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§ 1. Introduction

As a special case of the nonlinear two-point boundary value problems con-
sidered in [5], consider

(1.1) Du(x)=f(x,u), O0<x<1, D=-r
subject to the boundary conditions of
(1.2) u(0) =u(1) =0,

where it is assumed that f(x, u)cC%([0, 1] X R), that there exists a constant ¥
such that
T w) =1 (%, uy) =y>—a? forall xe[0,1]
(1.3) Tt
and all . —oo<luy, uy<<+oo with w u,,

and that for every positive constant c, there exists a finite constant M (¢) such that

)1 (e, ).
(1.3 oyt =M(c) forall xclo,1],
lull é[), 1%2[ écy %1#:%2.

By applying the Rayleigh-Ritz method for the variational form of (1.1)—(1.2)
to the particular Hermite space H{" (4(k)), i.e., the set of all continuous functions
w (x) defined on [0, 1] satisfying (1.2) such that w () is linear on each subinterval
[¢h, (#+1) R} of [0,1], 0=4=<N, where h=1/(N +1), one obtains a unique
element @, (x) in H{Y (4(k)) (cf. Theorem 1 of §2 and [5, Theorem 2]). Assuming
that the unique solution () of (1.1)—(1.2) is of class C? [0, 1], it is known,
as a special case [5, Theorem 10], that

(1.4) @ — L= Jnax, |@, (%) — g (x)| = Cyh,

where C, is independent of 4. Recently, CIARLET [4] has improved this specific
result by showing that

(1.5) lwoy — @l = Coh,



Nonlinear Two-Point Boundary Value Problems 181

provided that ¢ of (1.3) satisfies y > —8, and that
(1.6) @) —@lo-= Cyht

when —8=y> —a?, where the constants C, and C, are independent of 4.

In this paper, we show that the improvement of (1.4) in (1.5) and (1.0),
given by CIARLET in [4], can be widely generalized to higher-order nonlinear
two-point boundary value problems. Our approach, following that of [4], depends
upon carefully estimating the difference between the interpolation, % (x), and the
approximation, @ (x), of the solution function ¢(x) in some finite-dimensional
space of L-spline functions (cf. §2), but, unlike the method of [4], our approach
does not depend upon the Maximum Principle. As a special case of our Theorem 3,
we show that the inequality of (1.5) is valid for all y with y> —=?, and that the
restriction to Hermite subspaces H{ (A(h)) with uniform partitions of [0, 1] in
(1.5) can be dropped.

In §4, we show (Theorems 4 and 5) that these results can be further generalized
when we assume that the solution ¢ (x) possesses additional smoothness properties.

Finally, in §5 we illustrate these theoretical results with actual numerical
computations for several two-point boundary value problems.

§ 2. Preliminaries

Consider the numerical approximation of the solution of the two-point
boundary value problem

(2.1) —L*Llu(x)]=f(x, u), a<<x<b,

with homogeneous boundary conditions

(2.2) Diu(@)=Du(p)=0, 0=j=n—1, D=,
where

(2.3) L[v(x)]zfio (%) Div (%), a=x=<b, n=1,

for any v(x)€C"[a, b], and L* denotes its formal adjoint, i.e.,

k]

(2.3) L*v(x)]= ,ZO(—i)ij (a;(%) v(x)),

j=
where we assume that the coefficient function a;(x) is in C[a, b] for each 0= 7= .
We also assume that there exists a positive real number o such that

(2.4) a,(x)Zw>0 forall xcla,b].

The differential operator L* L is surely self-adjoint, and upon writing L* L as

n

L*Lu Z (— 1)/ D7 (p, (%) Diu(#)),

it follows from (2.4) that ¢, (x) = a”(x) = w?*> 0 for all xe [a, b]. Hence, the opera-
tor L* L is by definition strongly elliptic (cf. [16, p. 176]).

We now introduce some standard notation. For m a positive integer, the
Sobolev space W™%[a, b] consists of all real-valued functions f(x) defined on
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[a, b] such that f and its distributional derivatives D/f with 0=j=< all belong
to L%[a, b]. By virtue of Sobolev’s lemma [16, p. 174], W"2[a, b] can also be
described as the collection of all real-valued functions w(x) defined on [a, b]
such that w(x)€C™ [q, b] and D" 'w (x) is absolutely continuous on [q, b] with
D™w(x)e L?[a, b], where we consider equivalence classes of functions which are
equal almost everywhere on [4, b]. The Sobolev norm associated with any element
of W™2[a, b] is then defined by

(2.5) |@l],= {afb [% ((D7w(x))2] dx}é, wcW™2[qa, b],

7=0

and, for the special case m=mn, W;"%[a, b] denotes the subspace of functions
of W™2[a, b] which satisfy the boundary conditions of (2.2).

Because the operator L* L is strongly elliptic, Garding’s inequality [16, p.175]
gives us that constants K;>0 and f =0 necessarily exist such that

b
2.6)  [wP<EK,[{(Ll@])>+Blw{HI}dt forall weW2[a,b].

Next, with the boundary conditions of (2.2), the nonnegative quantity /1, defined
by

b
[ (Llw(®)])*at
(27) A = 1nf ab___“__ N
wEWZ 2 [a,b] I (w()2de

can be shown in fact to be positive. For the specific case that L=D and a=0

and b =1, the Rayleigh-Ritz inequality (7, p. 184] directly gives us that A=un2.
For the function f(x, u) of (2.1), we assume that f («, #) is a real-valued function

defined on [a, b] X R, such that f(x, uy(x))eL2[a, b] for all wuy(x)cWy"*[a, b]

and such that f satisfies

(M@ﬂ) =y>—A foralmost all x¢[a, b]

Uy — Uy

(2.8)
and all #,, w,e R with w, su,,

where / is defined by (2.7). Finally, we assume that for each constant ¢> 0,
there exists a positive constant M(c) such that

S ) =1 (% 1) < M() for almostall x¢[a,d]
(28/) Up—Ug
and all u,, u,c R with |u| =c, uy| ¢  with w4, F=u,.
1 177 Uy

The preceding hypotheses are more than sufficient (cf. [6, Theorem 6.1]) to
prove

Theorem 1. With the preceding assumptions, there exists a unique (generalized)
solution ¢ (x) over Wy"2[a, b] to (2.1) —(2.2). Moreover, if Sy, is any finite-dimen-
sional subspace of Wy"?[a, b], then there exists a unique @ (x) € S;; which minimizes

the functional
b

w (t)
29 Flul=J {HELwO)+ i anfar,  welptlo ),

a
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over Sy, i.e.,
Flw]=Fw] forall weS, withequality only for w=®¢cS,,.

If {w,(x) }f‘f’__l is any basis for Sy;, then @ (x) is also characterized as the solution of
b
(210) [ {L@O] Liwy®)] + (6 0) w,@)} dt=0, 1=i<M.
a

Finally, there exists a constant K,, independent of S,;, such that

(2.11) |& —gl,= K, inf Jv—g¢],.
ves

Because of their use in later sections, we now give a brief description of the
notations and basic results of [14] for “L-splines”. Let 4 : a=xy<<x,<< - - < Xy =0
denote a partition of [a, b] with knots x;, and let z=(z, 2,, ..., zy) T be an in-
cidence vector with integer components satisfying 1 <z,<n.

Definition 1. The L-spline space Sp(L, 4, z) is the collection of all real-valued
functions w(x) defined on [a, 5] such that

1) L*Llw(x)]=0 on (x;, %;,.4) foreach 0<i<N,
(2.12) where L and L* satisfy (2.3)—(2.4).
il) D*w(x;—)=D*w(x;+) forall 0=kh=2n—1—z, 1=i<N.

We remark that since 1= z,=#, each element w (x) of Sp (L, 4, z) is necessarily
of class C""'[a, b]. From this, it is readily verified that Sp (L, 4, 2) is a finite-
dimensional subspace of Wy»?[a, b]. We denote by Sp,(L, 4, z) the subspace of
Sp(L, 4, z) whose elements satisfy (2.2).

If we define zy=zy.,=n, then any element g (x)c W2 [a, b] possesses a unique
interpolation (of Type I) in Spy(L, 4, 2) (cf. [14, Theorem 3]), i.e., there exists a
unique @ (x)eSp, (L, 4, z) such that

Di@(x)=Dig(x) forall 0=j=z—1

(2.13) .
andall 07N 1.

If Ara=xy<x<--<xy,,=0 is a partition of [a,b], then we define

A= max (x,.,—=x,), and A= min (x, ,—x.,). The following error bounds for
i+1 2 141 7 <3
0N ! - 0SSN

g (%) — @ (%) constitute a slight extension of the results of [14, Theorems 8 and 9].

Theorem 2. Given any g(x)cW?"?[a, b] which satisfies the boundary con-
ditions of (2.2), choose any partition 4: a = xy<< x;<< -+ < %y ;=0 of [a, b] and
any incidence vector z=(zy, %, ..., Zy.4)’ where 2y=zy ;=n, and let @ () be
the unique interpolation of g(x) in Spy(L, 4, z) in the sense of (2.13). Then,
with the constants K, 8, and 4 of (2.6) and (2.7),

. Ne / 7\n—j
@14) [0~ @)=k, (1+ G G (L) I g, 0=z,
and

. o N2n—j—(})
(2.15) qu<g—w)uwgKI(H%%—nL*L[gJ}}L., 0Sji=n—1.

13b Numer. Math,, Bd. 13
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12

Proof. From the definitions of (2.5) and (2.7), we have that |[D"w|f.<|w]3

and |w|l = 711* |L[w]|?.. Hence, from the inequality of (2.6), we have
216) [P wls el Kt ) I forall weTR a0

Thus, with H*=K, (1—|~ //5_1_) and the fact that we have zy=2zy,,=n, we can

directly apply the bounds derived in Theorems 8 and 9 of [14] to deduce the
results of (2.14) and (2.15). Q.E.D.

Since the inequalities of (2.16) were obtained in [14] by means of a mesh
restriction, i.e., A was forced to be sufficiently small, then the results of (2.14)
and (2.15) constitute an improvement of some results of [14]. We also remark
that the exponents of A in (2.14) and (2.15) are best possible in the sense that
they cannot in general be increased for the class W*™?[a, 8] (cf. (14, Theorems 11
and 12]).

We conclude this section with a statement of Green’s formula for the dif-
ferential operator L of (2.3):

(2-17) f{w O Ly (6] —y O L*[w @)1} dt = P (y (x), w (%)) |32

for any w(¢), v ({)c W™2[a, b] and any interval [«, f]C[a, b], and where

248 Py wlx) = 3 Dty (x) 3 (— 1) DHa, 4 (0 w (0},

j=0 k=0
In §4, we shall make use of the analogue of the relation (2.17) for the differential
operator £ =L -D%, ¢=0, where L is defined in (2.3).

§ 3. High-Order Accuracy

We now focus our attention on the particular finite-dimensional subspace
Spo(L, 4, z) of Wy»?[a, b]. Choosing Sy=Sp, (L, A, z) in Theorem 1, there exists
a unique element, @ (x), in Spy(L, 4, z) which satisfies the equations of (2.10).
The solution ¢(x) of (2.1)—(2.2) is, by Theorem 1, in W;*[a, b] and satisfies
(2.2). Hence, ¢ possesses a unique interpolation (in the sense of (2.13)), @ (%),
in Spy(L, 4, z), where z,=2y,;=n. The main idea now is to compare the two
functions % (x) and @ (x) in Spy(L, 4, z). Following CIARLET [4], we define

b
(3.1) k= [{LI@ ] Llw;)]+7 (68 0) w; (O} dt, 1=7=M,

where {w;(#)}]L, is any basis for Spy (L, 4, 7). In analogy with (2.10), we deduce
from Green’s formula (2.17) that

5.2) o-f{L V1-Llw; ()] +1 (6 p®) w0} dt, 1=j=M.
Hence, subtracting (3.2) from (3.1) gives

(3.3) kj= fb{LW ) — @] Liw;O]+ (fE&. @) =1t 9 @) w; @)} dt,
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We now show that the first integral of (3.3) is zero for all j. Forany v (f) € Sp, (L, 4, 2),
we can write, using Green’s formula (2.17), that

Fit1

f];[’zaz —pM)]-Lv()]dt= Z f L) —gt)]-Llv@)]dt

=S {1 @0 —p0) 1 Lp@1a P @0 g0, Lien)lzzn).

Because v(t)eSpy(L, 4,z), then L*L[v(t)]=0 on each subinterval (x, %)
defined by 4 (cf. (2.12i)), and hence the integrals of the last sum vanish. The
last sum, involving P(@ (%) — (), L[v(x)]) a—am1, also vanishes when one takes
into account the continuity properties of @ (x ) in Spo(L, 4, 2) (cf. (2.42ii)), and
the interpolation properties of @ (x) with respect to ¢(x) (cf. (2.13)). Put dif-
ferently, @ () is the orthogonal projection (cf. [3]) of ¢ (f) onto Spy(L, 4, z) with
respect to the inner product on W»%[a, b] defined by

{w, v) = be[w(z)]‘L[v O1dt, w,veWrEla, b].

If we define the function # (f) in [a, b] through

5.4 {p OO =g =1{LTO) =/ (Le@). 0O +e0),
' PO =7, O =),
then we have shown that the quantity k; of (3.3) reduces to
b
(3-5) k= [p) (@) —@t) w,() dt, 1=j=M.

Similarly, if we subtract (2.10) from (3.1), we obtain
b
(3:6)  Ryj=[{L[B#H —@ ()] Llw,()] +q() (@) —D (1) - w; ()} dt, 1= =M,

where the function ¢ (f) is defined in [a, 6] through

{fl(f) @O —0@)=1Eo@)—7t0@0), TO+2() }
7)) =7, @) =w(),
We now obtain bounds for the functions #(f) of (3.4) and ¢(#) of (3.7). From
[5, Lemma 4], an a priori bound for |¢ ||« (valid also for ||, ») can be determined,
which is valid for any choice of subspace Sy of Wy2[a, b]. Since A=b —a, it
follows that the case j =0 of (2.15) gives an a priori bound for |¢ —@ |, which
is independent of the partitioning 4 and the incidence vector z. Thus, as
1@ =|# —@|re+|@]re, an a priori bound for |# |~ can be determined which
is valid for all subspaces Spy(L, 4, 2). Now, using the hypotheses of (2.8) and
(2.8), it follows that a constant I exists such that

(3.8) —A<y=p@), ¢)=I" forall a<t<b,

and all choices of subspaces Sp,(L, 4, z) of W2[a, b].

We now make use of the fact that @ () and @ (f) are both el¢éments of
Spo(L, 4, 2). Writing

M
t)MZocw () and @)= 2 a;w,(t
=1

i=1

3.7)
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then multiplying by &; —&; in (3.5) and summing on j gives

M
(3.9) E (6, — ;) &; _fp Y (@) — @) (@) —w (@) de.
The same method applied to (3.6) similarly gives
M
(3.10) 7Zl(o? — &) kj —f{( — @)1+ (@) — 2 ()%} dt.

We now remark, as in [5, Corollary 2], that the inequality of (2.6) is valid also
for any §'>—A. In particular, with the constant ¢ of (2.8), this means that
there is a positive constant Kj such that

GA1) [ =K [{(Lw()) v (@)% dt forall weT2[a, b].

Hence, using the lower bound for ¢ (¢) from (3.8), then (3.10) and (3.11) combine
to give

L [ — g
(3’12) 2— (0(7' —O('i> ki = “—jg“"ﬁ .

On the other hand, the integral of (3.9) can be bounded above from (3.8) and
Schwarz’s inequality by
M

(313) X (& —a)k,=I"|# — |- |@ — @, where ["=max(

j=1
and as |# —@||.<|@ —@|, by definition, the inequalities of (3.12) and (3.13)
combine to give
(3-14) |@ =2, =T"Ey|& — -
If gecW?*"2%[q,b] and satisfies the boundary conditions of (2.2), we can then
find an upper bound for | @ — @, from the special case j = 0 of (2.14) of Theorem 2.
Thus, there exists a constant K,, independent of the choice of 4 and z in
Spo(L, 4, z), such that
(3-15) |@ — @, = Ky (A)*"|L* L@]]ps
Then, using the triangle inequality and the inequalities of (3.15) and (2.14), we
evidently have

D@ =l = 1D — B+ D6 — = 19—+ D3 — )l
= g+ K 14 ) B (4] e Ll
= K (47| L* L@, 0§7§”-

For bounds in the uniform norm, we use the fact that, from Sobolev’s lemma in
one dimension [16, p.174], |D/(@ — )| »= K¢|@ — @], for all 0=j=<n—1.
Thus, using the triangle inequality and the inequalities of (3.15) and (2.15),
we similarly obtain

1D @ — o < |DV @ — @)oo + |DV & — @l
< K, K@+ K1+ )20 (A0 | L* Lig)s
< K (AP0l Liglls,  0=7=n—1.

We state these results as
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Theorem 3. Given any partition A:a=x,<#%; < ---<<xy,;=0bof [a, b] and
any incidence vector z=(zy, 2y, ..., 2y 1) where zy=2y_ =, let @ (x) be the
unique function in the L-spline space Spy (L, 4, z) which minimizes the functional
Flw] of (2.9) over Spy(L, 4, z). If ¢(x), the generalized solution of (2.1)—(2.2)
is of class W*"2[q, b], then there exist constants K; and K,, independent of A
and z, such that

(3.16) | D@ — @) = K5 (A7 | L* L ], forall 0=j=mn,
and
(3.17) 1D/ @ — @) < Ko (A" =W L5 L[g]|,.  forall 0=j=n —1.

If, moreover, ¢ (x) is in C*"[a, b], and & is a collection of L-spline spaces
Spo(L, 4, z) such that @ (x), the unique Sp, (L, 4, z)-interpolate of ¢ (¥) (in the
sense of (2.13)), satisfies
(3.18) |1D/(@ — )l = KA |L* L@l forall 0=j=<n—1
' and all  Spy(L, 4, 2)eF
for some constant K’, then
(3.19) D7 (@ — @)pe < K (A)" | L* L @], forall 0=<j=<n-—1

' and all  Spy(L, 4, 2) e %

where Kj is a positive constant.

We remark that the inequality of (3.19) is established in the manner of that
for (3.17). For the Hermite spaces! H{" (4), which correspond to the special case
L=D" and z=(n, n, n)T in Sp, (L 4, z), the inequality of (3.18) is known
{2, Theorem 2] to be vahd for all # =1 and any partition 4 of [a, b]. In this case
the collection # of Theorem 3 can be chosen to be all Hermite spaces H™ (),
where 4 is an arbitrary partitioning of [a, b]. Other applications of the second
part of Theorem 3 are also possible. For example, if we choose % to be the
collection of all cubic spline subspaces Sp, (L, 4, z), i.e., where L=D? and the
components of z satisfy z;=1, 1=¢ <N, subject to the restriction that there is
a positive number o such that A< 4 for all partitions 4 in % then the in-
equality of (3.18) is known to be valid (cf. [1] and [13]).

From the results of Theorem 2, we know that the results of (3.16) and (3.17)
are best possible in the sense that the exponents of A in these inequalities cannot
in general be improved for the class W?"2 [4, b]. Similarly, if we consider the
collection # of all Hermite spaces H™ (A4), where A is an arbitrary partition of
[a, 0], then it is known [2, Theorem 3] that the exponent of 4 in (3.18) cannot
in general be improved for the class C*"[a, b], and thus the exponent of A in
(3.19) is also best possible.

The result of Theorem 3, which will be generalized in the next section, itself
constitutes an improvement over analogous published results for the numerical
approximation of the solution of the two-point boundary value problem of (2.1)
to (2.2). In [5, Theorem 10], it was shown that @ ,(x), the unique function in
the Hermite space H{" () which minimizes the functional of (2.9) over H{" (4),

satisfies ~ T\n
|@s— 9= K(A)",

1. The case of high order accuracy in the uniform norm for the specific Hermite
space Hy{ {n) (4) is treated in detail in [11]. Computational aspects are also included.
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assuming that ¢ (), the solution of (2.1)—(2.2), is of class C?**[a, b]. But from
(3.19) for the case j =0, we see that the exponent of A in this inequality can be
increased to 2m. Next, for the special case n=1, a==0, and b=1 of (2.1) —(2.2),
we have that the quantity A defined in (2.7) is #*. In this case, (3.19) of Theorem 3
gives us that '

(320) u'l/})A—"QQ“LméKS(A)Z, @AEH(()I)(A),

under the assumption (2.8) that y> —n? and that ¢ (x)€C?[a, b], which improves
the recent results of CIARLET [4]. Note also that the inequality of (3.20) is valid
for all partitions of [a, b], which further improves the results of [4].

In the special case that / of (2.1) is independent of u, the result of Theorem 3
can be strengthened. Since f is independent of w, it follows from the definition
in (3.4) that p(f)=0, in [a, b]. Thus, from (3.9) and (3.12), we deduce that
|# —@],=o0, ie,w(x)=©(x) in [a,d], and consequently, w(x) is the inter-
polation of ¢(x) in Spo(L,4,2) (cf. (2.13)). This gives us the

Corollary. Given any partition 4: a =x,< 2;<< -+ < #y4;=0b of [, 0] and any
incidence vector 2= (z, %y, ..., Zy41)" Where zZy=2y =, let / of (2.1) be in-
dependent of #, and let @ (x) be the unique function in Sp,(L, 4, z) which mini-
mizes the functional of (2.9) over Spy(L, 4, 2). Then, in addition to the inequalities
of (3.16), (3.17), and (3.19), we have that

Ditp(x)=Dlgp(x;) forall 0=j=z—1
21
6-21) andall 0=<i=N -1,

We remark that the interpolation result of (3.21) of the Corollary of Theorem 1,
which was proved independently by HuLME [9], is a generalization of a result
of Roskg [12] for the case n=1.

If we consider in particular partitions A of [a, 0] such that A=<o for a
fixed ¢> 0, then we know [14, Theorems 10 and 13] that the interpolation @ (x)
in Spo(L, 4, 2) of @(x) in W™*[a, b] satisfies the following strengthened forms
of (2.14) and (2.15):

(3.22) 1D/ (@ — )| < K5 (A" forall 0=j=2n—1,
and
(3.23) 1D/ (@ — @) = Ko (A) =% forall 0=j=2n—1,

i.e., error bounds for higher derivatives of @ (%) —¢(¥) are available. This means
that since @ (x) = (x) in the linear case, the above inequalities of (3.22) and
(3.23) are then valid for @ (x) —@ (%) for such partitions, which strengthens the
result of the previous Corollary.

We finally remark that there are known regularity theorems (cf. [10, Chap-
ter 47), giving sufficient conditions on the smoothness of the coefficient functions
in (2.1), which guarantee that the unique generalized solution ¢ (x) of (2.1)—(2.2)
is of class W2%2[q, b]. In particular, a;(x)eC"(a, b)nW™®[a, b] for all 0=i=n
is such a sufficient condition.
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§ 4. Higher-Order Accuracies

The results of the previous section assumed that ¢(x), the solution of (2.1)
to (2.2), was either of class W2™2[q, b] or C*"[a, b]. As in [5], one expects that
more accurate Rayleigh-Ritz approximations of ¢(x) are possible if ¢(x) is
smoother, i.e., if @(x)cW?*™?%a, b] or ¢(x)cC?*”[a, b], where m=n. We shall
prove in this section a result, Theorem 4, which generalizes the results of The-
orem 3, under the assumption that ¢(x), the unique solution of (2.1)—(2.2), is
in W*2([q, b] or in C*"[a, b], where m=mn-g, ¢ =0. The construction for this
result is similar to the recent work of HuLMmE [9].

Given positive integers m and n with m=n-4g¢, ¢=0, let A: a= x,<< %,<<
< #%y,,="0 be any partition of [a, 8], and let z= (2, 2, ..., 2y41) . be any
associated incidence vector with integer components satisfying 1=z, <m --¢ for
all 0=7=<N +1. From the n-th order differential operator L of (2.3), we now
consider the #-spline space Sp(Z, A, z) where £ =1 D%, whose elements are
defined through (2.12) of Definition 1 of §2. As in §2, we fix the components
Zp=Zy1=m +q (corresponding to Type I interpolation in [14]). It is easy to
see that there are z; basis functions for the #-spline space Sp (&, 4, z) associated
with each knot x; of 4. Thus, it follows that

N
dim Sp(Z, 4,25 =r=2(m+q) + 2, z.
i=1

Now, let Sp (2, 4, z) be defined as the subspace of Sp (&, 4, %) of elements with
the particular boundary behavior
(4.4) Dis(a)=D's(b)=0 forall 0=¢/=q—1 if g¢=1
' and for all 2¢=/<n—1+42¢q.
Evidently,
dim Sp(L, A,2) =1 —2m.

Next, let H(L, 4, 2) be the set of all real-valued functions w(x) defined on

[a, b] such that

(4.2) w(x)=D¥s(x), a=<x=<b, where s(x)cSp(Z, 4,2).

Because of the boundary conditions of (4.1) for 0==/=<¢-—1 if ¢ =1, there is
a1 to 1 correspondence between elements of (L, 4, z) and elements of Sp(e, 4,2),
and hence

(4.3) dim H(L, 4, 2) =7 —2m.

Next, because of the boundary conditions of (4.1) for 2¢ </ < n — 124, it follows
from (4.2) that each element w(x) of H(L, 4, z) satisfies Dfw (a) =D’w (b) =0
for 0=/=mn—1. Because each element s(v) of Sp(Z, 4, z) is necessarily of
class W”+%2(q, b], it follows that each w(x) of H(L, 4, ) is of class W™?[a, b],
and from this, we conclude that H(L, 4, z) is evidently a finite-dimensional sub-
space of Wy»*[a, b]. To give examples of this, let L= D", so that £=D"*+¢ If
we choose the components of the incidence vector z to satisfy z;= m ¢ for all
0={=N +1, then H(L, 4, 2) in this case can be verified to be the nonsmooth
Hermite space H(A;n; 2m), considered in [5, p.413]. Similarly, if we choose
z;=1, 1=0¢=N, then H(L, 4, 2) in this case can be verified to be the natural
spline subspace Sp™ (A), considered in [5].
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Assume now that the solution ¢(x) of (2.1)—(2.2) is of class W2"™2%[q, 3],
where m =n -+¢, ¢ = 0. Then, let ¢ (x) be the unique real-valued function defined
on [a, b] such that

(4.4) D¥y(x)=gp(x), a=x=b,
and
(4.5) Dlzp(a):D[w(b)=0 forall 0=f=qg—1 if ¢g=1.

From (4.4), it follows that v (x)e W*"+202[4 p]. Next, let §(x) be the unique
interpolation of ¢ (x) in Sp (&, 4, 2), i.e., (cf. (2.13))

(4.6) Dis(x)=Diyp(x;) forall 0=j=z—1 andall 0<i=<N 1.
Because ¢ (x) satisfies the boundary conditions of (2.2) by Theorem 2, it follows

from (4.4) and (4.5) that §(x) satisfies the boundary conditions of (4.1), i.e.,
$(%)eSp (&L, A, 2). Thus, if we define the function @ (x) by

(4.7) w(x)=D%5(x), a=x=b,

then w(x)cH(L, A, z). Moreover, we have that @(x) interpolates ¢(x) in the
sense that

(4.8)  Diw(x;) = DI**8 (x) =D (x) =Dig(x), 0=j=z—1-2g,
provided that z; =1+ 2¢. Note that if 1+2¢ > z,;, @ (x) need nof interpolate ¢ (x)
at the knot «,.

We now use the finite-dimensional subspace H(L, 4, z) of W*?[a, b] in the
Rayleigh-Ritz procedure of §2. From Theorem 1, there exists a unique element
@ (x) in H(L, 4, z) which minimizes the functional F[w] of (2.9) over H(L, 4, 2),
and we can similarly define the quantities %; of (3.3), namely

b

49) Rj=[{L[@E) —@®)] Llw; ()] +p ) (F) —p@)w;(O)}dt, 1=j=M,
where @ (x) is defined in (4.7), p (¢) is defined in (3.4), and {w;(#)};Z, is any basis
for H(L, 4, z). Because of the identification (4.2) between elements of H(L, 4, z)
and elements of Sp(Z, 4, ), the first integral of (4.9) can be written as

N x4 N %t
2 [ LD —y@]- LD s @1di= 2 [ L) —y@)] LIs,0)1dt,

where s;() is the element in Sp(&, A, z) uniquely associated with w;(f) in
H(L, 4, z) through (4.2). Exactly as in §3, we use Green’s formula (cf. (2.17)),
the interpolation properties of §(f) of (4.6), the continuity properties of §(f)
(cf. (2.12ii)), and the fact that Z*%[s;(f)]=0 on each subinterval (x;, x;.,)
of [a,d] (cf. (2.121)) to show that the above sum is necessarily zero for any
1=j =M. Thus, the expression for k; in (4.9) reduces to

b
(4.10) ki=[p@) (@) — @) w;t)dt, 1=]=M,

where () can be seen to satisty the bounds of (3.8). The argument now closely
follows that of §3. Writing

b4 %4
w(t) = ‘Zl&j w;({) and @ () = Zl&j w; (t),
7= 7=
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then multiplying by (&; — &;) in (4.10) and summing on § gives

M b
(4.11) 3 Gy —a) b= 20 (@0) — 9 0) (36) —(0) az.
1= a
Now, because 3(x) is the Sp(Z, 4, z)-interpolate of TypeI of y(x), where
p (%) e WEn+202 g p], then it follows from (2.14) of Theorem 2 that

(412) DG =) = Ky (D)L Ly, 0=L=m g,

where K, is independent of A and z. Choosing /= 2¢+-7, and using the definitions
of (4.4) and (4.7) gives us that

(@13) D3 — ) = Ky (AT |25 Liglls,  0=i<n.

With this inequality for the case /=0, and the upper bound for # () from (3.8),
the application of Schwarz’s inequality to the integral of (4.11) gives
M

(4.14) 2 (&7‘ "&7‘) kféf’Ks(j)zmllf*Lmﬂu ’ ”17’ *@HU'

i=1

M
As in (3.12), the sum Y (&; — &,) k; can be bounded below by [# —@ /K. Thus,
we deduce that =1

(4.15) @ — @, = Ko (A)*"|L* L @]|1s,

where K, is independent of A and 2. By means of the triangle inequality and the
inequalities of (4.13) and (4.15), we have in analogy with Theorem 3 the result of

Theorem 4. Assume that the solution ¢ () of (2.1)—(2.2) is of class W?™2[a, b],
where m=mn-¢, ¢=0, and let H(L, 4, 2) be the finite-dimensional subspace of
Wy2[a, b] defined through (4.1) and (4.2). Then, given any partition 4: a = x,<<
%<+ < Xyy;="0 of [a, b] and any incidence vector z== (2, 2, ..., Zy,4) " where
Zp=1tyy=m+q and 1=<z,<m-}-¢q for 1=<i< N, let & (x) be the unique function
in H(L, 4, z) which minimizes the functional F[w] of (2.9) over H(L, 4, z). Then,
there exist constants Kj; and Kj,, independent of A and z, such that

(4.16) 1D/ @ — @) < Ky (A)2—1| 25 Lig)|,.  forall 0<j<n,
and
(4.17) IDH@ — @) = Kyp) A)2 =@ 2* L] forall 0<j<n—1.

If, moreover, ¢ (x) is in C*"[a, b] and & is a collection of subspaces H(L, 4, z)
of Wy2[a, b] such that @(x), the unique H(L, 4, z)-interpolation of ¢(x) (in the
sense of (4.8)), satisfies

D/ (@ — @)y < K (A" 1| L5 Lp)|per forall 0=j=n—1

(4.18) and all H(L, 4,2)eF

for some constant K’, then
|D/ (@ — @) = Ky (A)*" 7| L* L) forall 0=j=n—1

A
(4.19) andall H(L, A,2)cF,

where K, is a positive constant.
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Corollary. Given any partition 4: @ == x%y<< ;< - -+ <<%y, ,="0 of [a, b] and any
incidence vector z=(zy, 2, ..., Zy41)" With zy=2y. =m-+¢ and 1=z,Zm+q
for 1<¢=N, let f of (2.1) be independent of #, and let @(x) be the unique
function in H(L, 4, z) which minimizes the functional of (2.9) over H(L, 4, 2).
Then, in addition to the inequalities of (4.16), (4.17), and (4.19), we have that

(4.20) Di@(x)=Dig(x;) forall 0=j=z—1—2¢, O0=i=<N-1,
provided that z,=21--2¢.

As our final result, let us now consider any 2#-th order differential operator M
of the form

(4.21) Mo ()] = > (—1)'Di(p,() D'v(x)), vcC*[a,b].

=0

We seek now to solve, as in [5], the nonlinear two-point boundary value problem
(4.22) —Mu(x)] =[x, u(x), a<x<b,

subject to the boundary conditions of
(4.22) Diu(a) =Du(b) =0, 0=7=n—1.

We assume, in analogy with (2.6), that constants K;> 0 and f# 2 0 exist such that
b(n
(4.23) le|2<K, [ { 2 pi(t) (DPw ()% 4B (w (t))z} dt forall welW%[a,b].
a =0

As we know from Gérding’s inequality [16, p. 175], $,(x) >0 in [a, b] is suf-
ficient for (4.23). We remark that the inequality of (4.23) implies that

afb {f% pi(t) (Diw (t))z} dt

=0

(4.24) A= inf ;
10)€Wg'n2[a,b] f (Tﬂ(t))zdi

is finite (cf. [5, Lemma 1]). We then assume as in §2 that f(x, #) of (4.22) satis-
fies the hypotheses of (2.8) and (2.8').
Suppose now that it is possible to find an #-th order differential operator

(4.25) £ (x)] Eiéjo,sj(x) Diu (),
such that
k
(4.26)  M[v(x)] =4[ ()] + 2 (—1)'D¥(0;(x) D'v), wveC*[a,b],
i=0

where ¢;(x)€Cta, b], 0=i=k, and 0= k=n. As a special case of interest, sup-
pose that the operator M of (4.21) is such that p,(x) =1. Then, it is clear that
the choice ¢ [u(x)] = D"u(x) surely satisfies (4.26) with 0=<k<<n. This choice of
the operator ¢ is computationally attractive since the elements of the subspace
Spo(t, 4, 2) of Wy*a, b] are piecewise-polynomial functions of local degree 272 —1.

Given any finite-dimensional subspace S, of W?[a, ], then integration by
parts, coupled with the expression of (4.20), gives us that the unique element
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w (%) €S,; which minimizes the functional of

b " ) w {(t)
(.27 Frol=J {3 2.0 (Dl0):+ ] f.0) dn}
over S, satisfies (cf. (2.10))
b
(4.28) “f{f[w()] {w,(£)] -+ Za @ (t) - Diw;(t) + (4, @ (1)) w,(t)}dt:o
1=j=M,

where {w; (x)}/Z, is any basis for Sp;. Similarly, the solution ¢ (f) of (4.22) —(4.22)
satisfies

b k
(4.29) af{f’ lp@®]-f{w; ()] + an(t) Dig(t) - Diwy(t) ({9 (1)) wj(t)} dt=0,
1=7=M.

As in Theorem 4, we assume that ¢(x) is of class W*"2[a, b] and satisfies
(4.22"), where m=n-+¢, g=0, but now we minimize the functional of (4.27)
over the subspace H(/, 4, z) of W,?[a, b], whose elements w () are determined
by means of (4.2) from elements s (x) in the space Sp (£ D%, A, 2). Let the inter-
polate of @(x) in H(/, 4, %), in the sense of (4.8), be denoted again by @ (x).
Then, defining the quantities %; as in (4.9), we can express k; both as

b n
ws0) 5] {Ef"(ﬂ D@ (1) — @ (1) - D'w, () + ¢ (0) (@ (¢) — @ 0)) -wj»(t)} at,
1=7=M,

as well as
5

b= [0 —p )] 0,01 + Xoi) D B0 — 9 ) - D0

(4.31)
PO @O e 0) wOfdt, 1= M.

The first integral of (4.31), as before, vanishes for each 7, and writing
M M
()= 2a;w;(t) and @)= D aw/(t)
j=1 j=1

then multiplying by (&, —&;) in (4.30) and (4.31) and summing on 7 yields

M brn
(432) 35—ty = | |3 #0008 (@0) — 20T+ a0 (50 20} dt

and

1) @) — ) @) *@(t))}dt.

As before, ) (7;— ) ;= AL
i=1 3

tain an upper bound for the sum of (4.33). Because o; ()€ C*[a, b] by assumption,

follows from (4.23) and (4.32). We now ob-
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we can integrate the following term by parts:
b
[ o) D@ (t) — 9 (0) D(w () — (@) dt
(4.33) ‘ N : : N
= (1) [ D" (@(t) — p(t) - D'{o:(t) D'(® (1) — @ (1))} ¢

a

where <7, and 7 -7 <#%. Since 0= k=<, it is easy to see from this that the
integral in (4.33') can be expressed as a sum of integrals of the form

(4.34) I Eafbpm(;w ) — g () Doy () D (3 (1) — 0 () dt,

where 0=Zps=n, 0=Zu,<1¢, and 0=y = max{zk —n, 0} =¢. Note that if
0=k=[n/2], then 0 =0. Because D*:¢,(f) is a bounded factor in (4.34), we can
obtain an upper bound for I in (4.34) from Schwarz’s inequality, i.e.,
435) || =K|o—@|, |D"@ — @), 0=m=0=max(2k—n,0).
In particular, using the error bounds of (4.13), we thus find that

M

(4.36) é‘,l(&j — o) k= Ky (Ayr=0|@ —l,,
so that ?
(4.37) | — ], < Kia(4)270.

This gives us, in the manner of previous proofs, the result of

Theorem 5. Assume that the unique (generalized) solution ¢(x) of (4.22) to
(4.22") is of class W?*"™2[a, b], where m=mn-g¢, ¢=0, let 4 and z satisfy the
hypotheses of Theorem 4, and let H(Z, A, z) be the finite-dimensional subspace of
W2 [a, b] defined by means of (4.2) from elements s (¥) in the space Sp (£ D%, 4, 2)
where the differential operator ¢ of (4.25) satisfies (4.26), and the functions o;(f)
of (4.26) are of class Ci[a, b], 0=¢<k=wn. Let @ (x) be the unique function in
H{¢, A, z) which minimizes the functional of (4.27) over H(/, 4, z). Then, there
exist constants K5 and K4, independent of 4 and z such that

(4.38)] D@ — )| = Ky (A)"0D,  0=j=mn,

where d =max {2k —n, 0}, and

(439) |07 (@ — @l < Ky (A)*m—2xC0=0), - 0<j<n—1.

If, moreover (%) is in C®*"[a, b] and Z is a collection of subspaces H(f, 4, )

of W2[a, b] such that @(x), the unique H(f, 4, 2)-interpolate of ¢ (x) (in the
sense of (4.8)), satisfies
|D/ (@ — )| < K'(A)P"7 forall 0=j=n—1
(4.40) and all H(t, A, 2)cF
for some constant K’, then
1D (@ — @)L= = Ky (A)rm—maxCd) forall 0=j=n—1

(4.41) and all H(/, A, 2)e &

where K, is a positive constant.
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The importance of this last result is that one can have some freedom in the
selection of the operator ¢ of (4.25) in order to make numerical computations as
simple as possible, with little or no loss of accuracy in the approximation of the
solution @ (x) of (4.22)—(4.22).

We remark that most of the results of [5] correspond to the special case
k=mn of Theorem 5. We also remark that the results of Theorem 5 can be further
generalized, but this will be considered in a later paper.

§ 5. Computational Results

In this section, we discuss numerical results obtained from some concrete
examples. These numerical results confirm the theoretical accuracies established
in previous sections, and also illustrate the computational superiority of varia-
tional techniques over standard finite difference techniques for such two-point
boundary value problems.

As our first example, consider the numerical approximation of the solution of
(5.1) —Dtu(x)=f(x,u)=u(x)+ glx), 0<x<1,

with boundary conditions

(5.2) u(0) =Du(0)=u(1) =Du(1) =0,
~ where

[ 6xt—54% 1144, 0=x=73,
53 ¢lx)= — 045 (2x — 1)} — (25 — 1)} —543 +-6x4 144, L<x<1

For this example, the quantity /4 in (2.7) is bounded below by =4, and as 7(x, «)
is linear in %, we see that the inequalities of (2.8) are satisfied for y=1.
As is easily verified, the unique solution, ¢ (x}), of (5.1) and (5.2) is explicitly
given by
¥ =3,
(5.4) @ (%)= {

x<1.

A A

— 6x* 548, 0
—6xt 548 (2x —1)8, L

Note that ¢(x) is in C*[0, 1], but is nof in C3[0, 1]. More precisely, the modulus
of continuity w of its fourth derivative satisfies

(5.5) w(Dig; 8) = sup |Diep(x) — D (y)| = 945(20)!
x,yE[O,lg
lz—yl=
forall 0 <6=%.
The solution of (5.1) and (5.2) was first approximated by a five-point central
difference method on a uniform mesh, ie., with A=1/(lV +41), the following

linear system was solved:

(5.6) 6w;—4 (wiy +w;;1) F Wiy +Wiss) = —w,—g,, 1<i<N, )

where g, =g (¢4), with boundary conditions

(5.7) Wo=1wy ;=0 and w=uw,, Wy, ,=Wy.
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The results are given in Table 1, where «, which corresponds to the computed
exponent of A= 4, is generated from

() et

where |w, — |z = max |w, —g¢ (i 4)| denotes the discrete norm.

Eqgs. (5.1) and (5.2) were also solved by applying the variational method of
§2 to the cubic Hermite space H{Y (4(h)), where A(h) denotes a unijorm partition
of [0, 1] with A=1/(N +1). In this case, A (k) =h=1/(N -4-1). Since the solution

Table 1. Finite differences

7
N m?x wi"(p(“ﬂwq) o
9 325 . 10-2 —
10 4.10 1072 —2.30
16 1.81 1072 1.88
19 1.18 - 1072 2.60
30 5.91 1073 1.58
39 4.53-1078 1.06
79 1.71 1073 1.41

Table 2. Variational method for H@(A(h))

N dim H{)(A (k) 1y, — @l % 1D (@, — @) o’
3 6 6.84 1078 - 8.53-1072 -
4 8 2.92-1073 3.81 4.53+107% 2.84
6 12 7.93+107* 3.88 1.72 1072 2.88
8 16 2.97 1074 3.86 8.26-1078 2.91
10 20 1.35-107% 3.95 4.58 1073 2.94
16 32 243107 3.94 1.27-1073 2.95
19 38 1.28 - 1075 3.93 7.88 - 1074 2.95

@(x) of (5.1)—(5.2) is of class C%[0, 1], and the subspace chosen is the cubic
Hermite space H{ (A(h)), then the result of (3.19) can be applied with #=2,
ie., if @,(x) denotes the approximate solution in H{)(A(h)), then

(5.9) | D (@), — @)L= Kgh*~7 for 0=j=1.

The numerical results are given in Table 2, where o is computed from (5.8) in
the continuous norm, and ¢ is similarly computed in the continuous norm for
the values of | D (@, — )|, . Note that the ¢(h) convergence for | @, — @) | and the
O(h*) convergence for |D (@), — )|, from (5.9) is well illustrated by the results
of Table 2, whereas the results of Table 1 show erratic convergence for the finite
difference method.

The next example was chosen to illustrate the results attainable when f(x, %)
is not continuous, but only L,-integrable. Consider the simple linear problem:

24.0, 0=xZ4i,

4 —_
(5.10) Dy 480, l<x=1,
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with the same boundary conditions as given by (5.2). It can be easily verified
that ¢ (%), given by

x4__1_89__213+,2,1,x2, OSV_S_—L
16 2

5.41) @)= 20 27 ’
2(%—'1)4+ 8"'(x—1)3+7r6(x~—1)2, 5<x<’l,

is a weak solution of problem (5.10) and (5.2) in W*2[0, 1].

This problem was approximated by finite differences (cf. (5.7) and (5.8)),
and by applying the variational method of §2 to the cubic Hermite space H{ (4 (h)).
From the result of =0 of (3.17) of Theorem 3, it would appear that

|@) — ¢l = Ko 4,

but if a mesh point x, coincides with the discontinuity of Di¢ at x= 3, the
sharper result

Table 3. Finite differences Table 4. Variational method for H, (()2) (A (h))
% L ~
N max |, (7| N dimHPAW) @ -ele o
9 2.97-1072 — 3 6 4.88 - 107 —
10 6.16-1072 —0.73 4 8 2.00-107% 4.00
16 2.49 1072 2.08 5 10 9.65-107% 4.00
19 1.50+ 1072 3.09 6 12 5.21 107 3.99
30 1.56 1072 —0.23 7 14 3.05-107° 4.00
39 1.29 - 1072 0.68 9 18 1.25-107° 4.00
79 8.53-1078 0.56

can be readily established. The numerical results for the cubic Hermite space
H® (A(h)) are given in Table 4. Note again the erratic convergence of the finite
difference method in Table 3.

The final example was chosen to illustrate the results of Theorem 4 of §4.
The example selected here was taken from [8]. Consider the second order non-
linear boundary value problem

(5.12) D2u(x)=¢*®, 0<x<<1l; u(0)=u(1)=0.
The unique solution ¢ () of (5.12) is given by
(5.13) p(x)=—In2+2In{csec(c(x—3)[2)}, O0=x=1,

where ¢==1.3360557. Since ¢ is actually analytic in some neighborhood of the
segment [0, 1], then in particular @eC4[0, 1]. Thus, we apply Theorem 4 for
the case m =2, n=¢q=1, and L=D. In order that H(D, 4, z) of Theorem 4 is
the particular Hermite space H{) (4), it is necessary to choose the space Sp(D3,4,2)
in (4.2), where the components of the incidence vector z= (2, 2, ..., 2, zyi)’
are specifically zy=2y =13, % =2%= - =2y=2. For such quintic splinés ‘spaces
Sp(D?, A, 2), the results of (4.16) and (4.17) of Theorem 4 are valid, and we
thus have that |, — @|.<Kyh* and [@, — @|i-= Kkl Although studied in
[13], the stronger interpolation results of (4.18) are not yet known to be valid,

14 Numer. Math., Bd. 13
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so that we cannot assert that [@), —¢[;~»< K;3h%. Nonetheless, the numerical
results of Table 5 show (A% convergence.

Table 5. Variational method for H® (A(h))

N dim HE (A(R) iy — @l o

1 4 5.10 < 1075 —
2 6 1.21 107 3.54
3 8 4.24 1078 3.65
5 12 9.58 - 1077 3.65
7 16 3.10-1077 3.93
9 20 1.28 - 1077 3.96
11 24 6.28 - 1078 3.91
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