in the sum for ¢,(n) in (5.2). A representative pair, corresponding to
=2 and I =2j -+ 1 in (5.2), where » + 27 + 1 <{n — 1, is

72 1 r+27+1 1
roJr4+2i 4+ 11 7 (r+2j + 2)!
B 1 [ 2+1 1 |
T ANy 22

which is always positive. Thus, if the number of terms for ¢,(#) in (5.2)
is even, then c,(n) is positive. Similarly, if this sum has an odd number

(5.3)

of terms, the last term which is not paired off is also always positive, and
hence ¢, (n) = 0 for all 0 <C7 <Cn — 1l and all » > 1. As the case n = 0
is trivial, this proves that (1 — E; (x))/x is completely monotonic in
(—oo, 4+ 1] for all n == 0. The proof showing that £, (x) is completely
monotonic in (~— oo, 4 1] is similar. Q.E.D.

By considering E(x) = 1 — x, we see that the result of Lemma 2
Is sharp, i.e., the functions E,,(x) for # 2> 0 cannot all be completely
monotonic in a larger interval.
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Next, consider the rational functions
< (n41—k) tn!

Rln — k)1
(n+1)! +nlx

M

. on=0,1,2,.... (5.4)

EIJ7¢(5\5> _ k=0

In a similar but more tedious way, we can establish the following analog
of Lemma 2.

Lemma 3. For each nonnegative integer n, Ey(x) and (1 — £ ,(x))/»
are both s-completely monotonic in (— n — 1, -+ 1), Lor the special cases
n=0,and 1, E \(x) and (1 — L, (%)% are both s-completely monotonic
in (=1, +00), and E, (x) and (1 — E, (x))]x are Doth s-completely
monotonic in (— 2, + 2),

With these lemmas, we have immediately from Theorem 9 the result of

Tureorem 11. Let 4 be any n X n M-matrix. Then, with S(t,) =
E; (tyA) where i =0 or 1 and n >0, there exists a T, >0 such that
(4.1), (4.2) us nonnegatively posed for 0 < t, < T, I 4 is in addition

wrreducible, and S(ty) = E, ,(t,A) where n = 0, then (4.1), (4.2) is positively
posed for 0 <ty < T,

We remark that the quantities E; (%) as defined in (5.1) and (5.4)
are special cases of Padé approximation of ¢=* (cf. [10, p. 266] and [117);
consequently the matrices £, ,(f,4) of Theorem 11 are consistent approxima-
tions of exp(— fy4). Since ¢™* and (1 — ¢~ ")/x are both completely
monotonic in (— oo, -- o), one might expect the general Padé approxima-
tion £, (x) of ¢7* to be such that E, (x) and (1 — E, (%))/x are both
completely monotonic in some mterval containing the origin.  This,
however, is not the case, as it can be shown in particular that E,o(x)
gives a counterexample. The problem of which Padé approximations
E, (x) are such that E, (%) and (1 — E, (%))/x are completely monotonic
in some interval containing the origin is open.

Consider now the numerical solution of

(%, 1) = a(x)u,, (%, 1) 4+ 2b(x)u,(x, ) — c(x)u(x, £) + a(x), (5.5)
O<x<l, >0,
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with boundary conditions

u(0,8) = o 2= 0, w(l,t) = >0, t>0, u(x,0) =0 (5.6
for 01,

We assume that the functions a(x), b(x), ¢(x), and 4(x) are continuous
in [0, 1], and
a(x) = o >0, in 0,1, (5.7)

c(x) =0, d(x) =0

Choosing a uniform mesh of size & = 1/(N 4 1) on the interval [0, 1],
a standard three-point semidiscrete difference approximation to (5.5),
(5.6):

dclt
O dct+g (5.8)
subject to

¢(0) =0, (5.9)

can be readily derived. Here, 4 is a real tridiagonal N x N matrix
and g is a column vector with N components, explicitly given by

—a; —bh O

2ay -+ ¢ h?

4=t AN
= .
AN
0
~d, + ofh?T]
ds,
g = : ,
dn—~1
- d, + BIh]

N

— ay + bk 2ay - cyh?

N

— g — by
N AN
AN
\ — Ap—1 — bn71h
N
AN

AN AN
—ap bk 2a, - cah?

(5.10)

Linear Algebva and Tts Applications 1, 329—347 (1968)



346 . R. S. VARGA

where in general f; = /(i%). It follows from (5.7) that for all & sufficiently
small, 4 is an irreducible M-matrix (cf. [10, p. 857), and as the vector
¢ of (5.10) is a nonnegative vector from (5.6), (5.7), then the semidiscrete

problem of (5.8) is positively posed (cf. Theorem 6).

For the fully discrete problem corresponding to (5.8), (5.9), consider
the matrix approximations £, (f,4), E, o(4,4), and E, , ({,4) of exp(— £,4),
where E, (%), and E, ,(«) are defined in (5.1) and (5.4). These correspond
to the well-known forward explicit, backward implicit, and Crank-Nicolson
methods, respectively. From Theorem 10, we know that each possesses
an interval 0 <{, << 7, such that (4.1), (4.2) with S({,) = E, (t4) is
nonnegatively posed in this interval. Moreover, from (5.10) we see for
all 7 sufficiently small that A ¢ =5 > 0, where ¢ = (1, 1,..., 1), Thus,

each of these matrices, viz. E,(f,d), E,y(t,4), and E (tyA), is stable
in the uniform norm in its interval 0 <{{, < 7, (cf. Theorem 10).
To show connections with other related works, let us calculate the
quantities 7'; for the special case of the heat conduction problem:
a(x) =1, b(x) =0, ¢(x) =0 in [0,1]. In this case, the eigenvalues y;
of A all satisfy 0 < u; << 4/h? and thusasa,; = 2/h® where 4 == (a, ), then
o2 e

min §— ; —p == .

1<i<N 1di,i ’/MJ 2
Next, as Lemmas 2 and 3 determine 6 in Theorem 9, then from (4.13) of
Theorem 9, we deduce that

; h? .
Toy = 50 Ty = + oo, Tyq = h? (5.11)

In other words, for the heat conduction problem, the forward difference
method is nonnegatively posed and consequently stable in the uniform
norm for 0 < #y/h? < §, which is the Courant-Friedrichs-Lewy stability
condition [3], the backward difference method is nonnegatively posed
for any £, >> 0 and is hence wnconditionally stable in the uniform norm,
and the Crank-Nicolson method is nonnegatively posed and stable in the
uniform norm for 0 <C{/h%? < 1. The latter statements are well known
for the heat equation, and can be derived from a maximum principle
[6, 8].

Finally, we mention that similar applications can obviously be made
to parabolic problems in Aigher dimensions, and the unconditional stability
in the uniform norm of the backward implicit method is immediate,
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provided that the matrix 4 of (4.1) is derived to be an M-matrix. That
one similarly obtains conditional stability in the uniform norm of the

Padé approximations £, ,(f{,4) with 2 =0 or 1, and % >0, is believed

to

be new.
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