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ABSTRACT

This paper presents a2 new technique for solving
some of the parlial a'z‘/[erezzzia[ equations that are
co"m'ouly used in simil ating reservolr per/ormmzce
The results of applying this technique to a simple
problem show that ome obtains accurate pressure
values near wells, as well as accurate pressure
gradients, which can be explicitly calculated. The
method is completely rigorous in that convergence
of the discrete numerical solution to the continuous
solution for both pressure and pressure gradient is

established.  High-order,  piecewise-polynomial
approximations are used near the wells wbhere
pressure gradients are steep, while low-order,

piecewise-polynomial  approxinations used
elsewhere to reduce greatly the calculation time.
This combination is shoun to give a uniformly good
approximation to the sclution. These approximations,
obtained by using a Galerkin process with suitable
Hermite subspaces, are shown to be theoretically and
numerically supericr to the usual approximations
obtained from standard fintte-difference techniques.
Not only are much greater accuracies obtained, but
computer times arc also greaily reduced.

The application of this techuique to multivhase

flow problems (e.g., singic vell coning problems)

are

would have considerable practical inierest, out
such exteusions of this cchmigue  with  full
mathematica! rigor nave not been made as yel.
Howeuer, the numerical methods presented bere are

eneral, and in privciple extend to miultidimensional
L ) P B

multiphase flow. Moresver, the preliminuary results

given in this paper are sufficiontly cncouraging
that we feel the effort in cmpting  these
I

extensions is ",Ibl'/lei
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distributions and pressure
is of considerable
simulation of

gradients around wells
the numerical
reservoir  performance. The most
common approach to sclving this preblem is to usc

importance in

finite differcnce techniques (see McCarty and
Barfield® or Peaceman and Rachford!0). This
approach, however, has many ‘disadvantages, the

major one being thar many grid poinis
accurately ‘describing the pressure
distribution and the pressure gradient around wells.
This nced for 2 fine grid results 1o large

are generally
necessary for

compates
times and often in prohibitiveiy high cests

Besides investigating method of finite
differences, some such as Welge and
Weberl? and Roper, Merchant and Duvail,!3 have
considered a combination of analyuical and
numerical some success. 1hese
approaches, however, are all nonrigorous and quice
often cannot even be applied. In this paper, we
present 2 formulation of hxgn‘o.der
accuracy, tue Galerkin method, for
solving this problem.
e treat here only the parual differencial equaticn

describes steady-state, singie-phase  tlow.
However, the methods presented are general and 1n
principle extend to multidimensional,

\
the
aurhors,

technicues with

numerical

based on

that

multiphase

flow. Specificaily we treat special c¢ases of the
problem in two dimensions described by:
I feop 2. 2 M,,, %
dx oxt gy dy
ilxy), (yieG, .o o .o o oo o oL LoD
(x,7) + 8 L (x,y) =
YPAX,Y B S Y 0,

coordinate axis' with

the outward normal. and v ;zncé 5 oare noi-n

1 . ~
constants SUCh that v o« [ % Q)
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For various cascs of this general problem, we
apply the Galerkin method to obtain approximate
solutions using particular  finite dimensional
subspaces. This merhod is presented in detail to
illustrate  its use for obtaining approximatc
solutions of Egs. 1 and 2. In addition, a nember of
specific problems are solved numerically in order
to illustrate the computational superiority of these
methods.

We begin by treating the special case of Eqs. 1
and 2 where L(ey) = 1, 3 = 0, and [(xy) is
sufficiently smooth in G = GudG o illustrate the
basic ideas involved in using the Galerkin methed
for solving two-dimeasional. elliptic, partial-
differential equations. Some interesting numerical
results are presented that illustrate the theoretically
proved (Birkhoff, Schultz and Vargal), high-order
accuracy obtainable by these methods. In addition,
we show that not only can a high-order accuracy
approximation be obtained for the solution, but also
a high-order approximation for the first partial
derivatives. The numerical results presented
indicate an cven higher order of convergence than
can be proven at present.

In order to illustrate the tremendous advantage
of these methods over central differences for
calculating pressure distributicns and pressure

. gradients around wells, we next consider another

special case of Eqs. 1 and 2. -Specifically, this is
the special case of these two equations where
k(xy) is a piecewise constant, 3 =0 and f(x,y) of
Eq. 1 takes the form

M
SO )

where we are representing point sources by the
dirzc delea function (8) (see Sneddon!?). For this
problem, we show how noasmooth subspaces can
be used to great advantage to obtain accurate
approximations around the wells with only a very
sma!l amount of additional computations. The
process of rigorously incorporated analytical
solutions into the method is also shown.

Finally, we consider some numerical examples
to iliustrate the use and advantage of these ideas
for problems with point sources. For solving these
problems numerically, the Galerkin method requires
the evaluation of numerous intcgrals. Therefore,
some results of Herbold S and Herbold, Schultz and
Vargs® on the computational aspects of consistent
quadracure schemes are also presented.

APPLICATION OF GALERKIN'S METHOD

Ia this section, we consider the special case of
Egs. 1 and 2 given by:

2 [~ = 2 - T
Lip(x,y)] = 5_19.&53..{_), - .51_2%2;')
dx oY

ol N fe =N £ 7N

p()«:,:{) = 0, (XJY) €3G, .- ..

where here G is the open unit square (0,1) » (0,1),
with boundary JG. We assume that the functions
7(x,v) are capable of being differentuited infinitely
in G lie.. f(xy) ¢ C™(G)] This simple problem
was chosen in order to carefully tllustrate the
Galerkin nmethod (sce, for example, Collatz* and
Kantorovich and Krylov®) for abeaining approximate
soluticns of two-dimensional elliptic equations.

Let §
piccewise. continuously differentiable functions,
w{x,y), defined on G such that w(x,y) = 0 for
(x,y) ¢ dG. 1f &{x,y) is the unique solution of Egs.
4 and 5, then evidently L{&]w = ju for any win §.
Integrating this expression over G gives

denote  the class of all real-valued,

11

[ 7 Llel(x,y)ax dy =
0°0
11

I 5 f(x,y)w(x,y)dx dy, all we€S, ()
0 O

or equivalently

11

j\ £ {o (XJY)W(X:Y) +
00 **

Q)y_y(X,}’)W(X,y')}dX dy =

1 1

[0 2Goy)wx,y)ax dy, all wes. ()
0 0

Applyiag Green's theorem,18 ie

AR}

(Llplw + W, + cpywy)dx dy =

n )

j) W ;—: d.S,
~ Cn

G

=00l Goy)v (oy) -

T,y )w(s,y)dx dy, all wES . (g)

The Gale:vin method can be described as follows.

S+




First, choose any finite-dimensional subspace Sat
of S. The Galerkin approximurion 1:/(,\', y) to (f)(:c,y)
in Sy is then defined, in analogy with Eq. 8, as
the element w(x,y) in Sy, which satisfies

1 1

; IO fo {@-X(x,y)'vfx(x:y) +

‘A*’y<X:y)\"’y(X)l‘f)}¢x dy =

1
[ [ tloy)(oy)ax dy, all WESy. o)
0°0 .

The important difference is that Eq. 8 is valid for
all weS, while Eq. 9 is to be valid for all we Sy

If fw ()i, is any basis for Sy, we can
eXpress w(x,y) as

M
C‘T(X)y) = Z a’iwi(x)y))
i=1

and the defining relation (Eq. 9) for the Galerkin
approximation w(xy) to ¢(xy) in Sy can be
written as

1 1
- j'o ‘fo {wax,i + Wywy,i}dx dy =

11
[ [ fwaxdy, 1<i<M .00
0°0

Regarding the a;'s as components of the vector

& &))"
, ..Q, ’

2 M

then the linecar equations of Eq. 10 can be
expressed in terms of the a;'s as the matrix

equation

Aa=L, N ¢ B Y
where t = vector and ¢ = (Zl' ) tM)T has
components ¢; given by

11

t; = - fo{) /(x,y)wi(x,y)dx dy,

l_<_i§M.............(l2)

The entrics of the real M x M matrix A = (ai,j) can
defined as*

a. . - < wi)wj >’ l S i)j .<‘ I',I) . (13)

1,9

'a,-j is just the coupling between the j-th and j-th basis
functions.
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where
11
< u,v> = {fuv +u v }Jdx dy. . (4D
’ jOJ\O XXy y} Y

It is evident that the matcix A is real and symmetric.
Marcover, it can be shown (Appendix B) that the
matrix A is also positive definite; i.e., the matrix
problem of Eq. 11 admits a unique solution and,
consequently, the Galerkin approximation w(x,y) of
q')(x,y) in Sy is uniquely defined. In summary, then,
the Galerkin method consists first of sclecting a
finite-dimensional subspace Sy of S, then derermin-
ing a basis for Sy, and then solving the resulting
matrix problem (Eq. 11).

SMOOTH HERMITE SPACES ug‘(r,)-

The smooth Hermite spaces, I'I(')"(n). m > 1, are in
fact subspaces of S, and thus can be used for
determining Galerkin approximations of the solution
&(x,y) of Eqs. 4 and 5. These subspaces of S are
particularly interesting from a numerical point of
view sipce, as will be shown, for suitable choice
of the basis functions for HT(7), the matrices A
(whose elements are defined in Eq. 13) are sparse
matrices. This leads to efficient methods for
solving the corresponding matrix equations of
Eq. 11. -

Let 7 and ) be two partitions in each coordinate
direction of the unit square:

ﬁx:O=xO<xl<°'°<xN+l=l,
X

M = < PP =

r 0 =¥y <Yy S <Yy b

where N and N are non-ncgative integers. Then,
let the mesh 7 on G = [0,1] x [0,1] denote the set
of all points (x,-,yj), 0<i<N, +1,0<j<N, +1.
For any positive integer m, HZ%n) will be the set
of all real, pieccewise-polynomial functions w{x,y)
defined on [0,1] x [0,1] such that w(x,y) satisfies
the boundary conditions (Eq. 5), w(x,y) € cm-1 ({o,
1] < [0,1]), i.e.,

akyﬁx‘z(x,_‘y_)w

axkay

is continuous in {0,1] x [0,1] for alt 0 <kl <m-1.
and on each cell R; ; = [xz-,le] X [>',")}‘~:,v1] of G
defined by =, w(x,ys is a polynomizal of degree
2m — 1 in each variable. Therefore, any element
wlx, y) € Hg‘(n) is uniquely determined by the
mszNy + 2m(m—1)(N_ +N),) + 4(m—1)2 values

k+L
3 W(xi,yj)

T ,  0<k, A1,
39X ay
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<N 1<<N
i, 1
K+t
— 7 1<t<n-1,  O<k<n-1,
3X oY
1< j = N o+ 1
‘-—Slg\‘l’x, '] O’ y b
k+L
a W(Xi)y.)
L ocdzm-1,  1<k<m-1,
k 4 - = —=
3X Yy
lSjS]\Iy) i= O, NX + l,

and

ak+ﬁ ( )
wixss¥s) o < dn-1, 1= 0,
J
akay/E

+
Nx 1,

- - + 1.
J 0O, Ny 1

Hence, the dimension M of HE!(7) is m2N N, = 2m(m
— IX(N, + Ny) + 4(m ~ 1)2. The terms cntc}ing into
this expression for the dimension of Hy" 7) can be
described as follows. For each of the N N, interior
points of 7, there are associated m? distinct basis
functions. Because of the boundary conditions of
Eq. 5, for each of the boundary points of 7 that is
not a corner, there are associated m{m—1) distinct
basis functions; for each corner point, there are
associated (m—1)2 basis functions.

A basis for elements in this space can be
obtained in the following way. First, we define the
functions of a single variable §; ,(x;m), 0 <i <N,
+1,0<k<m~1, and Tj'g(y;m), 0 <] <N, +1,
0 < <m-1. Let S; p(xim) and T o (y:m) be
¢cm-1[0,1] and be

0<k,A<u-1,

0<i, g<W +1,
- ) R A
where §; 4 Is the Kronecker delta function; i.e.,
8, =0 for all j # & and & ; = 1, the functions
S; plxym) and 1"7 ¢ (y;m) are uniquely determined. !
The basis is then formed by taking the sct of
functions

Si’k(xim)Tj’,&(y)'m)) OSI’*)'EEm‘]ﬁ

O<i<ll_+1,  O<I<N +1,

and omitting the boundary functions

si’k(x;m)Tj,O(y,'m), OKi<N +1,

O-<_k§n"‘l) ,j = O’ }Jx + l,

and

S; olxm)T; pysm), OKIM 1,

0<hm-1, i=0, N+ 1.

HerboldS proved that these functions Si,k("f’”)
T]-.g(y;m) are linearly independent, and do form a
basis for H(’)"(n).

To illustrate more clearly the preceding
consider now two specific
smooth Hermite spaces H}(n) and H{(#), where nis
now the uniform mesh on the unit square; i.e., 71s
made up of the points (xil)';‘)’ 0 <1,j <N+1, where
h=1/(N+1), x; = ib and i = 7h.

By definition, each element in Hol(:r) ts a
polynomial of degree one in each variable in each
cell R; 5 e, in each cell R;;, each element of
HA(7) is the product of a linear function of x with a
linear function of y, the so-called bilinear functions.
From this, it is clear that a basis for the subspace
HY () is

ti(x)tj<Y):

discussion, let us

1<4,5< N,

piecewise polynomials in ) ' .
polynomials of degree 2m — 1 in the subintervals of where the functions ¢;, 1 <7 <N, are defined by:
their respective partitions 7, and 7y By recuiring
that .
¥-{i~1)h . .
L ——Q—E—L, (1-1)h<x<in,
d . -
— x.;m) =& )
Si,k( 3’ ) = 00,05, 3
ax . .
(i+1)h-x . . .
- tl(X) = 1,)1 g 1h§x_<_(1+l)n,
o<, k<m-1, 0<i, J_+L,
0 s otherwise,
and
L (i5a)
d ‘ - - .
— T, },(3’,-5171) = 6% kf). s and are illustrated by Fig. 1. The smooth Hermite
dy/& R yE1sd space [101(7,'} consists of all bilincar functions defined
P A 3 AN ST AP B (T T ST R AR SR O S TN PR G T P e T TR LN 1 TN B B A TR TR 5 R T T IR e 7 e O

"SRRI R AL TNEAITEY



Yy 25 R RAR ; iy g3 .. o .,‘
X X RS CEL S AR PO PEVs W TENE Sl S8 Sttt e e s, 72 5 72 '(“o';’ al-ACA & Dﬂo B0 y‘Lﬁ 1% ;I@ ‘
% PEUE IV DAITIIR M LA STS

on 7 that satisfy the boundary conditions in Eq. 5.
For any elecment w(x,y) ¢ Hé(:r), there exist real
a; ., 1 <i,j <N, such that

I
N N

w(x,y) = PR @, gt ()t {y ) (15b)
521 g=1 290t J

For the uniform partition 7 of the unit square,
we remark in this case that

£ (x) = 8; (615 85(y) = T, olysm)s

which connccts the definition (Eq. 15a) with the
preceding general description  of  the basis
elements of HY(n).

A basis for H2(n) is the set of functions

55 (X)8; (), 158,30 0k AL,
S ) S.

and

si’l(x)si)c(y), Si,O(X)Sle(y),

iqn,  §=0, N+ 1

where the functions §; ., 0 <17 <N+1,0<k <N+

0 <k <1, are piecewisc cubic polynomials defined
by

R Xy Xiat !
FIG. 1 — THE GRAFH OF ti(x).

{ (o o ey e e
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(1i-1)h<x<ih,

3 2
85 ,00x)= { 2 (%}E -3 (Xﬁlhﬁ + 1,

and

h
ihgx_<_(i+1)h,
L 0 3 otherwise,
. (16)
2
-(i-1)h .
'(?*£~g—l~> (x-ih),
(i-1)h<x<ih,
6. () {(xoin) ((r)nsx 2
i,1(%)= (x-ih) (~—=— >,
ih<x<(i+1)h;,
L 0 P otherwise.
.(17)

The functions Si'o(x) and Si.l(x) are graphed in
Figs. 2 and 3, respectively.

Let us now consider the basis elements ti(x)[j()’)

of H}(7) defined by Eq. 15a and illustrate how the
matrix elements ag; jy(k, £) © of Eq. 13 are obtained.
If Fig. 4 below represcnts a portion of the
partition or grid, then the basis element for the ,]
point - is only non-zero over the shaded area.

*We mear by this notation that ay; i)k ) is the coupling

petween the basis function centered at (x!',)'i) and the one¢
centered at (xk,yg).

ARG AT K KRG SR AR AT 2
LR (IR SEUNEE PR RPN RS o S PR AP RTR RS SO T o SUR A Y, SN ARG DS U R L1 SN O
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Therefore, the equation for this point from Eq. 11
becomes

(h&)(.

1,3) T %(4,3), (1-1,3+1)7(3-2,3+1)
&(1,3),(1,5+1)7(1,3+1)
3(5,5), (1+1, 3+1) (541, 3+1)
®(1,3),(i-1,3)7 (3-1,3)
t2(1,5),(3,3)7(553)
®(3,3),(3+1,3)" (3+1,3)
2(1,3),(i-1,3-1)%(i-1,3-1)
‘ a(i,j);(i,j—l)a(i,j—l)

2(1,3),(i+1,3-1)"(i+1,3-1)

- k(i,j)' .. (18)
Now, from Eq. 13,
| %341 Y341
2(5,3),(1,3) T4, fy [y, 5 G0
i-1Y3-1
t,())°

; (ti(x)ty,j(y))e]dx dy, . .19

(‘»’.i-g,)'i”) (Xiryjn)

007

(Xiu»Yj+ﬁ

/r'l ; // /
(Xi{k;éi /éjga;(xi(Yj) ///‘(xi+|’yﬂ'

V /L L

07

(%5 ,y~1)///(x' Y4 Ry
L Lﬁ? I /42 M

S B UL A ) 3 TN T TS U T AT TN LT L B 2087 A YSANT S Y oz L S O VD THTRA VM N R R L2 LD TR AT
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and by symmetry'coupled with the definicions (Eq.
15a), Eq. 19 becomes

! RN 1y
%(1,3),(1,5) =" JX fy (;'/
i-1Y5-1
! - 1y 27
( 2 ! (;5) ) W
= -g ............. (20)

Again, by symmetry, @ iy (ivl,j+1) = A1 = 1)
=400y, (-1, 1) T i iy, Gi-1,i~1) so we nced only
to calculate the one element
X. .
i+l Y41
as. . . . =
(1:3’)1(1+l)3+l) Jx J\

i Y3

ORI CO LN O CHNCOIESDE

(b330 (%, 50 () (8, (1)t () Jaxay

............. L. (2D
which becomes, using Eq. 15a,
i Y
s, . . N = =
(i,3),(i+1,3+1) jx I [(h)
.Y
1 J
(f:f;) S (Ziiiii ) +
h h h
X-X X, .-X
i 1 i+l 1 1
(=) ) (=) (- )] dxdy=-=
................ 22)

Finally, a; ) (i-1.5) = W p.G=17), = Hiin G-
= ag iy j-1) and this element is given by

X

ar. . . . = £
(1:3)1(1’1:3) JX

i Iin
521 Y31

[y (8 W) (e, () (0) +

PRI AT RN L i
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whi¢h becomes, using Eq. 15a and symmetry,
Y
ar. . . o= 2
(i,3),(1-1,3) ‘J\X

=Y. y-y. . =X
iy @) (i v G

& D @) way-- 1

.. (24)

Therefore, the star for this equation is given in
Fig. 5. This is just a nine-point formula and the
system of Egs. 11 can be easily solved by single
or double line SOR (sce Varga,15 Chap. 4).

When we compute the system of equations for the
basis elements of [{3(n) defined by Eqgs. 16 and 17,
we get a more complex matrix. The entries in this
matrix can, as in the discussion above, be computed
directly from analogous integrations of the basis
functions of Egqs. 16 and 17, but we omit the
obviously lengthy calculations. If the equations
are now ordered so that all the elements at one
point are counted before moving to the next grid
point, we get a nine-point formula where now
instead of single elements at a point we have 4 x 4
matrices (see Fig. 6). There is still a natural
partitioning of the matrix A by lines or double
lines, and Block SOR can be shown to converge
(see Varga,ls Chap. 3). The elements of the
matrices in Fig. 6 are a((i?lf)’zzk.f)' where this
notation means the coupling between the m-th basis
function centered at the point (xi,yj) and the n-th
basis function centered at the point (xp,yp).

NONSMOOTH SUBSPACES AND PRESSURE
DISTRIBUTIONS AND GRADIENTS
AROUND WELLS

In order to consider the problem of calculating
accurate pressure distributions and pressure
gradients  around wells, we present some
theoretical results for the problem

8 ap(x,y)] _d \: ap(x,y\)]
9o lh(ey) 222X 0 Dy ey
dx [ () dx dy bx) dy

-2 _Z - x
> 5 >
1 8 1

-—5— +-5— "5

-2 -2 - E
b > >

FIG. s
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c= flxy) = :%Q('\}"}'i) SCx—x, y=y ), (x,y) ¢ 3G,
l:

- (25)

p(x,y) = 0, (%,y) € 3G, . . .(26)

where G is again the open unit square (0,1) % (0,1)
with boundary dG and point sources are represented
by the dirac delta function. By using nonsmooth
subspaces of §, we will show how very accurate
approximations can be obtained around wells and
how analytical solutions can be incorporated with
the variational approach. The results of this
section will be illustrated by numecrical examples
in a later section.

For the problem described by Eqs. 25 and 26, we
define a uniform partition 7 as in the previous
section. We can now make the additional
assumptions that

1. k(x,y) is a piecewise constant (i.e., in each
grid block Ry ; =[x x;0q) x [5.341 ), £(xy) is a
positive constant), and there exist constants &,
ko such that :

k> klxy) > k2> 0, (,y)eG. . . . . .(27)

2. None of the point sources lic on grid inter-
sections (xi,yi), D<i<N+1,0</<N+1L
Procecding as in the previous scction, let H&(n) be
the smooth subspace spanned by the basis elements
wy (xy) = ti(x)ti(y) given by Eqgs. 15a. We now
seek an approximate solution, w(xy) ¢ Hi(a), to
Eqs. 25 and 26 of the formn:

N N

wWxy)= D D &, .
i=1 j=1 179 1,30

Using Galerxin's method, the a; ; are obtained by
solving the following linear system of equations in

" the a;

1i,]

rl j_l k (x' y) [wx' l.‘].(x, )’) ‘lZ’x (X, )/)

00

(]
]

v, ].( x,y) u7y ()]
11

s T ey w, (xy)dx dy,
00 1

1<ij<N. .. ... .28

Ape oy 1 4 o Are oy gs s Ape oy gein sien
(1:3):(—'1:3+l) (l:J):(l:J*’l) (113):(;3"17.3'*1)
Aoy e e . B, v e . I
(i,3),(3-1,2) (1,3),(1,3) {(1,3),(3+1,3
oy e e C oy re Ape oy pein s
A3y, Gie0,5-0) M), (-1 B5,3),(840,500)

FIG. 6
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If ¢(xy) is the solution of Lq 25 and 206, then

G[CCH S theorem ’\gdll’l gl\tb

(e (xy)

11
) fO J(; ko y)[u"x', Iy
*ow ],(.\', y) (i’)y(x, V] dx dy
11
-+ j(‘) fO /(,\’, )/) luf‘,i(x'}l) (jﬁ.'d)’ s

1<ij <N o (29

Now define the function wilx,y) € Hol(n) to be the
unique interpolate of & (x,y). By this, we mean
that if

N

N
WiLy) = DD T, w (x .(30)
SN jo1 BILE )

then
@, |
13
In other words, fu(Xi,)"-)
< N.
Defining the Sobolcv norm (Yosida, 19 Page 55)

CP(Xi,yJ.), S V)

= ‘75(":")'1‘) for all 1 <14,

11

JJ e et a0

M
-~
-

we show in Appendix C that

;1&-'»‘:]]125(:511, N E £

for some constant Cj, independent of h. By virtue
of the triangle inequality for the norm [| - {|y 5, we
have

|

HCP - ﬁi\l,g = ”((p—’\:;) + k(?f";’)ﬂl,‘g

ICP - m,nl,p + 'tﬁ’ - ;’v’“l,g' .- (34

Again, the facr that w is the H ()-interpolation of
&, also gives us (Bickheff, Schalt:? and \arbal
Theorem 13) ‘i —all; o < Mb, where M is
independent of h. Combining this with the
inequality of Eq. 33 then results in

2_<_cuh,.........(35)

where Cy4 is m"cpem‘lent of h.

The use of noasmooth subspaces lecads to one of
the most com pmatxopa“, interesting features of
What is mcant by a
nonsmooth subspace in this paper can be defined

such variational methods.

A Y s LR L XSO R 2 SOYP L

AT AN O d N BT AT 4 B P T TR LTI £ ST

as follows. Again, choosc a partition 7, and -
the two coordinates and consider all the ‘
elements that span the space U@, Thea iy cats
mesh block Ri,;‘ one can add basis

; CIL‘I;V;:;“ .
w; -].}”’(,r, y) of § such that

Lx g2 %,k 25,
LI b g o e

< o,
and

% k (x,v) £ R, ... (65

(Y:Y) 0, 1,3

Define this new space to be H&(v z) where z is a
vector with elements =z, v.h1c11 are just the
number of basis elements aéded in the block R

Some examples of functions that may be addccf to
the R; ~th block are

£k

1:3

(1, )ty ) (35 ) 3 TS

-

(x,y) =

... (379
or
Jc’,k ) =
1 J X,y
t(x-x, ) An(y-y.)
sin ( = ) sin (y _; ) . (37b)
i+l “i J+1 Y3

This ability to add basis elements to any mesh
block has the advantage that the approximation may
be improved locally without greatly increasing the
dimensionality of the whole system. More
significant is the fact that these extra basis
functions uncouple from the rest of the equations
(see Appendix A). This means that when computing,
one chooses a partition = for the region and fnd&
the element of best approximation w(xy) ¢ H; 1€

This involves solving a system of N_N_
equations iteratively. Then,
basis elements to the R;

lmew
if we msh to add r
-ch block, we necd now
only solve a linear s)s cm of 7 equations for r
unknowns. By doing litcle additional work, the
approximation can be improved in a biock containing
a well. Another interesting result that comes from
this uncoupling allows us to include functions on a
hemogeneous rectangle that acwually are solutinns
of our prob‘em These functions may be added to
any mesh block and will significantly improve the
accuracy. This will be
following example.
Consider the problem

etrer illustrated by the

25V, i TR

R o) Y ——

FEDERITE
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where xq,yg 1S the location of the point source of
strength Q. However, U (x,y) from Eq. 44 does not
satisfy the condition In Eq. 36a, so it cannot be
used =as a basis element. We can, however, use
functions such as those given by Eq. 37b. Let
wix,y) ¢ Hg(7) be the first approximate (o our
solution and supposc

1 Y2
~ ~ n,on
ENCROR{CROLDIDIEEN R (y)
n=l m=1 F 7Y

.. (49)
n.mg

is the solution we seek where the w}'; (x,y) are
given by Eq. 37b. Since the equations for C,

uncouple from the equations for a; ; we need only
solve the system of equations

X500 Y501, "1 T2 .-
[ (2 ¢ aiof, 0000
X. ¥ n=1 m=l1 154
i J
I“.‘L r

L,k n,m
LE (B e, wih on):
33154 n=1 m=1 n,m y,i,J

, Xi+l y,j+l
coaxay=f [ @

Xi yj

4,x

W .

V.14
4,k 2,x

6 (X—Xo) (y"yo)wl, J (x)y):Qwi, .j (XOJYO) 5

1<d<r 1<k<r . (46)

1’ 2"
Notice that the functions wig"f(x,y) given by Eq.
37b form an orthogonal sct as well as che functions

wf:fi(x,y). Therefore, Eqs. 46 become

%41 Y341 2.k 5
j‘ ur b/?/;k{\(wx,i,j(X’y)) '
X. Y.
i 73
£,x 2] 2%
pe dy = qw.’ . (x
(Vry}j}i( 5y)> d*x y %Tl)J\XO’yO)’
1<d<r,, 1<k<ry,
Stery S k=

and the Cy g's are just the cocfficients of

ko(x-%. ) {ﬁ(y—yi)
sin e sin —
zxi+l—xi) Jj+l—yj§

R L M ST K Dol R R AR TS RN AT T T
R AR TSR Y T T NAT N BN L2 T KL A T M TSR ST T B ST R, A
ST DR AP T AN AR R R e o A VT kTR A VA

in Eq. 44. Therefore, if we let ry and ry tend w0
infinity, we have

%l(x,y) = (oY) Fulxy), oD

where ¢(xy) is the exact solution given by kg,
44. The uncoupling described in Appendix A works
only if our original space is bilinear over the
blocks where we wish to add basis eclements.
Moreover, this uncoupling is not possible for
parabol ic problems so that these results are not 2
panacea for all ills. However, in any case, adding
functions in particular mesh blocks does not
increase the dimensionality of the system wvery
much, so that great improvements are still available
for a small amount of additional computer time.

NUMERICAL EXAMPLES

Let us now consider some examples of problems
of Egs. 1 and 2 whose solutions have been
approximated by the techniques discussed in the
previous sections. For those cases where an exact
solution was known, we computed the error in the
uniform norm. That is, if &(x,y) is che actual
solution to the two-dimensional problem (Egs. 1
and 2), and w(x,y) is an approximation to dlxy)
obtained from Galerkin’s method, then the quantity

\\cp(x,y)»%(x,y)\\lm

i

max |o(x,y)-w(%,¥) |
X,yeG

is very accurately approximated by choosing 5
- 1/N+1, where N is a very large positive integer®

and calculating =~ max | (ih, 7h) —wih, [b)]. For
1<i, <N
the finite difference approximations, the maximum
error is calculated only at the grid points; that is,
if v(ib,jb) is the finite difference solution, then
Hgﬁ—vHLN = OSi.Tf_a;‘(J” ‘cj)(zb,;b)»u(z/),]b)".
The first problem (I'{erbolds) we consider 1s

82u 62u XYy _
3u 08 gyyee (yxHy-3),
2 2
Jx Y
(x,y) € G, I € -
u(x,y) = 05 (X:Y> €3G, - - (1)

where G is the open unit square (0,1) x (0,1), ~ith
boundary dG. It is easily seen that the exact
solution of Eqs. 48 and 49 is given by

L X 2 2 iy
u(x,y) = Je e (x-x"My-y7). - - OO

«The choice of N here is independent of the chmice of hin

HE @)
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2
2 . du 52u
Vi E s b —s = T(x,Y),
3x Y
.
(x,y) € Ri,j" I € )

u(x,y) = 0,
(x,y) € T, =R, .. . ... .09

1,
Suppose the unique solution, U {x,y), of Eqs. 38
and 39 is some known function. Defining U x, )) to
be identically zero outside R; ., add ¢(x,y) to the

space Hgl(n). For this new SUbSp\C( of §, we get
as our new approximate solution

i, (6y) = %0oy) + 40oy). (40
If ¢{x,y) is the ecxact solution to our original

problem (Eqs. 25 and 26), then from Eq. 36b we
have on I ; that :

i (6y) = w0oy)-
Basecd on the result of Eq. 39, it can be shown that

max  |o(x,y)-0, (x,¥) |
(x)y)ér‘i K
’d

< Ch . (4D)

Because w(x,y) is a bilinear function, then

K R. ..
(-’(:J) € i,3

Vgﬂ(x:y) = 0,
This, combined with Eq. 40 and the definitions of
¥ (x,y) and ¢(x,y), shows that

Ple-vy) = 0, (7)€ Ry

37

i.e. c,—-w1 is harmonic in R; . From the

Maxxmu"l Principle (Petrovsky,1? Page 169), and
inequality (Eq. 41), we have

max l@(X;Y)~Ql(X:Y)]

(e, )em

< Ch|log . (42)

This says that if we know an exact solution to
Eqs. 25 and 26 for the case K(x,y) = 1, and G
= R; ; with boundary [; ., then we may add this
funcion o our spare H 1(z) and significantly
improve our accuracy in the blocl' R;

Let us now apply this result to a proble'u with
wells, but one where the wells are not point
sources bur are distributed over a small rectangle

8 S TR Pi TR R TNV (T NN RN EVEA T 2T NN SRR AT I A L B PRI TR K A T R X BT NI 5 1 SRR B A T N T SN T e PR B O S Gy
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(one could choose this abour 6 in. on a side to
correspond to an actual wellbore). Then, by a
slight modification of some results of Hovanessian 7
if 4¢% is the area of the square with center (xg,yg),
over which O is distribuced, then

L
‘L’(X)y) = 2 Q ¢

fmrt(xo-xi)

(sin (=, ) sin

.-x‘
i+l i

nr(y —yj)
(y -yj)

J+1

‘ mn(x—xi)
(i

is a solution to Egs. 38 and 39 on any homogeneous
mesh block R; : containing a well. Therefore, the

nﬂ(y-yj)

(yj+l-yj)>

.(43)

- ) sin
i+l 71

result of Eq. 42 says that the approximate solution

near the well is at least as accurate as the solution
w(x,y) on the boundary of the mesh block containing

the well. Since mesh blocks are usually quite

large, the boundary is some distance from the well
and the solution there is generally very good.

For the case where we treat the wells as point
sources, Hovanessian’s solution is given by

)
\‘((x,y) =
It2(Xi+l D¢

¥s)

3+ J

m=1 n=1 (( X, )) < " yj)>2

_mrc(xo-xi) sin n:t(yO-yj)

sin
(g 17 (yj+1’yj) «
m{x- X, ) Jt(y—yj) »
sin sin T
z}“l +l-& ) yj+l-—yj
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The solution of Eqs. 48 and 49 is first
approximated by using Galerkin's technique for the
smooth Hermite subspace Hé(n‘\;), where 7y is the
uniform mesh on the unit square with mesh size
by = 1/N+1. The dimension of H&(nN) is N2
Ht)l(ﬁf\") as
we see from Eq. 9 that our solution

Denoting the basis functions of
N2
iwx'(*\’-)’)gi‘il’

is obtained by solving the system

o112
O-—-Ea.j ‘f W o.w_ .tw w_ .dxdy
j=1 J o0 XL X3 Y,1 ¥V,d

11
x -
+J“ ‘f 6xye’ e (xytxty-3)w, (x,y)dxdy,
00 *

l_<_i§1\r2, N 018!
for the unknowns iai*,-'\ii‘ If {sziﬁ:ﬁ is the unique
solution to this system, then letting

e

w. (x = 2, aw.(x
N »Y) 2% J( Y)

we have from Eq. 35 that

>

([0 y) g ooyl € My N> 1
. (52)

where M is a constant, independent of b.

If the integral on the right-hand side of Eq. 51 is
evaluated using a nine-point quadrature scheme
(see Herbold,5 Page 175), then this would be
consistent with Eq. 52 and we should expect 0(h)
convergence. The numerical results  for this
problem are given in Table 1. In this table we
include the quantity v defined as

[EE A
=]og iL lo -—h]i]; s
ey / g<*‘NQ> ~

N2L
U 6 %)

TABLE 1 — SMOOTH HERMITE SUBSPACE Hé(nN)

HU—QNHIOO Computer Time

h Unknowns v (seconds)
1/7 36 3.10 - 1072 — <.6
1/8 49 2.43- 1072 1.84 <.6
/9 64 1.96 - 1072 1.85 1.2
1710 81 1.60 - 1072 1.94 1.8
/1 100 1.33-10°2 197 2.4

RPN YT

RSN TR

AT T SR NY N ARV TR L A D AR R A

where /_)Nl and /)Nz are two successive values of A
The motivation for Eq. 531s the assumption that
15 2 . v
hu(x) - o ()| = c(h,)
h . @ N
N L

for some v and C constant. Then, for two succes-
sive values of b, hy and by_, we have
1 2

: \'111-4'?: H v
By y
L~ L .. (54)
o, (. APy
N, T

and Eq. 53 follows from Eq. 54. In our table, we
try to take enough values of h to anticipate the
value of v.

We sce from Table 1, therefore, that convergence
seems to be 0(hy) in the norm “'HL«:: although we

could only prove O(b‘%) in the |-}l o norm. This
was the case for one-dimensional problems until
Ciarlet? and later Perrin, Price and Vargall
improved the theoretical results. These
improvements are a strong indication of things to
come for two-dimensional problems.

Table 2 shows the results of solving Eqs. 48 and
49 by the usual five-point difference method. In
comparing Tables 1 and 2, we see that the usual
five-point difference locks somewhat
superior; this is due, however, to the fact that
Table 1 displays the maximum error of a continuous
function over the region, while in Table 2 the error
is computed only at the mesh point.

The solution of Egs. 48 and 49 was also
approximated by using Galerkin's technique for
functions of the smooth Hermite subspace Hz(::N)
where my is the same as above. If wy(x,y) ¢ Hglay)
is the approximate solution, then, using Theorem
16 of Birkhoff, Schultz and Varga,l we can deduce

method

|u-% < Mg(hi]), N> 1,

1\1“1,2 -
for some constant M,. In this case a two-
dimensional, 25-point quadrature scheme is
consistent.5 The numerical results are given in
Table 3. The quantities in this table indicate thac
for the subspace H2(my), the accuracy in the rorm

«

TABLE 2 — FIVE-PQINT FINITE DIFFERENCE METHOD

max‘u(ih‘;-v(ih}! Computer Time

_f__ Unknowrns i (seconds)
/5 16 Lit- 1072 <.6
/6 25 7.33- 1073 <.6
1/7 : 36 5.68 - 1073 <.6
1/8 49 4,27 - 1073 <.6
1/9 64 3.42- 1073 .6
/10 81 2,77 - 1073 1.2
/11 100 2.27 - 10-3 1.8

CACTZTY AR PUTRONFEM ENCINVERS JOURNAL
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HH[ . is probably 0hg)- Notice also that the first
parti:xl derivatives seems to coaverge in the norm
H.le like 0(hJ). Morcover, if we compare the
coml;utcr times for a given accuracy for the
Galerkin method applied to the space HS(ITN) to
the times for the usual finite differences of Table
2, we see that a significant time reduction results.

The firal subspace considered was the nonsmooth
space Hé(rr,_;;), where z; ; =1, 1 <i,j <N Thatis,
we add one element to each mesh block R,-'/.. The
clement added to each block, in this case, was
just the bilinear basis element given by Il-(.\'){i(y)
where

2(x-3n)
h

1
3h<x< (it '?') h,

(52 0e),

ti(x) =

(i+ %-)hg_xg(iﬂ)h,

0, otherwise.

The results are given in Table 4. It can be secen
‘that these nonsmooth spaces greatly reduce the
error displayed in Table 1 'whiie increasing this
running time an jmmeasurable amount.

We next considered the problem

aep 8213
2+ .__~2- = Qﬁ (X—XO) (y—yo)’

ax2 2
(x,y) € Gy - - - =00 . (55)
p(x,y) = 05 (x,y) € 3G - . (56)

where now G is the open square (0,2000) x (0,2000)
with boundary dG and xg = Yy = 1,000. We choose
0 = 886.905B0l/K, which is equivalent to 2
reservoir problem with the following properties:

TABLE 3 — SMOOTH HERMITE SUBSPACE HOZ(UN)

Computer

Nomill oo Time

h Unknowns

1/3 16 8.87- 107% —  208- L[ R — 2
1/4 64  2.99-10°% 3.78 875 10-3 3.00 2.4
/s 100 1.33- 1074 3.63  4.86- 10-3 2.64 4.2
176 144 6.67 - 1075 3.53  2.84- 1073 2,94 9.0
v/7 196  3.89- 1075 379 L83 w0-3 296 168
1/8 256 2.29 - 1075 3.94 123 10°3 .86 28.2
79 324 143. 30-5 402  8.63- 1071 302 44d

JUNE, 1969

B T LR 2900 A K >
& TN G WA SR R e AR N e A 0B N RTI4TN

)

jr = .33 ¢p,

k 1.5 md,

Q = 1.0 B/D-fr,
B = 1.5 res bbl/STB.

(2]
Choosing the space Hi(nz), where z; =& ,, 1 <
< N2 and in the ¢ mesh block, which islv the one
containing (xg.yo), we add the single element
v (x,y) given by Eq. 44 as was donc in Eq. 47. The
results of this problem are presented in Figs. 7 and
8 and are compared with the solution using central

!

differences and the exact solution. Notice that the
Galerkin solution is very good near the source for
a very coarse grid (Fig. 7), while the finite
difference solution gives relatively low accuracy
there. These results say that the partition chosen
nced only be as fine as is necessaty to coincide
with the permeability changes, and excellent
accuracy wili be obtained. This problem was also
solved using other subspaces. The experimentation
here was not exhaustive, but it can be said that
other numerical experiments did not give results
comparable to those of the nonsmooth space
selected.
.

CONCLUSIONS

A method of high-order accuracy, based on
Galerkin's technique, is presented for solving
two-dimensional elliptic differential cquations. The
procedure is described in detail and is shown to
have tremendous computational advantages over
finite  difference  techniques, especially for
obtaining pressurcs and pressure gradients around
wells. Although no results are given here for
typical problems of reservoir mechanics, methods
are nonetheless quite general and should extend to
the - coupled systems of elliptic
differential equations of reservoir mechanics.

noclinear

NOMENCLATURE

@ = viscosity

k = permeability

Q = specific production or injection rate
B, = oil formation volume factor

b = mesh spacing

x = horizontal coordinate

y = vertical coordinate

p(x,y) = pressure

H“x"(‘:’l\')x H L Yy (second}_)_

TABLE 4 — NONSMOOTH HERMITE SUBSPACE }1'(1)(:7,_7;)

Computer
‘nl’-““:'NH - T_i'mc;

__h__, Unknowns ' L v (_s_tt_:oil)
/6 7 1.56 - 1072 — <.6
/7 85 116+ 1072 1.92 <.6
1/8 113 8.63- 1073 2.22 <6
1/9 145 6.78 - 1073 2.02 L2
1/10 131 5.56- 1072 1.88 1g
VAR 221 4.47 - 1073 2.68 C 24

W ST P
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160r1 .
EXACT SOLUTION
140t
o NON- SHOOTH
SOLUTION H!(77,2) M
A CENTERED DIFFERENCE 1
APPROXIMAT ION
120 2000 >
h  =2000/s /
7/
7/
100} .
/
+.
/
8o} /
/ Q&KX (Y- Y,)
Vs o] o
7/
Q /-
60} o —X
2000
YeX o
a0l PROFILE
20}
% X 0.2 0.3 0.4 0.5 0.6 0.7 08 09 0

FRACTIONAL DOISTANCE — X/2000

FIG. 7 — COMPARISON OF NONSMOOTH APPROXIMATION WITH{ CENTRAL DIFFERENCE APPROXIMATION.

160
EXACT SOLUTION
NON- SMOOTH
140 °  soLuTioN HY(7,2)
a CENTERED ODIFFERENCE Y
APPROXIMATION {
120 h = 2000713 2000 %
7/
Ve
7
100} e
/7
+
v
8o} i
L7 QS XX-XY-Y,)
7/
7
/
60} —y
0 2000
PROF ILE
a0}
20t
o . . " . " s . ~L o
o o 0.2 03 04 o5 06 0.7 0.8 0.9 o

FRACTIONAL DISTANCE — X /72000

FIG. 8 — COMPARISON OF NONSMOOTI1 APPROXIMATION WITH CENTRAL DIFFERENCE APPROXIMATION.
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SUBSCRIPTS AND SUPERSCRIPTS

k = summation index
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APPENDIX A

Let 7, and iy
axis and let

be partitions of the coordinate

{wt().(’y)}t:ly

be a basis for Ho(v) Then any element w(x,y) ¢
Hé(n) can be written as

N_N
Xy

2 W (X>Y)
£=1 tt

w(x,y)

Let us now consider the case of adding a single
element w; :(x,y),  which satisfies Eqs. 36a and
36b in thc ‘mesh block R;, i= [ l+1] X [y‘,y,,,,l]
Now, any element g(x,y) e Hj (n z), where Zg

= 8,i&,;, 1 <4 t<N., 1 5;,L <Ny, can be
written as
N N
g(x,y) = Z iy (,¥) + Cuy S (3,¥).
s
We now have N, N, + 1 equations and NNy, = 1

unknowns a,, 1 <t <N N, and C. Since the element
(r,y) is zero outs:de the mesh block R; i the
only couplings poss;blc between C and the a, 's 1n
the system of equations would be to ay, a4, kN,
: (71N, .
(See Fxg. 9.) We need only consider one such
coupling, since the argument for the other three is
the same. Let us choose a. From Eg. 13 the
coupling from a to C, U, NN +1 is given by

and aj, N+ 1 where the subscript & =

Doy Fpamy *!
(Xn)’ju) (x|+hyj+l)
Rilj
(1:Yj) { Hl))’j)
a, @y
FI1G. 9

PID £
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Vi1 Fi2

4w W . )dxdy. . (AD
(Wk:xwx)i:J ‘k)y Y;l)J)

Since the basis elements for I'I(}(n) are of the form

t,-(x)ti(y), it follows from Eq. 15a Lhat.wk.x is a
function only of y, and W is a function only of

x; l.e.,

= ..........(A~2)
wk,x gl(y):
= x......‘....(A-3)
iy g,(x)
Using Eqs. A-2 and A-3, Eq. A-1 becomes
Y41 X541
Sk NN +1 e Wi, 3
XYy ¥ X.
J i
*i41 Y541
+ I 82(X) ‘f Wy,i,jdydx
. Y.
J
but
41 i
d.X: . . == O
‘l‘ Wx’i’j(x)y) Wl,:j(x,y)
Xi Xi

(A-4)

because wi'i(x,y) satisfies Eq. 36b. Similarly,

y

J+1
W..zo‘......(A‘S)
j‘y' Y:l:de
J
giving
g N+ - O
Xy
By symmetry,
0,

a. =
NN +1,k
Xy
and so we can solve for the a separately from the
single equation for C. Since the argument is the
same for any basis element w; ; in R; ;, if we had

s such elements we would have a system of N, N,
equations for the a,'s

R S

and a system of r equations for the Cy's

SR RO TR

UTITIH AR TR Y N VS A TS T A N R, AT ST I

814"

BC=g . . .. (A

both of which can be solved separately, If we had
r-basis elements w; ;. in each block” the same
argument applies and we would again have Eq. A-6
to solve for the a, and (z\’x+1)(/\",+1) systems like
Eq. A-7 to solve. For a system with M = N N
+ r(Nx+1)(N),+l) unknowns we do not have to solve
an M x M “system of equations to obtain our
coefficient. Instead, we must solve many smaller
systems, which is computationally much faster.

It should be noted that Eqs. A-4 and A-5 imply
that w, ; and w, ;; are continuous in R; .
However, all that is necessary is that w, ;. and
and W, i be piccewise continuous in Rr’,j and
satisfy Eqs. 36a and 36b.

APPENDIX B

This appendix shows that the M x M macrix A
= (ai,;‘) of Eq. 11 is positive definite. With the
inner product of Eq. 14, we define the norm H-ilp
as

Il = < 5H2

]

1

11
2 2 1/2
+ dx d .
{‘y OI O(WX wy) y}
...... R 0= 55 )

It can be verified that the norm of Eq. B-1 is
equivalent to the Sobolev norm 19

Iy = {177 [0

3+ (o] e

that is, there exists constants C; and C) =1 such
that

Cl“w“l)g < HW“D < Cg“w“]_,g' - (B-3)
If we now define

11, 1/2
lvllg = {fojo (w)“axdy} . - - (B9

it is clear from Eq. B-2 that

lwll, < [l o0 N ¢ 35))
With these definitions it is now easily seen that

-the matrix A is positive definite since, if z = (zl,
.., zM)T is any non-zero vector, then
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With the inequalities of Eq. C-8, we have from

Eq. C-9
N N
2 n(a, -G, )b, .
i:l ,j:l 1}3 1)3 lJJ

< LT T, o)

. (C-10)

But since || ~w,|l, and Hwy— uA/yHO are, from Eq.

B-1 each bounded above by ||@-w||p, which in

tur from Eq. B-3 is bounded above by G, [|w]

then

z

N
~
'..:‘;. ( ¢ 2 ]

j

i

.—&A ) b, . <
1,7 0,7 -

816

20

2C, by Mbil@~wif, , .

. (C-11)

. Thus, combined with the inequality of Eq. C-7, we
can deduce the desired result (compare Eq. 33) that

H'Vm’ﬂl,g < C5h’

for some constant Cy, independent of h.

SOCIETY OF PETROLEUM

SRR L s T el Pl .5 R BT s RE PO LIPS RS T SIL AF T an aals 3t At X g 8 L W RASEE AR LN 05 UG AOREAY JUMT: Tt AT vt atan i 0 ek -5 Wioh XU LIPS LY ST SR T TN SE St AR o e Lo At

. (C-12)

¥

ENGINEXRS JOURNAL

A YA TN p O M e




815

A 2 et R 5k A R L G Y BT

1

T Ll 2
z Az = [(z (x,
fofo L (5Y)

+ (2,(5,v)) Jax ay
= llzilp > 53
2 11 2
>c [ [ @Gy))ex ay > 0
00
where
z(x,y) = 'E z,w, (x,¥).

i=1

Because of this, the system of equations (Eq. 11)
has a unique solution a.

APPENDIX C

In this appendix, we derive the inequality of Eq.
33. Recalling from Eqs. 35 and 36 that

N
;{(x:y) =2 L a

X (C-1)
i=1 j=1 “,3",30)
where az i= ¢(x‘ y’) we define the numbers b
through
11 _
j'f/c(x,y)[wx.i'i(x,y)wx(x,y)
00
yll(xy)w (x,y)1dx dy
11
+ [ f /(x,y)wi'j(x,y)dxdy = b; 1,
00
L<if<Ne oo it o . (CD

Subtracting Egs. 29 and 28 from Eqs C-2 gives,
tespectively,

11 _
(_)f g k{x,y) [wx' I..I.(wx-—d)x) L A
—-¢},)]dxdy = bii' 1 <ij<N,. ... (C3)
and
11 R _
({g k(x,y)[wx'i'i(ﬂ)x—wx) + w, i'f(w
- lf)y)]dxdy = bi'i, S

Multiplying Eqs. C-3 and C-4 by &;; — a;; and

summing over i and j gives

JUNE, 1969
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11 )
g [ k(x,y)[zb —g') )(ﬁx“u/x) + (sz—w,’;y)(z}?y

N
~ul (1)&67’)/ z 2 —-a ])bi,," (C‘S)
=1 7:1
and
13 ~ R
ffk(x,y)[(ﬂ/x-wx) + (E/y—-u»y)z](!’::;n’y -
N N
g g G, ~ay )by oo (CO)

Since k(x,y) > ky > 0 in G from Eq. 27, it follows
from Eq. C-6 that

S 3 G,

i=1 j=1

2 kzgél(w )

~ =2
+ (uy w},) $dx dy,

and with the definition of the norm |- ||1 5 in Eq.
B-2, we can express this inequality from Eq B-3 as
N
~ ~ 2~ ~n2
21 = (@ ;-a; ;)b ;2 kyCrla-wllf
1= j=

(C-7)

We now bound the double sum

N N

’ot -, L)b. .
l?l le ( 1,J l;J) 1,J

from above. Assuming that ¢, &yy and &,y are

square-integrable on G; i.e., the integrals

11 5 11 5 1 l
J B, [ [ o, [ ] of

are all bounded; then since @(x,y) is the Ho( =)-
interpolation of ¢(x) it follows (Birkhoff, Schultz
and Varga,! Thecorem 6) that chere is a constant A,
independent of &, such that

HWX~CQXH < Mh and Hw - *‘O < Mh,
(C-8)
where ||-|l, is defined in Eq. B-4. With the

expression of Eq. C-5, we can bound &(x,y) above

by ky > 0 from Eq. 27, and then by applving

Schwarz’s inequality Eq. C-5 yields
ke, & -z -w |+ i -o tl, -

N
— s ’ .0)
> (ai". ai.i)ai.i' . (C-M
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