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§ 1. Introduction

The purpose of this paper is to study the Galerkin or projectional method for
appronimating the solutions of o wide class of nonlinear elliptic boundary value
probles, of. (2, 7--11, 18, 22, 25, 26, 35, 36, 38], and [39]. We study in § 2 the
Galerkin method for approximating the solutions of s class of abstract monotone
operator equations in reflexive Banach spaces, as originally considered by
ZARANTONELLO [42] and Mixry [27].

fn §3, we give suflicient conditions which guarantee that a particular non-
jincar cliptic boundary value problem in s-dimensions be equivalent to an
operator equation satislying the hypotheses of § 2, In § 4, a prior bounds are
determined for the solution of a model semi-linear problem (cf. Eq. (4.4)-(4.2)),
such equations having been studied in [9, 13, 23], and [32]. With these a priori
bounds, the semi-linear problem is then redefined, so that the results of § 2 and 3
are appheable,

In § 5, we apply Galerkin's method to polynomial-type subspaces, as con-
sidered by Harricr [15]. In § 6, we apply the results of [2] concerning bivariate
piecewise Hermite polynomial s :1b5paccs in x'cci‘augmm pulj;:(»m to two-dimen-
sional nmmnmr eiliptic boundary value problems satisfying the conditions
of § 5. In particular, new resulis for the moucl sewni-linear equation, treated
i (9,43, 23], and [32], are obtained, and these compare favorably with results
of (137 and [32].

Finally, «n § 7, we discuss nonlinear two-point boundary value problomb, and
generalize the results of [10] in several directions. :

§ 2. Monotone Operator Theory
Let B be a reflexive Banoch space over the veal {ield and let % be the dual
space of . We will denote by [ (resp. |- [*) the novm in & (resp. in B*) and by
.o) the pairing between B and B*, i e, zf v"‘c]. and we 3, then the value of the
lunctionasd v* at w is (v*, ). ,
Lot 77 be o (Lossibly nonlinear) mapping from & into B* satis{ying the follow-
ing two hypothicses:

(Lig: T is foutely condinuous, i, e, T is continuous from finite-dimensional
subspaces of B into B* with the weak-star topology of B*, In other words, given
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any finjte-dimensional subspace B* of B and any sequence {1, ) Of clements e
B* which converges {o an clement we BF, the sequence {(Twy, 51}y SODVETLes 1

(T, v) for any ve B,
(Hy): T is strongly monolone, i.e., there exists a continuous and strictly
creasing function ¢(r) on [0, + o) with c(0) =0 and lim e(r)= - o® such thar
L o - OO -

(2/1) (Tw—Tv, w—v)| =l —l) —v| forall, %, ve B,

We consider the following problem (Problem Py determine %€ B such that

(2'2‘) Tue=0, 1 ‘
or equivalently such that ' ‘
(2.3) (Tu, v) =0 for all veB. N

Similarly, given @ finite-dimensional subspace B* of B, we consider tix
following approximate problem (Problem PHy: determine #4;€ B* such that

2.4) ° (T, v)=0 forall ve B,

We now state the following result, due to BROWDER [$3

Lemma 2.1, Let T satisfy (1) and (11,). Then Problem P has a unique sis
tion w. Similarly, given any finite-dimensional subspace B of B, the cous

sponding Problem P* has a unique solution -

To have an cstimate between the solution # of Problem P and the soluts 2
u, of Problem p,, we need additional hypotheses on the mapping 1 (cf. Thee
rem 2.4). These in turn will allow us to obtain sufficient conditions guarantead
the convergence of the s to the solution # (cf. Corollary 2.4). We begin with

Theorem 2.1. Let T satisly (1), (I1,), and .

(1) T is bounded, i. € T maps bounded subsets of B3 into Hounded sutns
of I3* (with respect t0 the strong topology of B*). Then, given a0y finite-dime
sional subspace B of B, there exists a constant K, independent of I3, such v
(2.5) () o~ S K int (lw—ul; wE BY.

Similarly, let T satisfy (Hy),

(H,): condition (I1,) holds with ¢ (r)=ar, w0, i en
(2.6) WTu—To,u —)| Za (i — o) forall # v€ B,
and :

Wy T is Lipschitz continuous with respect to the strong topology of B b
bounded arguments (a special case of hypothesis (), i. e., given M0, 7
exists a constant C (M), depending only upon M, such that
27 |Tv— Tol*<C (M) oo —v] for Al w,veB  with [sedh vl= M.

Then, given any finite-dimensional subspace B* of B, there exisis 2 constant b

independent of B*, such that

(2.8) oy —u] S K inf {Jw—uli ®E€ B".




© proof. We begin by showing that (I1,) implics that the same a priotl bound
polds for both the solution « and the “approximate’” solutions . We have, by
wsing (2.4) and (Z.4)

e B ST — T, == [ (P00 [T Il

and thusye (o) = Ma, with M, == | Toj*. Clearly, the same bound is valid for u.
fet w be now an arbitrary clement of 1% Then by (2.3) and (2.4}, we hove
(T w4y Wy w) == 0 since {1, whe BFC B, Thus from {243, ,

20) el wl) Juy— o] ST — To, 1y~ IV RTE T, w —18)]

| Ty~ Tuef* 1o = 1a]).

K i

17Tis hounded, then ﬁl“:zkm'l“ﬂ-ﬂl”‘ is bounded independently of B and the

conclusion of (2.5) follows, since w is arbitrary. Similarly, i T satisfies (51
and (1), the conclusion of (2.8) follows with K'==C (1), DY (2.9). 33D,

As an immediate consequence, We have:
Corollary 2.1. Let {H"};"M be a sequence of finite-dimensional subspaces of B
with the property that
{2.10) lan {int {Jw-—-ul;  we 18} 0,

Jowte o} 08
where 1 is the unique solution of Problem P, 1 T satisfies (F1), (), (¥L,) (in-
cluding as a special case (E,), (K1), (¥L3)), then :

(2.11) Jim (- uf} =0,

where 1y, k==1,2, ..., 818 the unique solutions of Problem F,.

§ 3. Nonlinear Elliptic Partial Differential Equations
The object of this section is Lo show how the problem of approximating t
Lreneralized) solution of & certain class of nonlinear boundary vatue problems can
be puit into the framework of § 2.
Let thes be given a boundaed open subset £ of R, i1, whose beoundory
2is such that the Sobolev Tmbedding Theorem (el for exaple (28, p. 72] and
. 44, p. 4747) holds. For example, this will be-the case if 942 is Lipschitz continu-
e, Using the standard multi-index notation {(cf. [41, p. 27]), we then consider
the fullowing formal (real) Zm-th order Dirichlet problem: Find a solution u of

1h.6) by (M"Z)"”D"‘ (A, (%1 e DMt =0, xeld,
|l Gat
vy Dla(s)==0, xc82 forall |l=m—1,

whete Ay (e, u, ..., D"u) denotes o function which can depend wpon % and any
u with {y| . ‘
For a given f, 4 < p < - oo, We shall consider the Sobolev space
W (63 = {gn; DPuc L7 ($2) for all la] S},

w LN T Y . v g " \ .
v}«*n the derivatives D%u in this delinition are to be taken in the sense of the
eury of distributions. Because 4« bl - wo, W) is o reftenive Banach

e e e e i = e e
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space with respect to the norm
(3:3) [hop={ X [lD*u]rds}™.
. jalm
We will denote by Wy™?(2) the closure.in W™?(£) of the space of inf
differentiable functions with compact support in £2, with respect to the
of (3.3). Thus, the space -
B =Wy"? ()

equipped with the norm of (3.3) is a reflexive Banach space, since it is a
subspace of a reflexive Banach space.

Tor u, ve B, we formally define the *“ quasibilinear” form

(3.4) a(,v)= 2, [ Au(x, %, ..., D"1) D*vdx.

lajsm 12
Then (cf. for example [4, Definition p. 864]), « is said to be a generalized sol
of (3.4)-(3.2), relative to the space B, if and only if

(3.5) ‘ a(u, v)==0 forall well.

In Theorem 3.4 below, we give a sufficient st of hypotheses (essentially a
{he admissible growth of the functions A, (%, 1, ..., D™ 1) with respect to
arguments #, ..., D™u) which guarantee that for a fixed ne B, the qua
linear form a (i, v) is a bounded lincar functional {or ve /3. This will in turn a
us to define a mapping T acting from B into the dual space BB* of B. InT
‘rem 3.2, we will show that this rapping is bounded and finitely continuous
in Theorem %.3 and Corollary 3.4, we will apply the results of § 2 to the n
ping 7. We begin with the {ollowing improvement of a result of Brownik {0

Theorem 3.1. Let the functions A, (¥, %, ..., D"t) appearing 'in (3.1)
measurable in (2, and continuous in their other arguments D¥u, |y| =,

almost all xef2. _ ‘ / ‘o
Let co>>p>1,and let g(7) be a nonnegative continuous function on [0,
such that ' ‘ : ,
[Aq (%, u,...,”D'"u)[g{g( PR [Df’u])} A
(3 6) ; 18] < m—(nfp) .
: {e + 3 |DPul+ X ID”u["”“},
‘ Bl mmrmi— (110} me(n[p)<|fl s m ,
for all |«] S, almost all x€£2, and all D4, |y| Sm, where
np ’

e T |

G2 4 (N if [ocl<m~—%. .
N Pa 1 | al \ - B
\ i —% + it | Zm—

Then, for a given w¢B = Viyr? (§2), there exists a constant K=K, depends?
- only upon %, such that , ‘
(3.8) ' la(u, v)| S K, o], forall ve B.
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2 - oo, we denote by i L;/L, the corresponding norm. "

.xuub hout this proof, &£ will designate a EROeTic constant, '

’r/m/ Tror wel’ (£4), 1

T et w be vny element in H. A’yy Zm Soboley {mbedding Theorem (cf. [28,
2 7N el O for all | Bl mt and further there exists o constant K such
AT I ’,{—’ ) ‘
gk (0P 2 B4t ], o Tor alls such fi's, Thus, the quantity {;)< ) Xi)ﬁw[)} A

A
<l )
sppearing i (5.6} is & bounded continuous function on £3, 50 that

u )

i m,mm {n/l

?]’A (e, 1y ey D7) DR aix‘ 3{"}% el >, il)”ni)
iy i )
L

[ ) . "
15.9) u" (D] ds ergﬂ ”/Mgi Fulj Dtoid '
4 by DPuenlte] D" ch
Iﬂ-"'(‘ﬂ“;; <] s l) i l /k

We can bound each integral in the right-hand side of the inequality of (4 G} 88
foltows, Flrst :
' f

(3.10) T D] ds 5 (Moas G CIP O 2 [ PR I

Pt ) v N L

wext, if [ ] = ;fm J/‘MC[’J( ) for ali real g &1 (d‘ (26, Theorem 3.7, - 72]), f‘ k}“’ ; o

and sivice ¢ ==p[(p -4yl we have from Flblder’s quu&u%y ‘ . e, ‘

pay S wy’mw EEL D 1,,@,“1,,;13%),‘ ,;«:,.,Mz,,,,,,,. SRR
; : :

Fiawly, if ~;--- < | B} g, u“ue[,q vum 5 defined as in (3.7) (cf. (28, Theo- | K

rem 5.6, p- 727 M/’a ssurne first that fond << mw«zi, 4o that the quantity 1[pa a8

defined in (" 7) is equal (0 unity. Since then DApe L7 (§2) and [P ’{w e ix [0]m, s
it follows that

5.472) [ D ajerle] D vida & (0P, ye | D oo G B,
&
1 Yol sz —-ufp, then ]}"ueﬁ« with g, e p[ (Pt el and [D00], N
Kol p- Sinee in that case 4 b 4] = A L follows Lhat S
{3475 f i[}’ “"‘”{D’“vidn e h[)ﬂ“i ‘w‘ﬂff’uﬁ[?"’:} ](I” o ’B*Wiw » ‘
12

To complete the proof, it culfices to observe that the imqu;ﬁ%‘ci@s (}.9) to (342"}

imply that of (3.9). ED. C i

L o consequence of Theorer . q, the quantity o, v} A mﬂnu‘i in (3.4) is B
for each we & a continuous linear {functionat of ve I, and we can Wiite RERNRE

. : %

{533 - a i, 0y == (1 vy dorall w, V€ i3, CoR
which defines o mapping 1 frow = Pt () inko BT (w}w ) is wsually denoted . s
C ot e BT ! .
Wm0y, with g ::f/([;-«‘z; cb. (24, ¢ ATy W nent have o '

Thengen 300, With the same &%umpmmu'm i kuwm'} 4, the mapping 1
w4 defiaed in (3.4%) s bowaded andl finitely continuous. ,

. B ’ ! . . ) . v ' : B e ty Wr&'t”w‘\

)
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Proof. Vizst, it {follows from inequalities (3.9) to (3.12") and arguments siml,q
to those used in the proof of Theorem 3.1 that there exists a nonnegative (';'},}:(mw
~us function 2 (r) defined on [0, - oo) such ' ! il

dna

(3.44) (Tw, )| =la(u, o) <h(ju] ) o)., forall w vel. -;’3:*}],
' h [+

Let now B* be a k-dimensional subspace of B, and let {u]-};’f_; be a su;mn;.‘

of elements in B* which converges to an eclement ue€ B*. We must sholy tlay
U T, v) =a(u;, v)jie; converges to (Tu,v)=a(x,v), for any vebB, Sitlce tha
sequence {n;}f2; converges in B, there exists a subsequence, still denoted by
{u}%2; for convenience, such that {D®uj}2; converges a.e. in 2 to D &
j—> oo, for each |e| L m. Likewise, the functions A (¥, 1, ..., D™u;) converpe
“a.e, in £2 to A (x, %, ..., D"u), since these functions are continuous in thes
arguments «, ..., D™« for almost all x in . Then by Lebesgue's Dominated Cue.
vergence Theorem, it will follow that {a(x;, v)}j2, converges to a (i, v) asn-» ~, ¢
we can show that the absolute value of the integrand { ), A.(x, u,,.‘..,l)”'u,)ll‘v’

o] % e I

is bounded g, o, in by an LM ({2)-function, independently of 7, oot
Let wy, 1 545k, be a basis in B* Thus any element we BY has a uni

¥l

Thus the mapping T is bounded. o

%
representation in the form w =), a,w;, and [w]=max{|a;]; 1 =i <k} is a nom
3

i

on B In particular, the u;'s and « have unique representations ;= Toalw,,

: 13 i

and « =y, a;w;, respectively. Since all norms are equivalent on a finite«d‘i:nm-
ok ‘ i

sional space, there exists a constant X such that [w] S K]w],, ,, for all a1,
In particular then, there exists a constant K’ such that

. . 1
(3.45) , [a{f[, ]a,,[ <K' forall 154k andally. }:“ _
We now have, by (3.6) and (3.15), that for each« with |a| =m, :

VAo (%, ), .00, D™ie) D] = {g( }D”ui[) D“v}

i< m— (i)

N

D’ (s% aiw‘)i “iﬁm--("/i:‘%:1 lﬂISml » (é:l af w‘)i“m}
. ;.g{g< > lD”ui])D"v} - | »

[Bim(n]p)

Bl sstem (1] )

SRS R NN 0 R% KO N - o i

|Blmme(fp) ] Vil m=(np)< |5 m im1 e,

where K" is a constant independentof 7. -
As in the proof of Theorem 3.4, the quantity in the right-hand sidchof {e
above inequality is an L (£2)-function, which is moreover independent of .
 We have thus proved the weak convergence of a subsequence of the ongi®
sequence {Tu}fe;. In fact, the whole subsequence weakly converges to T».
‘since the limit is unique. Q.2.D. ' o
' The following theorem, as well as Corollary 3.1, summarizes the applicat»®
‘of the results of this section and those of Theorem 2.4 and Coroﬁlary 2.4 of § 2.

‘!}'4

'
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Theorem 3.3. If the coecfficient {unctions 4, (%, «, ..., D™u) satis{y -the -same
hypothieses as in Theorem 3.1, and if the mapping T.defined:by (3:13).1s strongly
monotone, i. e., there exists a continuous and strictly:increasingfunction ¢(r)
on [0, - o9) with ¢(0) =0, and '_lizlwc(r) = -} oo such-that

(546 WTw=Tvu=v)ze(u—v].,)]u—vl,, foral v veB,

then the nonlinear Dirichlet problem (3.4)-(3.2) has a.unique generalized:solution
win B=17"?(£2), where 1 << p << + oo.

If 5* is any finite-dimensional subspace of B, then:the corresponding Prob- .
fema P* (as defined in (2.4)) has a unique solution #,€B*;and:there exists a con-
stant & independent of B* such that

(3.17) c(Jup—1el, )y —tt],, , S K inf {ﬁz&»-«u{[,,,',;; we B
Sitnilarly, if condition (3.16) holds with ¢(r) =w7,:¢>0,¢and .T:is Lipschitz

continuous (hypothesis (Hz) of Theorem 2.1), therec -exists “a :constant 'K’ in-

dependent of B* such that :
(3.18) fot ey, p S K" ink {Jw =~ u],, 5 :Kr;{efxB’*},' .

Corallary 3.1. Let {B"}i%; be a sequence of finite-dimensional subgpaces of "B
with the property that C

(3.19) - lim {inf|w —ul, ,; weB'}=0,

how 400

where  is the unique generalized solution of (3.1)-(3:2). “Then, with:the same

assumptions upon the mapping T as in Theorem 3.3,

i (g =nl =0

To conclude this section, we make two remarks. First, when the gencralized
solution 1 is sufficiently smooth, the quantity inf {Hu—»—wﬂ,,,',;;'we'B"}‘ appearing .
in (3.17) or (3.18) can be bounded for particular choices ofssubspaces ‘B, as will
be shown in §§ 5, 6, and 7, thus yielding an error .estimate for' the numerical .
approximation of (3.1)-(3.2). Second, it is easily seen"that:the.growth conditions
imposed upon the coefficient functions 4, (%, #, ..., D"™u) by the inequalities of
(3.0) ave very restrictive. A general method will be described in detail in the next
section for a model problem, for studying nonlinear Dirichlet; problems, for which :
the cocfiicient functions do not satisfy conditions (3.6). The:method consists of
finding a priori bounds for the solution (and also in-some:cases for its'derivatives,
as in tlie problem of (7.26)-(7.27)) in the Ly-norm, and using these bounds, to
modify (3.4) so that the new coefficient functions 4, (%, 2%, ..,, D™ u):satisfy (3.6),
in such a way that the unique solution of the ‘modified :nonlinear ‘Dirichlet
problem coincides with that of (3.1)-(3.2). , '

§ 4. A Priori Bounds
In this section, we show for a model problem (cf. (4.1)-(4:2)). how .to.apply
the method briefly described above to a class of problems:not directly covered
by our previous analysis, For ease of exposition, “we :consider :the : following
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“model proble}n": Tind a solution # of ' s
(4.5) : du(x)= i Bul5) ik, u)  xe0 ~ i”

. ) axf‘} L L ] ,' o
42 u(x)=0, xcdf. e

N
iy
The following result was proved (in the case n== 2) by LEVINSON (23] and w
now sketch his proof. Y
Theorem 4.1. Let £ be a bounded open subset of R", n=14. Assume thx
f(x, 1)€CO (L2 X R), and that Sy
;
)

(4.3) ' lim ini JACZAUN =0, uniformly in xel2,
fuj—r oo ¥

Then if p(«) is a classical solution of (4.1)-(4.2), 1. e, (p(x)eC“(ﬁ)-’\ C*(9), thete

exists a constant M, which can be computed a priori such that

(4.4) ' oo 5 M, ;

Proof. Since {7 is a bounded subset of K™, lét a>>0 be s0 determined that
cos (@ x;) —sin® (a x)) > 3, for all w==(%;, -+ x,)€82. By (4.3), there exists M3
such that |«| 21, implies [ (%, 1)1 & — a?[4, for all xe§7. Consider the functire
W () = g (%) exp {—cos (@xy)). Then, W] =M, for otherwise, there woubt
* exist an £€{ such that | ¥ (%) = | W] > My Suppose & corresponds to a mav
mum (a similar argument would holé for a minimum). A direct computatis
chows that 4 ¥ (%) > &[4, which is impossible at a inaximum. Hence, [¢}<%
9 o = 045 - Q.ED. o
_ The following result was proved for the case 7= 4 by Less [21), and for te
case 5 =2 by CIARLET [9].

Theorem 4.2, Let §2 be a bounded open subset of R*, n=4. Let 242, v«
' boundary of 0, be smooth in the sense that the boundary value problem ‘
du(z)=—1, %€

%(x) =0, x€0f2,

‘ : . — i
has a classical solution ¥ (x). Assume that (%, #)€C®(2 X R) and let \‘

. qugfﬁw.' A =sup{|/(x 0)]; xe§3}. .
Assume further that fx, u) is & continuously differentiable function with respes?
to w for each x¢f2, and that ' : '

(4.5) —g—é— (%, 4) =y > — % for all xed2 *and all real %,

for some constant y £0. I p{#) is a classical solution of (4.4)-(4.2), then  A°
(4.6) | lplo=Man o 0
where M= o/(i +ve)- - TR v

h e o T g = S P

AT S

B
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Proof. Let us first consider the case y = 0. Using the Maximum Principle
(cf. 1 2)), it follows that ¥ (x) >0, x€£2. Given 6> 0, let »

w, (%) = (A + &) W (x) — ¢ ().

Then w,(x) 20, xc{. If not, there would exist an 58 such that w, (%)==
inf {w, (%); #€§2;<0. This implies that ¢(¥)>0 and (7 ¢(®) 2/ 0). Conse-
qucntly,

S, (8) = — () — [ (7 () S — & — (o 12, 0} £ —€ <0,

4 contradiction. Since w, (x) =0, x¢ Q, for all £>>0, it follows that ¢ (x) S o,
<o {7 and we could similarly prove that ¢ (x) = —Vo, %2, proving (4.0) for
the case p=0. '

[f y<C0, we can consider () as the unique solution of du(x)=["(%,1),
cc 82, and (%) =0, x€0%2, with :

1 (s, sy 5 (%, ) =y -y 9 (),
The Zun;:tion ¥ {x, ) satisfics a condition such as (4.5) with p* == 0, Iience, as
v <0, _ ‘ '
1ol Sefsup{l/*(x 0);  xedfi S e—velele o
{rom which the conclusion {ollows. Q.E.D.

Let us now transform the boundary value problem (4.1)-(4.2). For a given
3/ >0, we introduce the real-valued continuously differentiable function & (1)
defined for all real » by

M4 —exp(M —uw), M<wu,

4.7) ‘ &'M(u):.—:g u, o lul =M,

\—M 1 texp(M +w), #<—M.
\We then have the following result.

Theorem 4.3, With the same assumptions as in Theorems 4.4 and 4.2,
respectively, consider the boundary value problems o

(48 Au(z)=fxw), xeld,  i=12
(4.9) - % (%) =0, £€00,

where .

- {(410) (o 58) = (%, £, (), i=1,2,

and where M; and M, are the constants of (4.4) and (4.6), respectively. Then, ¢(x)
is a classical solution of (4.4)-(4.2) if and only if it is a classical solution of (4.8)-
(4.9) for i =1, 2, respectively. '

P'roof. Assumac first that the assumptions of Theorem 4.1 hold. If ¢(x) is a
“lisical solution of (4.1)~(4.2), then |, = M, with M, being as in the proof of
fheorem 4.1, Since f(x, 1) =fy(#, %) when [#| =M, ¢(%) is also a classical
wolution of (4.8)-(4.9) with §=1. Conversely, if ¢(x) is a classical solution of
(4.8)-(4.9), | ¢l is bounded a priori by the same constant M,, for as in the proof

L
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of Theorem 4.4, | 1| = M; implies fy (%, #)[1 = — a?[4, since then filx, «)={(x,v .
© for sorae v with M <|v| < ||, and 0<vju=4. Thus o
;/.l_ﬁ'f" 1) flx0) v N o f(x,0) -
- = »;;g_ —a3l4, since T = -«—-aﬁ@
Hence, @(x) is also & classical solution of (4.?)-(4'.2).
Assume next the assumptions of Theor:m 4.2 hold. Then on one hand,

sup{|/ (% 0)}; xey =sup{|/a(x 0)|; #ef2}, and on the other hand

of af " — i . .
S (5, 0) = 5 (% Ear, (1)) - £, (W) 2y > =y SIICE 0< &y, (1) S1,

and y=0;

hence the two problems are again equivalent since the a priori upper bounds fe
| plloo are identical. Q.ED.
As & consequence, obseive that

win) Ul Eepl/in 0l sl [slEMAD, St
. - v“"\‘f"‘

for all wef2, andallveal #, K

hE
t

since [Er, o =M 11, i==1, 2, and that o

1 9/; d o .
(4.42) ifé%(x.u)lfésup{l-gé(x.u)l; %€, lﬂl‘éfaM.wH}: =4, 2

since [Ea =1, 1=1,2 Hence both |/; (%, w)| and ‘%{" (¥, m)%, ==, 2, 0
bounded for all xed? and all real %, The point is that this is now a type of noo:
Jinearity which is a special case of (3.6), whereas this was not necessarily the cav
for the original problem (4.4)-(4.2) with the assumptions of Theorems 4.4 0t 42
Actually, in the special case p =2, the adimissible growth hypothesis for |/ (%, Wi
as given by (3.6), is the following: ‘ B

(g (), it n=1,
U(x,u){g_&i{(ﬁ |, il n=12, x
K -\»M(mw(n»m), if nezd : i
and clearly this was not necessarily-implied by (4.3) ot (4.5) b
W

We now introduce the positive quantity

£ n ) .
bf{ ;:’, [w,,,’j‘} dx
ik

4.1 = inf s
( t ‘3) A wt ;;/‘\.Ap(a) f w? o ¢
W e (V) &

"
which is the smallest eigenvalue of the Laplacian 4 over the domain {3, BARTA W
‘has shown that . o '
(4.44) - ] = A,

where g is defined as in Theorem 4.2, We can aow prove
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heorem 4.4 et £ be a bounded open subset of R, n =1, such that the
Sobolev Tmbedding Theorem holds. Consider solving the modificd boundary
value problenis (4.8)-(4.9), 1 =1, 2, with the same assumptions as in Theorems 4.1

Cand 4.2, respectively, together with the further assumption in the case 1==1

(which corresponds to Theorem 4.4) that f(x, u) is a continuously differentiable
(unction with respect to u for cach x€£2 and that
J e

(4.45) ?“I; (x, 0) 2y > —/ forall xef2, all real #,

{or some constant ¥ <0, where /A is the positive quantity defined in (4.13). Then,
cither of the modified boundary value problems (4.8)-(4.9), i =1, 2, has a unique
peneralized colution % in the space B —=Wph?(Q). If the data are sufficiently
smooth so that this generalized solution is also a classical solution, then it is also

a classical solution of the corresponding original problem (4.1)-(4.2)-
Finally, for both modified problems (4.8)-(4.9), ¥ =1, 2, the corresponding

approximate Problem F* has a unique golution w, in each finite-dimensional |

subspace B* of B, and there exists a constant %', independent of the subspace

(4.40) Hukwuﬁmg}{’ini’{uw-u“m; we BY.

Proof. The new canctions (%, w), v=12 now satisfy growth properties com-
patible with those of (3.6). Thus, by Theorem 3.1, the quasibilinear forms

a;(w, v) wﬂf {E,Iu,iv,,»{* fi(x, ) v} da=(Tiw,v), =02

both define mappings T, i=1,2, acting from B into B* which are bounded and
finitely continuous Dy Theorem 3.2, We now show that the assumption of (4.1 5)
which is also valid in the case s=12 by (4.44), implies that the mappings Ty
[ =4, 2, are siroigly monotone with ¢{7) s=sar, «= (A+pia 1+4)>0 (Hypo-

thesis (i) of Theorem 2.4). Dropping the index i for convenience, We have for

ail s, ve b,

MTueTv,w-mwﬂr:-‘a(u, w—v) —a (v, % —v)|

o ﬁgf {Z (u,,mv,,}w ( (% ) — 1 (5 9)) ('u'-v)} dx

=3

N

> [ {i‘-g'}x Uty = Uggl® TV (44— v}“} dx, by (445}

Q
A4 .
2 (4 (ol by GO

" Finally, we show that the mapping T is Lipschitz continuous (Flypothesis (3

of Theorerm 2.4). We have for any wé B, and all 4, ve B,

WT'u -~f.z, w)ﬁ‘mia(w, w) —a (v, W)
J{8 oot (s 0= 1) w) dx

et

'
. t

SICTL VU S-S

'ﬁ(ﬁﬂrsu‘élﬁ%(x.“)\% xedd, “GR})“““”\@WWEMV
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- by repeated.application of the Cabchy—Schwarz inequality. Hence,

. P Tu—~Tv, w)] _ ", S v
Iru~Tuje =sup T Sl

> . ' : |
with C= (7:+sup{]‘aj-— (%, w); xeﬁ uER}) where C is finite for both m(xi' L

i
fied . problems. Thus, the conclusxons of Theorem 4.4 follow by Theorem 21
Q.20

§ 5. Polynomial-Type Subspaces i‘,u

In this section, we examine the use of “polynomial-type’ subspaces in thw‘
projectional.method described in § 2. We start by stating an easy consequence

of a fundamental result of KANTOROVICH and KryLoV [48, p. 276]. [ !
b

‘ i
Theorerny 5.1, Let 2 be a bounded open domain in R, 4, with @ itt‘,i&

boundary, ¢ and s positive Integers with £> s, and let ¢ (%, ..., %,) &= @ (%) be d g\:'l y
function defined in an open domain, D, containing £ which satisfies the followm;;‘
conditionss: . : “\
. bl
(i) @(x) =20 if and only if x¢ 842, ‘ o £
(if) peC({d), i e, D*@eC () for all || 57, L
(iii) forzany o with |a|={, there exists a'constant K such that | D*g( )—-.
Dxp(y)| £K|x—y]| for all x, yel, where || denotes Euclidean distance in R, ‘:’;
Cand’ . ’;:31,
(iv) grad g (x)== 0 for all xeaL. g
Then, the.set of all functions of the form {(p(x))*p;(x)}2,, where p; () i xs a pol) ig }, :
nomial of:degree at most § in each vanable X 'l Sz <mn, is dense in (.(’},:
forallr 24.. ,-3 i
"HARRICK [15] has shown that given a smooth functxon u( )€V " (42), one, e
can actually asymptotically bound quantities such as S g:i~4ir :
i I . ' ' ' ; l)
(5.4) inf{| D? (u(x) — (¢ (x))*p, x)){[m; pi(x)},  forall ' |B] St 'zr;;‘ .

{
 Wé.now state his result. For convenience, let F(R", ¢*) denote the space of all §
products: ¢*p; where Pi is any polynomml inn vanables of degree at most 7 in’ u

each vanabie: T e -
0. ' . K . N .
Theorerm 5.2 Let 2 and 9 sa’usfy the hypotHeses of Theoxem 514. If u( )(:C‘ (2

and D¢ (%) =0 for all xedf o pedys .,...kr‘ a4, then there exists a sequence of
functions:{ (¢ (x))*p; (% }1...1 such that v pieF (R, 99‘) and there exists a posxtl“m

constant . suci that, L l)(
| R |p? (% (o), (Nho 1 -
(532 S afe B i
. G . - ng (t-lﬁ(] ) L fox‘ Bﬂ Iﬂl %#
@ 7. Do e A"‘w ""m
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for all ‘m =1, where

: =m: z De : — D* .
w, (1] &) max {erE;”xS‘] u(x)—D z((y)]}
960

For the case n =1, this result is obtained independently in- [10, Theorem §].
Combining the previous two theorems with the results’of § 3, we obtain

Theorem 5.3. If the coefficients of the differential Eq. (3.1) satisfy the hypo-
theses of Theorem 3.3 with ¢(7) =ar, >0, and T is Lipschitz continuous, and
¢ and £ satisfy the hypotheses of Theorem 5.4, then the nonlinear problem
(3.1)-(3.2) has a unique generalized solution (x) in Wy™?(£2), and the approxi-
mate problem over B (R", ¢"~') has a unique solution u,(x) for each j=1. If
u(x) is of class C*(£2), £ = m, then there exists a positive constant K such tifat

(53 looy— ] p S K —ima?=, &1

§ 6. Piecewise Hermite Polynomials Subspaces and Two-Dimensional Problems

In this section, we apply the results of §§ 2, 3, and 4 for two-dimensional
problems to subspaces of piecewise Hermite polynornials. Moreover, new error
estimates are obtained from recent results in the theory of piecewise-polynomial
interpolation, c¢f. [2]. We start by briefly recalling these results.

Let E = [a, 8] X [¢, ], be any rectangle in the plane with sides parallel to the
coordinate axes and consider arbitrary partitions in each coordinate direction

Lol B

(6.1) : A a==xg < Xy <o K Xy yy =0,
4 C$y0<y1<""'<y1v'+1:d:

where N and N’ are nonnegative integers. We say that p==4 x4’ defines a
purtition on E, and we define

4 = max (x;1,—x); A= max (Vi3

(6.’0) 05isN o:‘:fﬁN’
de= oun, (®ipr—x);  A'= 0N (Y223

Definition 6.1, For a positive integer s and a partition g of E, let H¥ (p; I)
be the set of all real-valued piecewise-polynomial functions w(x, y) defined on E
, i+]
such that DOy == %—égjje@ (E) for all 0 =4, 7= s—1, and such that w(x, y)
i“ a polynomial of degree at most 2s—1 in both » and y in each subrectangle’
0 % 41] X [}, ¥744] defined on £ by p. '

, Definition 6,2, Given a real-valued function f(x, 9)cC*=%=Y(E), i.e.,
D'"91(x,) is continuous in E for all 055, ¢<Ss—1, let ita MW (o; E)-nter-
polate be an element f, , of A¥ (p; E) such that L

(62) D“'”]‘(%“ v %') = D(w)/m,g (xﬁ » y!)

forall OSA SN 44, 0K SN 1, and all 056, f S5 —1.
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[

We remark that the 7 (05 E}-interpolate of ‘any function jur C’“““‘-“"U{} i
uniquely determined and is local (cf. [2]), i. e., the JU) (0; E)-interpolate o /i
[a;, Fira] X [V, ¥744] s completely determined from the specific values' [y
/(%4 ) where b =¢ and i1, and L=1and'j -4,

In this section, we consider regions £ whose closure &2 js any reelo

- polygon, i. e., any polygon whose sides are-paraile] to one of the coordiy, L
in the plane, such as an L:shaped region? We remark that any rectangular Dolypoy

){ ]
can be expressed as a union.ofirectangles:‘ui I such.that: Qnﬁ,, 1=, ; Sk iy
either void or a subset of an edge of £} and an edge-of E;. In this case, w
‘that the rectangular polygon is composed-of the Tectangles: J7

g ;

S .L:\)'

~ Definition 6,3. Let G be a rectangular:polygon, composed: of the rectingle
Ei=la;, b]x[e;, d,), 4=<7 Sk in: the: {x, Y)-plane: and: & he a collecting: of
partitions of 2, i, e., each e=dx4! of & defines a.partition: AEYRA() 65 pach
rectangle E, of T, Then, the collection & is.snid. to be-regsalar i and ordy 1. dere

exist three positive constants ¢, +; 7 suchithat: o A,
(6.3) A6 Zodl),. 416) 2okt (),
and ; o |
(6.4) g S

for all 4 =i=k and all pes#z,
Definition 6.4, For any positive integer: and: any: extended real numlr ¢
with 4 L7 < -+ oo, Jet S (L) be the set-of all real-valued functions.f (s, ) defined

on £ such that T
(6.5) L DU per (Y toraall. 0SS, :
~and , ' ’
(6.6) D feCoOd. for-all; OST<cpn, o

The following result was proved [2; Theorem:6},. 1 .
Theorem 6.1, Let 0. be:a rectangular- polygon: composed: of the rectaes
Ei=Ta,, b;]x leq, d;), 1 gzg_}g, in the:(x, y)-plane; and. & be a. regular collection
of partitions of 2, If fe SP7(22) whiere 2 2% and f; € 4P (o;-0) is thie W (p; J2)-
- " interpolate of f on each ELISi<E,. th’en‘settinggvs-ng;zxﬁ" {37, thera exisls 2
constant M such that: ‘ tai: it
- (67) B AN e e e '

\
v

for all PESF and all ¢ =8, L<S withzog];':»g-{:g;zxsm,'.. o
Combining this result with the.results.of '§33, we: Have _ "i{":

)
L

P ) ) - J'

Theorem 6.2.. Let. 2. ba. acrectangylar: polygon. composed. of the recta“!e~€§'
Ej={a;, b]x lee, &), 1 ST<h) and o be:any collection: of: pactitions of L2 .y
the coefiicients of the différential 3, (344} satisly theliypotheses of Theorem VI

'
v

yiday
2 axn
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then the nonlinear Dirjchlet problem (3:1)~(3.2) has a unique generalized solution

W A0D), and the approximate problem over H (o, 73), S=xm, has a unique

solution, u,, for each OEF, If #eSH () where L2252 2m, there exists a posi.
tive constant X such that ‘

Py

'(6-8) C”“o”“”Hm,p)ﬂ“o‘““”m,péKWE""‘ orall pegr, .

I, in addition, conditjoy, (3.16) holds Wil Sl and the assogiated
monotone mapping 7 i Lipschitz, continuous, thep there existg g positive con-
stant K’ such that

(6.9) {]u0~z¢[{m,,,§‘ff’v"‘”'” forall pegr,

Asin § 4, we now consjder the “mode! problam "

d*y Iy
(6.10) du(z, y)= T T =%, 9, u), xeq,
with :
(6.11) #(x, y) =0, x€002,

which is the two-dimensional form of (4.1)-(4.2).
Combining Theorem 4.4 ang Theorem 6.1, we obtain

Theorem 6.3, et 2 be a rectangular polygon composed of the rectangles
E, = [a,, 61X [c;, 4L 1<si< k, and let & be a regular collection of Ppartitions
of 2. If the function K%y, u) of (6.10) satisfies the hypotheses of Theorem 4.4

»

. then the problem (6.10)~(6uﬂ) has a unique generalizod solution # in (62,

and the approximate problem over FJ0) (0, £2) has o unique solution #, for each
o FLIf uES""(.Q) where ¢ =25, then there exists a positive constant X such that

(6.12) []uq««u!fl,,gKv”“'l forall pegr, ‘
We remark that the resylt of (6.12) for the special case g 1, i e, 1465”‘”(5)

and ; .

(6.12) [+, =l S K,

1 the analog of results 1y the linear case for discrete approximation of 4 1
Nirscur and Nirscyg [29] and KEerLogg [19] and [20]. For related results for
wo-dimensiona) discrete approximations, sea also [3, g, 13, 31, 32], and [37].

‘or results of computations in two dimensions for particular cases of Theo-
ftn,5.3, both for linear ang nonlinear problems, we ¢jte the work of [16].

. § 7. Two-Point Boundary Value Problems
. In this section, we apply the results of §§ 2,3, ana 4 to various classes of two.
l"fmt boundary value problems, including the semilinear evep orcer problems
“icussed i [10], semi-linear odq order problems, ang systems of semi-iineay
¥en order Problemsg, o ‘
Ve consider the differentia] equation (ct, (10]) C

1) /52(-1>f0f@,<x>z>’u(x>1+f(x,u<x>>=-o. o<i<y, i,

b Kume, Math,, B, 43

e
T S
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sabject to the boundary conditions

(7.2) D*u(0) =D*u(s) =0, o0<h<m—4p.'

i
-

From Theorem 3.3, the Sobolev Imbedding Theorem (cf. [41, p. ,4) an
(28, Theorem 4.2, p- 199], we obtain the next result which generalizes ’i‘l;f«;rm;
of [40]. ' i

" Theorenz 7.1, If : H i

(i) the coefficients Pi(x), '7’20,...,172, are real-valued and mcastgl;t?\lvic sn

x€[0, 1], -

oy, i ) i m ) i 5
(i) there exists a constant ¢ 0 such that / (L pi(%) [wa(x)}ﬁ)dx‘i‘;;clu'&‘ ‘
QO V@ ‘ o

for all weWiy™2([0, 1] and hence
.

£ 500 (Diw () 12a

A= mi ) 3
w& o, 1) AR Lo
I j{w(a)} dy [

and .

(iii) / (%, w) is a real-valued function defined on [0, 11X R such that HERTOE
L3[0, 4] for all weWy™20, 17, and such that there exists a constant ¥ with

oo

(7'3) 1‘(45, it) "‘“f(x: U} g

16—y

7> —4 for almost all x¢[0, 4]

and all —oco<C#, v<< J~ca with « ==v, and for each ¢>0 there exuc Mt

such that to
(7.4) W- SM(c)<< oo for almost all x¢[o, 1] |

and all — o<, v<< - oq, with u==v and |u| e, |v] Ze, then 1]1(;f‘;fx'ul»’.'m
(7.1)-(7.2) has a unique generalized solution # over ™20, 1. Moﬁ*u{‘;’vrr. ¢
{Sujnza is a sequence of finite-dimensional subspaces of )™%[0, 1] such tht
Iim (inf{[g —u], ,; g€S,}) =0, then the approximate problem B, has a uniqw

b OQ

solution #, for each n 21, and there exist positive constants K and K* such thst

(7.5) j]D’(u,*w«u)”mg}i’[]u,,mu”m’agK’ inf{|w,—u], . w,eS} ’ :

forall 027 S m ~—1, and all % =1. o

We now apply the results of (38] on L-splines to Theorem 7.4 {u vhtast
upper bounds for the errors for approximate solutions of (7.1)~(7.2) in the finit»
dimensional subspaces Sp(L, s, #). To first briefly explain the naturc of &
splines, let L be any 7-th order linear differential operator of the form

78 Lix “’”"‘é G D), vzt

P ’,

where we assume that the coefficient function a;(x) is in C7[0, 1] for all 07 %

and 4,(x) Zw>0 for all #€[0, 1], as in [38]. Next, let 4+ 0= xg<C A <L

#y+3==1 be amy partition of the interval [0, 1] and let z = (a9 <-ns Zy)s the ot

dence veclor associated witli 4, be an N-vector with positive integer con’;;ﬁmcw

4 with 1 52,5, focall £ YN, Then, Sp(L, 4, #) denotes [35] the coflectree
: c . o ‘ . ‘ e
i

o

L T
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{ il real-valued functions s (¥), called L-splines, defined on [0, 1] such that

L*L[s(x)]=0 for xe (x;, £;4) for each i,
0ZisN,
o D5 (5—) = D¥s(w;+) forall 0k S2r —4 =2,
‘ 1<iSN,

e L¥u(x)]= }3 (— 1) D [a;(x) v(x)] denotes the formal adjoint of L. As

j0

Lo important special case, if L [#] = Dfu with Z, =2, =~ = iy =1, the elements
{ sp(lr, 4, #) axve then simply the natural spline functions, and Sp(D', 4, 2)
vromes Sp7{4) in the motation of [40]. Similarly, when L [u] =D"u and

bRy =Ey=T, the elements of Sp (D', 4, &) are then simply the piecewise
s mite-polynomial functions, and Sp(D", 4, &) becomes HY (4) in the notation
410} and [40].

Civen a function f(#) €€ [0, 1], where 7 i the order of the differential
verator L of (7.0), there are various ways in which one might interpolate f in
il 4, 2). As a particular case, if there is an element s(x)€Sp(L, 4, &) such
<l ' :

.u% .

") Dbs(x)=D"(x), 0=kZr—1, =0 and {=N--1,

ve wy that s (#) is an Sp(L, 4, z)~£ntcr;bolat'é of /() of Type L. It can be shown
" that, for any partition 4 and any associated incidence vector 2, an Sp(L, 4,2)-
arerpolate of f{x) of Type 1 always exists and is in fact unique. Thus, given any
cameters o), 05k Sz,—1, 054 <N -1 (where we define for convenience
W iy, = 7), there exists a unique function (x)eSp(L, 4, #) with

T 1) Drulz)=ad, 0sk=z,—1, 0Si SN+,

wi we denote by SpH(L, 4, 2) the finite-dimensional subspace of Sp(L, 4, #)
doadl auch fuwctions. ‘ ‘ |

With the wotation 4 = max, (i3~ %;) for the partition 4 O=xp< <
L3 S .

" 4.y ow 4, consider now any partition 4 of [0, 1], and any associated incidence

LR P

BTN

¢ = Dased on an extension of [38, Theorems 7 and 9], it is known [33] that
1) is of class W"2[0, 1], 7 =1, there exists a constant M such that for any
wehbon 4 and any associated incidetce vector &,

P

3

S D~ =M Ay Lt 0SiE

v () s the unique Spi(L, 4, #)-interpolate of /(x). Similarly, if f(«) is of
v WA g, 4], v 2 4, we have

)
.

! L (=) S M AP LA LY, OSS7.

g

ving this to the generalized solution w(x) of (7.4)-(7.2) results in

| heorem 7.2, Let hypotheses (i), (i), and (iii) of Theorem 7.4 be satisfied, let
W3y be any wquence of pactitions of [0, 4] with lim 4, =0, let (="}, be
' . Bt CRD .

,,,




=

(7.48) (Au, Kuyy zo|Kulfy, foral ue D(4).
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any associated sequence of incidence vectors, Jet L be a differential OPCI‘&“{H; o}
the form (7.6) with 7 =Zm, and let S, =:Spol(L, 4., 2", i.e., those functiviiin
Sp'(L, 4,, 2" satisfying the hormogencous conditions of (7.2). Then, the appioxi.
mate problem P over S, has a unique solution =, for each =1, and if «, the
generalized solution of (7.4)-(7.2), is of class wh[0, 1] with f 27, fhen ticre
exist positive constants I{ and K’ such that : ‘

2 =2

(3) Dty SK ity el SK A 0SS, wel

If the generalized solution u is of class Wh2[0, 1] with ¢ = 2#, then there exisls a
positive constant K" such that \

[

(7‘14) “Di(“n”") HOO él{””n“”“m.zg}c, (A")zn—m' OS]'ﬁm =1, net |

We remark that if the coefficient functions (%) and f(x, 1) of {7.4) are suffi.
ciently smaoth, then the generalized solution w(x) of (7.4)-(7.2) i3 of cliw
weme (o, 11N W™ % (0, 1], and, (7.44) is applicable with #=2m. Further results

. which improve the exponent of 4 for upner bounds for D (1e, — 1) in the nfform
il

norm can be found in [33]. e
Finally, for numerical results of actual computations based on L-splinc b

spaces, we refer the reader to [10,46,17], and [33]. For other computational

results, see also [21]. ‘
We now consider the third order two-point boundary value problem -

(7.145) —D3u(x) =1 (%, w(s), Duld), .0<x<A,
(7.16) o w(0) = D (0) = Du(1) =0. | b

To discuss this problem, we nced the theory of K-positive definite opcr:‘glw{“\

‘which we now recall, cf. [34].

Let H be a separable real Hilbert space with inner-product (), and nonn
||, and consider the problem of solving :

(7.47) e A=,

where 4 is a linear unbounded mapping on a dense domain 9@ (4)CH into it
such that there exists a (linear) continuously 9 (A)-invertible closed mapping &
i. e., 2 (K)( 2 (4)and therange of K, considered as a mapping on 2 (4), Ko WK
is dense in H and X has a bounded inverse on Rg 4y (K), and there exists a PO’
tive constant « such that

“«

If A satisfies all of the above conditions, it is said to be K-positive de/'inf/r?-’\"".":

assume that fis a (possibly nonlinear) mapping of @ (4) into 1. Clearly, A4 == (2
if and only if ' S o
(7.19) (A, KoYy ={/(n), Kv)y for all veD(4). - Lo

R

Define a pre-Hilbert space structure on 2 (4) by means of the: “inner 1Y
duct" {4, v] = (4w, Kvjy. The corresponding norr is defined by T g == L1600

H
N
7o
o
i
1
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i

[rom (7.18), we have that '
| (720 Vula St |Kul, forall ued(A).

i\ We now complete 2 (4) to the Hilbert space Hy with respect to the norm Dol
PeTRYSHYN [34] has proved the following result:

& Lemma 7,1, 2 (4) is dense in Hy, Hy is a subspace of H, K can be extended
' toa bounded linear mapping of Hy to K, and (7.20) is valid for all ue .

| Taking the absolute value of the right-hand side of (7.19) and using the
'{ Cauchy-Schwarz inequality and (7.20), we have

!

|

L) Ko S I K vl S 1 ) [0 e

Hence, by the Riesz Representation Theorem in Hilbert space, there exists a
unique element IF (1] in Hj such that (f(u), Kv)y, == [F(x), v] for all vell,, and

', the problem of solving A s == f(1) reduces to solving [u, v] == [[(u), v] for all v
. in Hg, or [ —F(u), v] =0 for all ve H,.
# As a consequence of Lemma 2.1 and Theorem 2.1, we thus have

b Theorem 7.3. If the associated mapping F is finitely continuous, and there
exists a positive constant § such that

2 ((f ~F)u—(I —F)v, 4 ~v]=f lu—vl, forall uveky,

{ i.e, I —F is strongly monotone in Hy, then the pi‘éblem (7.47) has a unique

| gencralized solution w in [, Moreover, if {S,}2%, is a sequence of finite-dimen-

; ~ sional subspaces of Hy such that lim { inf flw —u lis} == 0, then the approximate
Wb OO W "

problem £, has a unique solution, u,, for each » 21, and if F is bounded (resp.
Lipschitz continuous), there exists a positive constant M such that

é (7.21) Dot sy, S M (inf {Jw,~uy,  w,e S DY,
e, .

é’ (7217 - [14,— 1t sr, S M (inf {Juw,~ 2]y w,€S,}),
|

and in both cases ”lmxﬂx:r;oﬂu,,—-«u lre = 0.

In the particular case of (7.15)-(7.16), let H=L2[0, 1), 4 = —D* and K = D,
The domain 2 (4) includes the sct of C3[0, 1] functions satisfying the boundary
conditions (7.46), and hence 9 (4) is dense in L2[0, 1], and 2(X) is the set of
C'[0, 1] functions # such that «(0) =0. With these definitions, PETRYsHYN has
shown in [34] the result of

Lemma 7.2, A is K-positive definite, and
1 1 '
o [, 0] = (A, K)oy = —j Du(x) Dv(x)dx = [ D u(x) D% (x)dx
' T o ‘
for all % and v in 2 (4). '
As a corollary of Theorem 7.3, we have

Theorem 7.4. Let f(x, 0, p) of (7.15) be measurable with respect to x¢[0, 1)

and Lipschitz continuous with respect to 0 and ¢ for almost all x€ [0, 1], and let
‘ ‘




Y
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tliere exist an e.such that , ' | "J !
[z, 9, ¢}~/ (% 0, @) w

. . e -
(722) p—q’ C
for almost.all. ¢ [0, 1], —oa<C 0, 0'<< ca<C @, ¢'<C co. Then, (7.15)-(7.16) hh B
unique generalizedsolution.« in. Hp, and if {S,}52y is a sequence of finite-dinic;
sional subspaces of I}, such that hm {wmf | —1]z,} =0, then the approxini:
problem. B, has:a unique soluhorr. u,, for each n 21, and there exist posits.
coastants & and! K such thai .

(7:23) | D7 (010, oo SK |1ty — ey, SK (inf {Jo,—uirys  wa€S,}), =0,

. '
sy

© forall'n =41, and: hm [[u 133, =0 *

Proof.. Using; the: Sobolev: Embedding Theorem [41, p. 174], one can vnA
that: the: associated: mappingy JF is Lipschitz continuous. Hence by Theorem | i
it:suffices:to show that: L'—IF {5 strongly monotonc«, » b

But; il #;. vedl,.
n

[is.~v,. w——-v] e[ Fpptomen 0, 18] _[(D% — D%y *u’x-«ff (x, w, D)
W .

--/(x v, Do) (Du—Dv)dx

x :
zf DFi¢ —D0)2dx —c f (D —Dvytds .
J 5

oty
PR

i
max (e
g;(a: % f Dtu—Dm)rdx
el
J g

g,

[
i
'

where: we have used: the RuyleipghsRitz ihaq}:.a..ri‘ty; cf. [14, p. 184]. QED.
Clicosing: the subspaces. S, to be subspaces of L-splines and using (7.11) ald
(7:12) we:obtaim Ry

Theoreny 7.5% Let: the: hypotheses of Theorem 7.4 concerning (7.15) be sativ-
fied; let: {4,}3;. be: any- sequence: of partitions of [0, 4] with Jim A,=0, i ;

{22, be any-associated’ sequence of fncidence vectors, let L ’bo a differ entis!
operator: of: the: form» (7. 6) witle 722, and let S, =Spi(L, 4,, 2"), i e, thow"
functions. in. SpM(L,. 4}, 2"} satisfying the homogeneous boundary condxwm
(7:46).. The. approximate. problem. £ over S, has a umque solution, u,, and if the
unique: generalized! solutior w of (7.4.5)~(7. 16) is of class Wh%[0, 1], t =7 ehm :
exist: positive:constants: X and K suclhi that: ‘ ;
. / N B
2y Do S el KOG =04 w2t

" i

11 tlie generalized! solitiom u is: off class WA*[0,, ?’I with t?zr, then thu:e cxwt“ 4,
positive constant K" such. that - ,

| o

72y D () oo SK ety SK(BNV5 0 f=000, B2t ‘
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Next, we consider the second-order problem | i N R ;‘?:"“ |

L 7.20) s D () - [ (%, u, Du) =0, 0< :?<'€, _ v (
with ‘ B "

7.27) #(0) = u(1) =0, ' -

. . Vi
Theorem:3.1 in this special case m=n =1 and p =2 yields ‘" W

. e
Theorem™7.6." Let f(x, 0, ) be measurable with respect to %€ [0, 1], contin- ‘

wius with:respect. to 0 and ¢ for almost all , let there exist a continuous, i3
aonnegative functio:n, g, on [0, 4 oo) such that

2.8 AHx 0, ) (0] {1+ of%)
v almost all x€ [0, 1], — o<, p< o0, and let ‘
) U0 o) =2 00, @)1 (0, 0) Za (0,~ 001 = b (g 9] (= 0], |

fur almost all € [0, 1], — 00 << 0,, 0, @y, P,<< o0, where ' - '

max (—a, 0 b
7.30) mex(a0) | By,
Ten, (7.20)-(7.27) has a unique generalized solution, #, in W*[0, 1]. Moreover, ?4;4‘
A 1S,y 18 assequence of finite-dimensional subspaces of ¥W;"%[0, 1] such that j{(
e (inf{Jw,—~u]y a7 w,€S,}) =0, then the approximate problem P, over S, !
ooy

‘as a unique solution, #,, for
wch that ’

i3

each # =1, and there exists a positive constant X ;

it S bl o S K (il — w5 wae S,

v “
szl ﬂ!}i&"u»w,z(ﬂwmo, ; ' ‘ A ‘

Proof. By Theorem 1%.3, it suffices to show that the mapping associated with
7 20) is strongly monotone with respect to W;*[0, 1]. To show this, consider

] 1 .
JDu—Dyyaz [ (054, Duy =1z, v, Dv)) (4 —v)
¢ ‘ "o .

.1 3 1
' ;‘gf(l)u-—Dv)’dx-{—af(u-—v)’dx-——b [(Du—-Dv) (1 —v)dx
Lo H 0
1
- —a, b .
iz (1=22 0 I [(Du—Dupras,
0

i : - ‘
! ”‘fc we have used the Rayleigh-Ritz inequality [44, p. 184] and Opial’s ine-

| vality (30), i. e., for any w{x)e V[0, 1], : S :

| oy 1

| S| Dw(x) w(x)|dx S} [ (Dw(x))?dx,

\ - g

|

) [}

| Vhach completes the proof. R Q.ED. .

i
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O Du@ps2lpet) 2l [1E e, 0)+ s (&, w1 D)
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We remark that Opial's inequality, though not stated originally for [nnctions
in W2[0, 1), is, using the Sobolev Imbedding Theorem (cf. [24, p. 20]), liowevey
valid for W [0, 1]. o '

In order to eliminate the previous growth hypotheses on [(x, 0, @) and 1y
improve the general error estimate, we employ the method nsed in § 4, "¢, we
obtain an a priori bounded on classical solutions (7.26)-(7.27) and tht.cappio-.
priately modify the right-hand side. f

Theorem 7.7. Let f(x, 0, ) €C*([0, 1] X R % R), let there exist two niiabers
and b such that v L

(7.32) A0, e, 0SS, —oeo<lp<e
and )
(733) |2 0.5t 0mxst, me<lip<en
with = (7;‘1-‘—2)" 4 % < 4. U e sup |[(%,0,0)|and A= sup 11(x,0,0)
: O EiEk O XS .
and if u is a classica! solution of (7.26)-(7.27), then |05 atj2m k)
‘ 5 v ' i
(7.34) ’ uwnwéa‘ﬂu“ é’ﬁ@m = By, o
and ; . ‘1_ .
ey Iz . 2 A1 L W
(7.35) [Dufw= (4-/‘ + (2440 )';g”(myr) = Bj. P
. 1 ‘ SO ‘ :
Proof. nuu%af(l)u(x))”dxw u—f/(x, w (%), Du(x)) u(x)dx
¢ 9 b

1 ) 1 : ‘ L
= — [ 12,6,0) u(x) 25 — [ (r) w( £ 2 D) (o)
0 @ . i

b
FEY
[

|
'

. . M.
~f DL, £ () wx), £ () Dt () D) ()
[

for some & (x), 0<< & (%) < 4. Using the Raleigh-Ritz, Opial, and CauchyaSchwzxf'?
inequalities, we obtain ‘

el < el +

mest0 O fupp 4 S B

T

. : / v R
which implies (7.34). Next, we derive an a priori bound for D u(x). Tét x, -;'s(_lc:{(). b

froep
\

Since

Du(s)=Duly) + [ D (8 de%bum-x- F1(6 w@, Du@) ¢k,
y ¥ :

[
[

i
[T
i

Y

[
I/“
i

Dughael,
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. for some ¢(£), 0 £(E) < 1. Letting #7= -sup |f(x 0, 0)|, we obtain

lolsovilw(l 1K)
Dt g2l Dui) 4+ e f1Dulo] )
o D)l 40
Integratmg with:respect: to-y from 0 to 1, we obtain
|Du ()[4 (2A40) b S A+ 240 T m F" | (ED.

We now consider:the madified version of (7.26)-(7.27):

(7.36) D% (%) - J(x,4,Du)=0, 0<&< 1,
with
(7:37) (0 st (1) =20,

where J(x, 1, D) =[(%& KON EB‘(Du)) &y, £g, being defined .in {41 7) ‘As:in
Theorem 4.3 -and 4.4, we have

Theorem7.8. 1 (x).is.a. classical solution of (7.36)—(7.37) it and-only if it is.a

dassical solutien -of (7:26)-(7: 27). Moreover, flx,0,¢) is 2 C‘([O,:@}X’Zi’ 3 R
function satisfying

(7.38) 7% 0, €8y, 0sxE1 --«oo<o,¢<-oo, o
where By== sup [z 0,9)] ‘ .
HEp
Wl-n”x'f?l ‘
vs0) e 0SB, 0SSt =<0 g
of
wh = .
ere By égp ( T (x, 8, (p)) and ;
{08;;,[; w1 .
, qo‘[f,jtl .
(7.40) % (0, ¢)1<b ogxgl, — o<, p<roo.

From Theorem 7.8 we see that if -suffices to consider the approximation of
the solutions of (7:36)-(7-37)-

Theorem 7.9, The -mapping- assocmtnd with (7.36)—(7:37) is prsbhit/ contin-
wous and strongly : monotone in W0, 1). Thus, (7.36)-(7. 57) . has a unique
generalized-sohation, %, in W;* [0, 1]. Moreover, if {S }ﬂ_1 is a-sequence of finite-
dimensional :sulsspaces - of W"* [0, 4 .such that Am (inf {Ju;— h.!v W €S,y =0,

then the azpmmmate jproblem B, has a unique soﬁutxon u,, forieach Az, cand

l‘l'
there existé a positive constant i such: that ‘ .

i I
(7.41) ﬂmx—-w.uﬁag"”a’}ﬂu—-—-—u‘dnﬂf’{(mf{lw -»u[h.g, w,,eS,,}? TR

for all w4, lim Jue—uly =0 E N S
i B 0 . . . . ) . X
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(7:44)' . o E 'S‘W[:'W‘E’”%‘]:‘x(%rwl'""uﬁmo' 0<$¥<1, T

P
v, .
|
3
t
|

Proof.. To show that the associated mapping is Lipschitz continuou: in
Wl ®[0, 17, let w, ve Wy * [0, 1]. Then, b

1

¥ . . S
- [(Du—Dopax+ [ (7w Dw) =] (50, Do) =)z i

1]

|"3’~z

('i O l e )f(Du -—Dv)"olx ~

i

where we have used the Rayleigh-Ritz and Opial inequalities. Likewise, to show
that the mappmg is strongly monotone in W;»*[0, 1], let #, wel, " [0, 41, Tien

L
[ (Du—Doyax+ f (F(x, u, Du) —f (%, v, Dv)) (s —v)dx
4] ¥ , . . §

x .
zzf(Dil”DU)ﬂdx'§"f{“ai£_ (x, 01,0 D) (s —v)®
o 0 ‘

-%-”é%%(x.Ou.ODu) (Du-——Dv) (uwvld,’x ,‘

%O_‘max(y;;ﬁ@ Z)B[(Du—«-Dv)”dx

- where 0<<0(x )<i Q.ED.

Applying the results of (7.11) and (7.12), we have |
Theorem 7.10. Let the hypotheses of Theorem 7 7 be satisfied, let {4, },“,1‘ he
any sequence of partitions of [0, 1] with hm A,=0, let {z"}2., be any asio-

dated sequence of incidence vectors, L be a c"hffm ential operator of the form (/ (1)
with 721, and let $,=s Spl(L, 4,, 2"). The approximate problem I, over U,
has-a unique solution, %,, and 1{ the unique generalized solution u of (7.30)- (7 ’)
is of class W* 1[0 1], i =7, there exists a posmw constant & such that

(7.42) =it S e —usl . S KA nzi

If the generahzed solution = is of class phe [0, 1] with ¢ =27, then there ems.ﬁ, .
positive constant K" such that

(7.43) = 5 S K (4 P D

Finally, we consider a basic example of a coupled system of nonlmew tw
point boundary valne problems, L e.,

(] b fr (%, typ 0ees 8) =0

L[]y (5 0 ey 1) =0

Lit
e
o

[N
S
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where & [1e;]== I~ fi)fDi [P, (%) Dl (%)) -‘}w/(x, iy (x)), 1 Sisq, mat, subject
j=0
(0 the boundary conditions

(7.45) D¥a (0)=DFu, (1) =0, 0=k Zm—i, ASIEE

We can write (744)-(7.45) in vector form, i. e., putting u (%) = (ul(x), cees uq(x))
and f (a0 = (flx ), e [ (% w)) we have

(7.46) ] ={(x, ), 0<x<4,
(7.47) I?“ru(o)ml)"u(‘x)=(), 0SksSm—1.

To apply the theory of strongly monotone operators, we consider the mapping

g
sssociated with (7.46)-(7.47) in the Hilbert space =[] [We"*0, 4}];. The
‘ . il
following Tesult is the analogue of Theorem 7.4 for coupled systems.

Theorem 7.11. Let 2 satis{y the hypotheses of Tlicorem 7.4, let f; be contin-
sously differentiable with respect 10 74y, «oe, 1, fOF each i Sigg, and let

. {7 (] w . .
there exist a y such that }{iEiZﬁiz«U—ﬁwl =y > —4, for all 1 £7=¢, where
L

/i is the Jacobian of fand 4; is its j-th cigenvalue, and 4 is the fundamental .

cigenvalue of 2. Then the problem (7.46)-(7.47) has a unique generalized solution,

a, in H. Moreover, if {S,yas is @ sequence of finite-dimensional subspaces of H

such <hat lim (inf{Jro—uly; w0,€S,}) =0, then the approxiraate problera £,
e O . L

fas a unique solution, U,, for cach s =1, there exists a positive constant K such

that '

(7.48) et —as = K (int {lwy— [ w,eS,)) foral mnet,

and lim 2,2 [pr==0.

As in the case of (7.1)-(7.2), we may use the subspaces of L-splines and results
essentially the same as Theorem 7.2 are true. ’

ot eorem .42, Let the hypotheses of Theorem 7.41 be satisfied, let {An}?ml be
any sequence of, partitions of [0, 1] with fim 4, =0, let {&!"}5., be any asso-
i~ 0Q

ciated sequence of incidence vectors, let L be a differential operator of the form

v g . o
(7.6 with 7z m, aud let S,= 77 (Sph(L, 4y, #™)];. The approximate problem

Genl 5
P over S,, hasa wnique solution, #,, and if the components u; of the generalized
solution w of (7.44)-(7.45) are of class Wheo, 4], 4S5 Sg, d=v, then there
exists & positive comstant K such that ,

(7‘@9) ' ﬁ?ﬂnwuﬁu g K (ﬁ'“)'«-m’ % 2 1.

i the compoments g, of the generalized solution ¢ are of class W0, i}, 1 SIS0
{227, then theve exisis @ positive constant &’ such that
A R

Fsop B PR VP =1 B
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