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A COMPARISON OF THE SUCCESSIVE OVERRELAXATION
METHOD AND SEMI-ITERATIVE METHODS USING
CHEBYSHEV POLYNOMIALS*

Ricaarp S. VARrGa

1. Introduction. It is the main purpose of this paper to compare the
mean rates of convergence of two well-known schemes for solving self-

adjoint partial difference equations of elliptic type: the Young-Frankel '

6, 1] successive overrelaxation method, and the semi-iterative Chebyshev
polynomial method as described by Lanczos [2, p. 42], Stiefel [3], and
others. More generally, the analysis is applicable to any matnx equation
of the form

(1) Au = k,

provided the matrix A = || a.; || is symmetric and positive definite, and, in
the sense of Young (6, p. 93], satisfies property (A).
For semi-iterative methods, one considers iterates u; , where

(2) J Uiyl = Mui + k (i = OJ 11 2; o '))

M being a specific matrix. Then, one forms from the sequence of vectors
u; a new sequence of vectors

n

: (3) t. = 2% V,‘(’I'L) Uy (n = O) 13 2: o '))
. i=
the constants »;(n) being real numbers. Such a procedure is called a semi-
iterative method with respect to the matrix M.
While it is known [8, p. 293] that the successive overrelaxation method
converges at least twice as fast as any semi-iterative method with respect
to the Jacobi method, we shall give a different proof of this result, which

generalizes to semi-iterative methods with. respect to the Gauss-Seidel.

method. For the Gauss-Seidel method, the result is that the successive
overrelaxation method converges at least as fast as any semi-iterative
method with respect to the Gauss-Seidel method.

When solution by high-speed computing machines is involved, it should ‘

be noted that the successive overrelaxation method has the further ad-
vantage of requiring no auwxliary storage of extra iterates u, , whereas
semi-iterative methods require that a few iterates u,. be stored, along with
suitable coefficients.

In a final section, an analogous discussion is given for semi-iterative
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methods applied to matrices whose (complex) eigenvalues are known to be
confined to a circle in the complex plane. The result is that the best semi-
iterative method with respect to the successive overrelaxation method,
assuming only that all eigenvalues X of the successive overrelaxation
method satisfy | A | < p < 1, is simply the basic method repeated n times,
where 7 is the order of the semi-iterative method.

9. Description of methods. Equation (1) is rewritten in the form

(4) ’ = Bu + f

where the N X N matrix B = || bs.; || and the vector f are given by’

—ai;)aii, 177
(5) bij = ’ 0 fo = kifais,
0 , 1 =]
fors = 1,2, ---, N. For the successive overrelaxation method, one forms

the sequence of vectors defined by

i—1 N .

@)zﬁw=w{2mﬂ$”+-mewm+ﬁ}+u—@u@
iFl J=i+1

where the “overrelaxation factor” w 1s a parameter which is fixed through-

out the course of iteration. The equation above may be written sym-

bolically as

(7) - Umgl = La,w[um} + £,

where g is a fixed vector, and Ls o denotes a linear operator.

Let u, be a “trial solution” of (1), and let the sequences of vectors u; and
t, be defined, respectively, by (2) and (3). If uo.is the unique solution of
(1), then each t, is also a solution of (1) if and only if?

n

®) 2 vim) = 1 . @=0,1,2- )
1=

If v denotes the unique solution of (1), and the nth error vector t, — Vv is

denoted by £,.%, then '

n

© (M, @) = 2 r@)

j=0
and g = U — V is the error vector associated with the trial solution Uo. As

1Sipce A is symmetric and positive definite, (1) has a unique solution, and
a:.: > 0 for all 7.
2 For polynomials similarly normalized, see (2, p. 41}, and [3, p. 63].
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a consequence of (8), we shall henceforth assume p,(1) = 1. For compari-
son, we note that in the successive overrelaxation method

(10) en = Le.uled,

which corresponds to the choice p.(z) = z",and M = L, .
If the matrix M has real eigenvalues A, and the interval @ = z = b
is the smallest interval containing the \’s, we define

Wpa(D) = max {[ pa(z) [,

Rlp.D)] = —log up.(M)].

The quantities up.(M)] and R[p.(M)] are respectively the average spectral
norm and the average rale of convergence’ at, the n'® step of the semi-iterative
method with respect to the matrix M. For p.(z) = z", we see that u[p.(M)]
and R(p.(M)] are independent of n, and are, for matrices M with real
eigenvalues, respectively the usual definition of the spectral norm z and
- rate of convergence R of M [6, p. 96].

(11)

3. Basis of Comparisons. In this section, we shall compare the rate of
convergence of thé successive overrelaxation method with that of the semi-
iterative method with respect to the Jacobi method. We choose the matrix
M of (2) to be the matrix B defined by (5). Under our initial assumptions,
A is symmetric and positive definite, and satisfies property (4). For this
case, it 1s known [6] tha,t all the eigenvalues A of B are real, and lie in the
symmetric intérval —g £ X < + & < 1, where 7 is the spectral norm of
B. Without Joss of generality, we may assume that A is consistently ordered
[6, p. 93]. The best choice [6] of w is given by

12 wp, = 1 E jr ’
(12 * [1 + L — 771
and

(13) R{Ls..,) = — log (ws — 1).

To select the best semi-iterative method with respect to the matrix B,
we choose the polynomial p.(z) such that

(14) max | pa(x) |

—k<z<h

3 Specifically, if the largest degree of the elementary divisors {5, Ch. III] of the
matrix p,(M), for n fixed, is unity, then the reciprocal of R[p.(M)] is an estimate of
the least positive integer k for which

| (Pa(M))eco | < e fl2ol,

wharn || x l refers to the Buelidean norm of the vector x.
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is smallest. It 1s well-known that the solution of this problem is in Cheby-
shev polynomials, and we have explicitly

To(z/i)
15 ) = s -
(15) D.(2) V)

where Ta(z) = cos(n cos ' z] is the Chebyshev polynomial of degree n.
We shall call this particular method the Chebyshev semi-iterative method
with respect to the Jacobl method. By definition, we have

max lTn(x)l !
max 1pn(x)l = it

—A<z<i \Tn(l/ﬁ)l T (/)

since Ta(a) > 1 for « > 1. Forming the ratio of the average rates of con-
vergence of the successive overrelaxation method and this Chebyshev
semi-iterative method, we have

o _
Rl Rlpe(e)] = [ 2L =) 1/ (toe T0/E),

Since, for a > 1,"log T(e)/n increases monotonically to cosh™ (), and
since cosh™ () = log (& + Vo2 — 1) for a > 1, we have, replacing « by
1/, R(L. «,)/Rlp(B)] = 2. This proves in a different manner the following
theorem of Young (8, p. 293]. ,

TuroreM 1. The successive overrelazation method with the optimum over-
relazation factor converges at least twice as fast as the Chebyshev semi-ilerative
method with respect to the Jacobi method, and therefore at least tunce as fast
as any semi-iteratie method with respect to the Jacobt method. Furthermore,
as the number of iterations tends to infinity, the successie overrelazalion
method becomes exactly twice as fast as this Chebyshev semi-iterative method.

We finally remark that for values. of w near the optimum o, o , the suc-
cessive overrelaxation method still has a faster rate of convergence than the

Chebyshev semi-iterative method with respect to the Jacobi method, and

therefore a faster rate of convergence than any semi-iterative method with
respect to the Jacobi method.

4. Extension to polynomialst in L, . In this section, we merely replace
the Jacobi matrix B in the previous section by the Gauss-Seidel or Lieb-
mann operator L. {1, 6]. Assuming A to be consistently ordered, it is then
known [6, p. 100] that the eigenvalues A\ of Lo satisfy 0 = A = P < 1,
where g is the spectral norm of the matrix B. As before, the polynomial
pa(z) of degree 7, normalized so that p.(1) = 1, which has the property

< See also (4, Chapter VI].

N
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that maxe<z<z2 | pa(z) | is smaller than all other such normalized poly-
nomials, will be ’

(16) @) = T, <~ - 1) / T, <- — 1)

The semi-iterative method based on these polynomials-will be called the
Chebyshev semi-iterative method with respect to the operator L, ; . The average
rate of convergence of this iterative scheme at the nth step is

) - RlpL.] = log T, (g - l>/

If we form the ratio of R[L,..,] to R{p.(L..1)], then using the monotone
property of log T..(a)/n and the previously used identity for cosh™ (a) for
« > 1, we obtain

RlLe wgl/ Blpa(Le )]

(18) - 2o (% . ( ;-f-—z B 1)%) log (1% 1 (@.2 — 1)2 - 1)*).

But the right hand side of the inequality above reduces identically to unity
for z < 1. This proves

TuroreM 2. The successive overrelazation method with the optimum over-
relaxzation factor converges at least as fast as the Chebyshev semi-iterative
method with respect to the operator L., and therefore at least as fast as any
semi-iterative method wzth respect to the operator L., . Furthermore, as the

number of dterdtions tends to infinity, the successive overrelaxation method

becomes exactly as fast as the Chebyshev semzi-tterative method with respect to
the operator L1 .

6. Extensions to polynomiéls in the operator L, ., - If we have, as before,
that the eigenvalues of B are real and lie in —g £ z =< [, then we can

formulate the problem of finding the best polynomial of degree n, normal- .

1zed so that p.(1) = 1, having the smallest absolute value on the interval
—g = z = [, and we are naturally led to Chebyshev polynomials. With
these polynomials, we then defined the Chebyshev semi-iterative method
with respect to the matrix B, which was, in some sense, the optimum semi-
iterative method with respect to the matrix B. The same is true if we con-
sider, rather than the matrix B, the linear operator L, ; whose eigenvalues

A are also real and satisfy 0 < N\ < #°, and optimize the selection of a

sequence of normalized polynomials whose absolute value on the interval
0 £ z < 7 is smallest. The resulting semi-iterative method defined by-

this sequence of polynomials was called the Chebyshev semi-iterative
method with respect to the operator L,:. As we pass to the case where
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1 < w < 2, the operator L, does not have all real eigenvalues [6, p. 101],
and the selection of a sequence of normalized polynomials to define a semi-
iterative method with respect to the operator L, . is not immediate. As
before, we have ’ |

(19) £: = Zo Vf(n)Lﬁ.m&) = pn(L«,a)eo,
‘ o

where p.(1) = 1. We now assume that the eigenvalues A of Lo sabisfy
N l.)\kl < p < 1. If gu(z) is any complez polynomial of degree n, let M,.(r)
" denote the maximum modulus function of g.(2), Le.,
M, (r) = max |¢.(2) |-
lzl<r
Completely analogous to the previous sections, let S. be the set of all
polynomials g.(z) of degree n for which g.(1) = 1, and consider
min {M,, (r)}.
gnesS
The following theorem, due to E. H. Zarantonello®, seems to be of interest
by itself. f '
TaroreM 3. For all v such that 0 = 1. = 1, min{ M, (r)} = r" for all

. gnes
posttive tntegers n. _
Proor. As is well known, we have

34,60 = tim{ [ 0.0 7 )

Clearly, we have for any positive integer p,

ﬁ?ﬁ{f:f | gu(re’®) |7 d@}“%" > g:g; [(L‘“‘ Q(re‘j") : de)}]m»

since if g. € S, then’

12p

Qz) = {gr;(z)]p € Snp -

-

If
@) = Yo
then _ \
(f Qe | daf s @P o ch-

s Personal communication.
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But
np 3
<Z]a]”k> \/27rr (g;lakig)

since0 < r < 1.SinceQ € Snp,then Y 4 a, = 1. Therefore, using Schwarz’
inequality, we have

1= :()ak < giékl = (wp o+ 1)’ ()ﬁflakly
and
[Maeerral = vae (Siar) = ()
“Thus,

) 2x iG. , U e n 2 1/2p
oo [ ([T 1w pan) |72 0 (25)

Letting p — «, we have

Since 2" € Sn ,and M_.(r) = ", then

‘ mmMau(r) =7 foral 0=r=<1,
. gn€Sa

for all positive integers n.

In view of this theorem, we have

TueorEM 4. The best semi-iterative method with respect to the successwe
overrelazation method, » > 1, which can be .obtained, assuming only that
eigenvalues Ni of the successive overrelazation method satisfy [N| = p < 1,
“1s simply the basic ‘method repeated n times, where n is the order of the semi-
terative method.

We remark that, for > 1, the error vector assomated with the best
semi-iterative method with respect to L, , satisfies

(20) | sn* = L:,w%lo = &p .

This particularly simple form of a semi-iterative method with respect to
L... incidentally has been used repeatedly to solve multigroup diffusion
problems in two or more (space) dimensions [9, 10]. Apparently, the choice
for the iteration method is not related to the theorem above, but rather
to the inherent simplicity of theiteration method of (20).
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