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Nested bounds for the spectral radius of a matrix are of great importance in
many problems of approximately solving linear systems. Specifically, for the
class of nonnegative matrices, these bounds are used to obtain acceleration para-
meters for iterative methods, as shown in {23, Ch. 9]. The importance of the
class of nonnegative matrices has been recently again emphasized by Kulisch [9]
in his theory of nonnegative majorants for the approximate solution of linear
systems with complex matrices.

A well known principle for obtaining nested bounds for the spectral radius
of a nonnegative irreducible matrix is the Collatz ““Quotientensatz” [2, 3] (see
also [23, p. 32]). This principle has been generalized by many authors in various
directions [1, 5, 14].

Another principle for obtaining nested bounds for the spectral radius is
Yamamoto’s principle [24]. Some generalizations of Yamamoto’s principle are
contained in [12].

Both these above mentioned principles have been used for obtaining nested
bounds for the spectral radius of the polynomial eigenvalue problem

m—1
2z A, x=I"Ayx,
=0

where m is a positive integer and 4, ..., 4,, are linear transformations on a
given Banach space [4, 13].

The methods of Collatz and Yamamoto have been combined recently by Hall
and Spanier [6], and a new hybrid method has been derived for obtaining nested
bounds for the spectral radius of a certain class of matrices which contains as
a subclass the class of nonnegative matrices. Hall and Spanier have shown con-
nections between all the mentioned methods, and they also have discussed their
advantages and disadvantages.

The aim of this paper is on one hand to show that the methods of Collatz,
Yamamoto, and Hall-Spanier are applicable also in infinite dimensional Banach
spaces, and on the other hand to unify the methods of proof. In addition, new
results in finite-dimensional cases are also obtained.

§ 1. Definitions and Notations

Let Y be a real Banach space, and let X be the complex extension of the
space Y, ie., 2€X iff 2=x 41y where x, yeY and 72=—1. Denoting the norm
in the space Y by ||y, then X can be normed by defining

lz]x = sup [cos@-x+sinf-y|y.
0=0=2n
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Further, let Y’ denote the dual space of continu
and let [Y] denote the space of bounded linear or
The norms in Y’ and [Y] are defined as usual by
'l =sup{ly'®)|: [yly =1},  where

17wy = sup{|T¥|y: ly|ly =1}, where v

With these definitions, X, Y’, and [Y] are also Ban

We assume that there exists a (closed) cone! K in
ie., for every x€Y, there exist u, vé K such that
there exists a § > 0 such that | +v 0 |u|y for all
(cf. [7]). We then write that x =y or equivalently
we denote the dual cone by K, i.e.,

K ={x'eY": {x,x'>2=0 forall

where <{x, "> denotes the number x'(x).

A subset H'¢K' is called K-fotal [14] iff (%, x
that xeK. The fact that K-total sets exist follows f
the extension of a positive linear functional from a s
Thus, K’ is itself a K-total set.

An operator T€[Y] can be extended to an ope
by the formula Ta=Tx+iTy, where z=x +1iyeJ
the space of all bounded linear operators mapping X in

If Te[X], then ¢(T) denotes its spectrum, i.e.,
the set of all complex numbers 4 for which the re
(AI —T)is an element of [X], and » (7)) further des

7(T) =sup{|A|: Aea(T)}
By definition, we put ¢(7T) =o(T) and 7(7) =7(T) i
An operator T€[X] or Te€[Y]is said to have pro
A€o (T) and | 4| =r(T), it follows that A is an iso
operator R(A, T)=(AI —T)or R(2,T)=(1—T)
notes the identity operator. This implies that there
A in o(T) with |A| =7(T). The restriction to oper
motivated by the fact that such operators occur freq
An operator T€[Y] is called positive (or more
x€K implies Tx€K, ie., T: K—K. A positive ope
nonsupporting [17] iff, for every pair v€K, x'c¢ K’ w
0 denotes the zero vectors in both Y and Y}, the
p=2p(x, ') such that <T?x, x'>==0. A positive o
called nonsupporting [17] iff, for every pair x€ K, x
there exists a positive integer p = p (x, #") such that
1 A nonempty subset K<Y is a cone iff (i) for an;

scalars « =0 and =0, (ii) K is closed, and (iii) if xe K ¢
0 is the zero element of Y.




ous linear functionals on Y,
erators mapping Y into Y.

€Y, and yy'eY’;
€Y, TelY].

ach spaces.

Y which is both reproducing,
x=u—v, and normal, i.e.,
u, veK with |u]y = |v]y =1
y=x iff (x —y)eK. Next,

reK},

> =0 for all #'€H’ implies
om Krein’s theorem [8] on
ubspace to the whole space.

rator 7 mapping X into X
(. Evidently, if [X] denotes
to X, thenT e[ X]if Te[Y].
o(T) is the complement of
solvent operator R(4, T) =
10tes its spectral radius, i.e.,

f TelY].

erty S iff, from the relations
lated pole of the resolvent
-1, respectively, where I de-
are only a finite number of
ators having property S is
uently in practice (cf. [23]).
srecisely K-positive) [8] iff
rator T€[Y] is called semi-
ith #==0 and %' ==0 (where
re exists a positive integer
perator 7€[Y] is similarly
€K' with x =0 and x' ==0,
{T"x, x> 0 for all n=p.

ru, veK, aut+pfveK for all
nd —x e K, then x=0, where
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We remark that in real m-dimensional Euclidean space E™ with the cone K
consisting of all vectors with nonnegative components, the class of semi-non-
supporting operators is identical with the class of nonnegative irreducible m Xm
matrices, and the class of nonsupporting operators is similarly identical with
the set of all primitive nonnegative irreducible m X matrices.

An element x€ K is called quasi-interior iff {x, "> =0 for all x’€ K’ with x’ == 0.

For x a fixed vector in Y with x50, let T€[Y], and let H' be any K-total
set. If R denotes the real numbers, we then define

(1.4) 7 (T)=7,(T,H')=sup{peR: (T'x,x')=0p<x «) forall x'eH'},
. (1) =7*(T,H") =inf{peR: {(Tx x> =<p<{x, «') forall ’e¢H'},
where 7, (1) =—ocoif (x, ') =0and (T x, ' ><<0, and »*(T) =+ oo if (&, 4> =0
and (T x, "> >0.
With these functionals, we can further define the following functionals if
TPx4+0forall p=0,1,2,...:

y@®) =y, % T.H)=rp,(T); @)=L, % T,H)=r""(T),

-2) $=0,1,2,....
(13) S(p)=0(p, x, T, H') = [r,(T*7)]F""

Ap) = A(p, x, T, H') = [y*(T7) ]2, p=1,2,...,
(1.4) n(p)=np, % T,H)= [Vri::zx(Tz”'z)P"’”

H(p)=Hp,x, T,H')=[/"" *(T"?) " p=2,3,...,

where (1) =7, (T), and H(1) =+*(T).

We remark that the quantities y(p), I'(p) reduce to the familiar Collatz
bounds [2], §(p), 4(p) to the Yamamoto bounds [24], and % (p), H(p) to the
Hall and Spanier hybrid bounds [6] for the spectral radius 7(7) of a nonnegative
irreducible # x# matrix T, when the cone K is the set of all nonnegative vectors,
the K-total set H' is chosen to be {¢;}7_; where if yv= (v, ¥,, ..., %,) is any
vector in E”, then (y,¢')>=y;, 1=j=n, and x is any vector with positive
components. As indicated in (1.2)—(1.4), these bounds in general depend upon
the particular choice of ». However, the dependence on H' is only formal, because

7,(T) =sup{peR: (T'x—px)eK},
7"(T) =inf{r€R: (v4 — T x)€K}

and 7, (1) = —oo, #*(I) = + oo, if the corresponding sets over which the sup
and inf are taken are empty respectively. ‘

We further remark that the initial restriction to real Banach spaces is not
essential, and can be removed by using results of Schaefer [19].

§ 2. Preliminary Results

In §§3—4, some relations between the functionals y(p), I'(p), 6(p), A(p),
n(p), and H(p) will be developed for certain classes of linear operators. The
purpose of this section is to formulate some preliminary results which will be
useful in establishing these relations.

4%
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Lemma 1. Let T€[Y], let xe K with x¥==0, and
are both finite. Then

(2.1) Txzr,(T)x and Tax=<r%
Hence, if 7, (1) =20, then T'xeK, and if »*(T) <0, tl
Proof. Since 7,(T) is finite, we have from (1.1)
{(Tx—px, x>=0 forall
But since H' is a K-total subset of K’, then (T x-
the same is evidently true for 7, (7)), i.e., (T x—7,(T) x
which proves the first inequality of (2.1). If »,(T) =

remainder of the lemma follows similarly. Q.E.D.

Lemma 2. Let B and 7, both in (Y], be positive
Then, for any x€K with Bx ==0 such that »*(T) is {

(22) (1) =7, (T) and +2%(T)

Proof. From Lemma 1, Tx=7,(T)x for any x¢
positive operator B and using the commutativity of

ITBx=BTxzr,(T)Bx

Consequently, <T'Bx, '>=7r,(T){Bx, "> for all «
inequality of (2.2) then follows. The second inequalit
lished. Q.E.D.

The following theorem contains the basic prope
7(T) of the operator T for the class of operators chose
we need some facts concerning spectral properties of
operator (cf. [22, p. 305]).

Let 4, be any isolated singularity of the resolvent of
where T€[X] or T€[Y]. Then,

(2.3) R(L,T)= 3 A;s(2 — )+ 2B
=0 =

is a Laurent expansion of R(4, 7) in a neighborho
A yy B p1€[X] for all £=0, and that

7

1 s
(24) Bjy=gos fR(A, T)dh, B, p=(T—1
Ci

where Cjz{l: M,——«lil =0;, 0;’>0} is such that if K
then K;no(T) ={A;}.

If  is any polynomial, then

HD) =5

C

— 5 [*Y )

= k-1




ssume that 7, (7) and »*(7)

T)x.

en — 7 x€K.

or any p<<7.(7T) that
'eH'.

-pox)€K. Since K is closed,
€K, and hence T x=7,(7) x,
0, then clearly Txe K. The

> operators with TB=BT.
inite,
<7 (T).

K with x==0. Applying the
B and T gives

"eH’, from which the first
y of (2.2) is similarly estab-

rties of the spectral radius
. To formulate this theorem,
the corresponding resolvent

erator R(A, T) = (Al —T)7,

p(A—2)7F

od of A;. It is known that

E{l lﬂ.—'ﬂj] g@,’; 97>0}'

(1) R, T d2,
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where C ={4: |A| =7(T) +¢}, and C’ is any closed Jordan curve which contains
in its interior the remaining parts of the spectrum ¢ (7)) — {A;}. In particular, since
T has property S, let Ay, ..., A€0(T) denote the points of |z| =7 (T) which are
poles of R(4, T). Then,

S

&% (B—1) (2.
2.5 1D = 2 3 L Bt 5 [i0 RO D as,

j=1 k=1

where C"'={A:|A]|=¢"} is such that if L”={1:|1|=<¢"}, then L"ro(T)=
o(T) —{4, ..., &} The representation of (2.5) will be used later in §§3 and 5.

If Te[X] has property S, let A,€0(7) denote the pole of order g;of R(4, T)
lying on the circumference |z| =7(7) >0 forj=1, 2, ..., s. Then we have [11] that
A lg=1) n

i 1
(gi-—-j)’ Bf;gi n

(2.6) lim l

n—> 00

h8t1 ,'{."k Tk =0,
=1 ! ]

which is written as

Z;‘(gi“l) g 2 !
.6 B, lim — ) k~&+l)-kT
(2.6") im - 1;1

(gi—1)1 Thea T 100

for all 4; for which the corresponding multiplicity g; satisfies gi=g for £=
1,2,..., 8.

In particular, if T'€[Y] is a positive operator with property S and 7(T) >0,
then it is known from Schaefer’s extension [20] of the Pringsheim Theorem that
the eigenvalue A=7(7) has maximal multiplicity, say g, with respect to all
singularities of R (4, T) on' || =#(T). Thus, all the operators

il
S
=

s > Bmet L [y (T)]~F T,

1

[

I3
are positive, and hence so is the limit as # tends to infinity. Evidently, from (2.6),

(2.7)
where B; , will always denote the member of the spectral decomposition cor-
responding to the eigenvalue 7(7) having maximum multiplicity g. Since the
operator S commutes with 7 for every », we remark that the same is also
true for B, , from (2.6). '

In the special case that T'€[Y] is a positive operator with property S but
with #(T) =0, then since T has property S, R (4, T) has a finite Neumann series
development:

I T T8—1
R(2, T)=- + 55 + -+ 5y for any i+0.
Thus, from the expansions of (2.3), it follows that By =1, and

(2.7) By =T (r(T)=0),

which is also a positive operator which commutes with 7.
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If g; is the multiplicity of 4; as a pole of R (4,
B; ;+1=0, where 0 denotes the zero operator, for
B, ,x for any x€K is either the zero vector, or ar
to the eigenvalue 4;. In particular, B, ,x for x€K,
an eigenvector of T corresponding to the spectral r

Theorem 2.1. Let T€[Y] be a positive operator
(2.8) max{r,(T): €K and B, ,x =0} = min{r*(7)
=7r(T).
Proof. We consider the case where 7 (1) >0, the
being similar. Since T is a positive operator with pr

in (2.7), is a positive operator which commutes w
Lemma 2 for any x€K with B, ,x =0, such that »*(

(2.9) y (1) = yP29*(T) =7 (T) =g, ,(

Consequently,
(2.9) inf{r*(T): xeK and B, ,x 0} =7(T) =
However, for the particular choice y =B, ,x =0 in
7(T) =r,(T), which, together with (2.9'), establishes
For Te[Y] a positive operator with property
x€K with B, ,==0 such that »*(T) is finite, we have
(2.10) 0=Zr (1) =v(T) =" (T
If #(T) >0 and B; ,x==0, then since 7" and B, , co
By ((T"%) = T"(By, %) = (r(T))" By, %
Thus, T"x ==0 for all # =1, and applying Lemma 2
2141) o0Zr, (D= Zrpm, (M= =r(1)=---

for all w =1. If #(T') =0, then since B, ,= T¢ ! from |
for any x€K and any & =g. It is then convenient to
for all =g —1. With this definition, the inequalitie
this case 7(T) =0 as well.

We conclude this section with a sequence of len
the following sections.

Lemma 3. Let T€[Y] be a positive operator. T

and
(Tx,:

(2.13) #*(T) = sup { LT

{x, %

where 7*(T) =+ o0 if (%, x'>=0and {(T'x, x'>>0




), it follows from (2.3) that
all k=g;. In other words,
1 eigenvector corresponding
is either the zero vector or
dius 7 (7).

aving property S. Then,
: x€K and B, ,x =40}

- proof in the case 7 (1) =0
operty S, then B, ,, defined
th 7. Thus, we have from
T) is finite,

M) =7,(T).

. (T): €K and B ,x +0}.

, (2.9) gives us that »*(T) =
(2.8). Q.E.D.

, we remark that for every
> that

mmute,

y forall #=1.

gives

<1 3(T) < -+ < 7*(T)
2.7'),it follows that T*x =0

define 7%, (T) =0 =rT"*(T)
s of (2.41) become valid for

mas which will be useful in

en, for any x =0 in K,

{x,%x"> = O},

for some x'€H'.
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Proof. Define

g=int{<TEZ2:

s L €H’ with {(x, "> =+ O}.
Then, since T is a positive operator and x€K, we evidently have
Tx, x> =Zp<x, %>

for all '€ H'. Hence, from (1.1), o <7,(T). If o<<r,(T), then, from the definition
of p, there would exist at least one '€ H' with {x, #'> =0 such that

(T, &5<r,(T) {x, &'

But this contradicts the fact (cf. Lemma 1) that 7, (T) {x, ¥’> <<(Tx, x’) for
all #'€ H’'. The remainder of this lemma follows similarly. Q.E.D.

Lemma 4. Let T€[Y] be a positive operator. Let x€K, x==0. Then,
(2.14) 7, (1) =r(T).

If #(T) is an isolated singularity of the resolvent operator R (4, T), x€K is
such that
(2.15) By ,x+0, B, ,%¥=0

for some positive integer g, where B, ;, By , ... are defined in (2.4) (see also (2.7)),
and if

(2.16) Jim [y, T"% — By j%|x =0

for some sequence {y,}»>; for which

o Yn
(2.17) nll)rrgo o~ =7(T),
then

(2.18) (1) =7 (1)
for n=0,1,....

Proof. If . (T) >»(T), then

1 1 = —k Rk
(I = (D) T) = kZo (7’x(T)) r
is a positive operator, and hence, according to Lemma 1,

1 1
—E= 1) = 72

from which it follows that x =0, a contradiction proving (2.14).

5 I (Tx—r(T)x) 20,

For any x'€H’ for which {I"x, #’> >0, we have from Lemma 3

< Tn+1 X, x’>

1,T"’x(T) z <Tnx’ x,>

Choose &> 0 arbitrarily. The first assumption in (2.15) guarantees the existence
of an element ¥’€¢H’ for which {By, %, &'y =0. According to the assumptions
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of (2.16) and (2.17),
(Tn+1;
(Trx, %7

because (B ,, ') =0 implies that (7", ') >0
Summarizing, we obtain

7T”x(T) b

Since ¢>0 was arbitrary, (2.18) then follows from

1,Tﬂ~1x<T) > 7,T"x(T) ,
which is a consequence of the relation
P(Tx=Tx

which follows from Lemma 1 if #*(7") << co. For #7"#
there is nothing to prove in (2.18). Q.E.D.

Remark. Condition (2.17) is fulfilled with

g—1)! g
yu= E (1))

if #(T) is an isolated dominant eigenvalue of 7. (S

Lemma 5. Let T€[Y] be a positive operator wi
isolated singularity of R(4, T), and let {x,}52,€K a

(2.19) n1~1Pclo “x“ —B,, x|y =0,

and the relations
(2.20) Xy =0 By x40
hold for » sufficiently large with 0<<w << -+ o0, @ inc

(2.21) 73’7; (T) g 7":7;-{—1 (I‘) ’
(221) P (T) ()
for all » =1.
Then,
(2.22) lim 7, (T)= lim #"(T) =

n—> 00 n—> 00
Proof. From the assumption (2.21) of monotonis
o= Jim, 7. (D)

exists, and, from (2.14) of Lemma 4,

(2.23)




for all » sufficiently large.

) —e.

the fact that

(T) for which #T*#(T) = o0

e [10] and [11].)

th 7(7)>0. Let »(I) be an
nd x be such that

lependent of #. Moreover, let

r(T).

ity, it follows that the limit
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We shall prove that ¢ =# (7). For every &>0, there exists an element x,€H’
such that

(2.24) (T %y, %> < @+ &) <%y, %>

for all n sufficiently large; otherwise, (T x,, "> = (0 +¢) {«,, "> would hold
for all x'€¢H’. But then, it would follow that 7, (1) = +¢, a contradiction. It
follows from (2.24) that (x,,, x;> > 0, and consequently from (2.20), (B, , %, %, ==0.
But then, using (2.19),

lim <EFmde oy —p(T),

n—>00 <xnx X;> T BLgx
and thus, to every g > 0 there exists a positive integer N such that

KT %y, %)
<xn: X’s>

for n > N. According to (2.24), we obtain

>7(T)—¢

e+e>7(T)—g

and, since £>0 and ¢ >0 were arbitrary, #(7T) =p. We have thus proved the
first part of (2.22). The remaining part can be proved similarly using the fact
that (2.19) and (2.21") guarantee, as in the proof of Lemma 4 the validity of the
relation

7" (T) =7(T)
forallw=1. Q.E.D.

Remark. It is easy to see that Lemma 5 fails in general if (2.20) does not
hold, as the following example shows. Let Y be two-dimensional Euclidean
space E2, let K be the cone of vectors with nonnegative components, let H'=

{x1=1, 0), %3=1(0, 1)}, and let
T % 0
0 p
with 0<<a<Cf. Defining
x”:[””}, n=1, xzm,
1 1

we find that g=1 and B, ;¥ = (1) = lim x,. Moreover, 7, (T) =« and7*(T)=f

n— 00

=7(T) for all n=1. Thus, (2.19), (2.21), and (2.21') are all satisfied, while (2.20)
is not, and it is clear that the conclusion (2.22) of Lemma 5 fails in this case.

§ 3. Convergence Theorems
In this section, we shall give some conditions which guarantee the convergence
of the sequences defined in (1.2)—(1.4) to the spectral radius #(7) of a positive
operator Te[Y].

Theorem 3.1. Let T€[Y] be a positive operator with property S. Let x€K
be such that B, ,x=0, where B, , is defined in (2.7) or (2.7'), and such that
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7*(T) is finite. Then,

(3-3)

Proof. According to our definitions, the inequalits
in the trivial case when 7(7)=0. To prove any
(3.1)—(3.3) in the nontrivial case, it suffices to p
left, ie., for example 7 (p —1) <7 (p), since the p
equalities are similar.

Thaty (p —1) <7 (p), follows directly from (2.11).
consider the positive operator 727, Then, from

By %0,
7 (TP x < TPy,

Applying the operator T2 results in

7 (TP T2 5 < T2 4
from which it follows that
[ (T2 20 < T 5,

Consequently, (727 x, x> = [r, (T2*)12<{x, &)

S(p—1).

Next, for the positive operator T2, Lemma 1 ap
gives

T¥7 g = p g (T2 T2

Applying the operator 72~ further results in

9P .~ rop~2 -1 —2
T2 5 Zypr-o (TP ) T2 TP 5 = [rpee-2,

from which it follows that
[ryar2 (T% "2)]2 S a1, (T

Consequently, % (p) <# (p +1).

It remains to prove that y(p), 6(p), and 7 (p)
From (2.11), we know this is true for ¢ (p). For d(
(2.10) that

8(p) = [ (T* )T = [ (T%7) ]
and
1/(p) = [rrar=2, (T* 7)< [ (7%

which completes the proof. Q.E.D.




es of (3.1)—(3.3) are obvious
f the sets of inequalities of
ove the inequalities on the
roofs for the remaining in-

To prove that 6 (p—1) <4 (p),
emma 1, for any x€K with

11 x’€ H', and hence

—1)]#*", and hence d(p) =
olied to the vector T2 xe K

2
X.

(TR T,

=7

are lower bounds for » (7).
p) and 7 (p), we have from

= __ 7 (T) ,

)= (),
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The next result gives the convergence of the sequences {y (p)}52,, {6 (p)}52,,
etc. to 7(7) in the dominant case for a class of positive operators which includes
operators whose spectral radius is a pole of R (4, T), i.e., operators with property S.

Theorem 3.2. Let T be a positive operator with 7(7) >0 such that »(T) is
a dominant isolated eigenvalue. Suppose that x€K is such that (2.15) holds. Then
we have

(3.4) Jim oy (p) = lim I'(p) =7 (T),
3:5) Jlim 6(¢) = lim A(p) =7(T),
and
(3.6) Jim 7 ($) = lim H(p) =7(T).
Proof. With fn(l)E%—g’*'l(y(g,)*)n and the hypothesis that B, ,,,x=0, it

follows from (2.5) that

& {0 ((T 1
() x = kzjl _’f@@:(q()f))gl, L +2m.( ffn(,z) R, T) dz)x,
- &
where C'= {4: | A] = " <<#(T)} is such that it contains in its interior ¢ (T) — {r (T)}.
Regrouping the terms of f,(T), we write f,(T) x as

(e—1) (4 (T
@ a=H O B oy

where U,, an element of [X], is given by

=2 ) B SL (L RG T) 22

k=1

for g>1. Since |R(A, T)|x; =K on C’, it follows that the integral term of U,
’7 n+ >

is bounded in the [X]-norm by %}%)7%?_—1, which tends to zero as # — co. From

the definition of f, (), the same is true for the remaining terms of U,, and thus,

lim |U, [ x;=0. Hence,
Y —npn 7 (T)]78+2
n1—1—>nolo% (D) " T"x= =1
Using the fact that #zu,(T) <7741, (T) <#(T) for all #=1 (Lemmas 2 and 4),
then an application of Lemma 5 gives
lim 77, (T) =7(T).

From this, (3.4) follows. To prove (3.5) and (3.6), we know that
r(T) =D, (=12, ...,
and using the established result of (3.4), then (3.5) and (3.6) follow. Q.E.D.

By x.

Remark. It is obvious that the assumptions on x€K such that By x=+0
while By .., x =0, are fulfilled if (T is a pole of the resolvent operator R (4, T)
of order g, since then B, ,=0 for all =g -+1.
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Theorem 3.3. Let T€[Y] be a positive operator h
%€K be a vector for which »*(T) << - oo and for whic

(3.7) v'=7,(B ) >0 and 7' =r*(B,,

Then, (3.1)—(3.3) and (3.5) —(3.6) are valid.

Proof. Since B ,x==0 from (3.7) and »*(T) <<+
to (3.3) are valid from Theorem 3.1. Next, by virtue of
of (3.7) are equivalent to the existence of positive n
for which

(3.7") vx= B ,x and By ,x=72

Hence, as T is a positive operator which commutes
(3.7') that

(T ¥ {B. x
(3.8) T[:xg(i(f)) B, ,» and rr(i(f:%{j}ik—gﬁ;

From the second inequality of (3.8) with /=271 a
(3.7"), we have

—1 PN
, —1 "~ y(T))2P -~ [ 7
(T x, 4'> = *(7(77))“—»«« (By g% %'y ==

for all x’€H’. Thus,

Similarly,

From these inequalities, (3.5) follows. Further, the s

e (1) 2 () ()

\ T

Vrar=2, ( T

from which (3.6) follows. Q.E.D.

We now give some examples which illustrate the
first remark that if T€[Y] is a positive semi-nonsu
property S, then it is known [17] that g=1, i.e., B, ,is
of the spectral decomposition corresponding to the ei
maximum multiplicity unity. Moreover, if ¥€K is no
interior [14].

Example 1. Let Y= R" be real Euclidean space, :
all elements in R™ with nonnegative components. T
interior elements of K is simply the set of vectors in R”
it follows that if x and y are quasi-interior, there exist co
such that (cf. (3.7'))

PXSYSTA.




aving property S, and let
1

)<+ .

o, the inequalities of (3.1)
' Lemma 1, the hypotheses
imbers ¥ >0 and 7<C 400

.

with B, ,, we have from

forall /=0,1,2,....

nd the first inequality of

7 (D)) x, 27

me argument shows that

esult of Theorem 3.3. We
pporting operator having
the only nonzero member
genvalue 7 (7)) >0 having
zero, then B, , x is quasi-

nd let K be the cone of
hen, as the set of quasi-
with positive components,
nstantsy >0 and 1<< 4+ oo
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Consequently, if 7€[Y] is any positive semi-nonsupporting operator having
property S, i.e., T is a nonnegative irreducible m X m matrix, and if » is quasi-
interior, then the inequalities of (3.7) hold. Thus, (3.1)—(3.3) and (3.5)—(3.6)
are valid. In particular, if T is a ¢yclic irreducible nonnegative matrix, we deduce
as in [6] and [24] that the methods of Yamamoto and Hall and Spanier are
necessarily convergent for any initial vector x with positive components. Further-
more, Theorem 3.3 gives conditions ((3.7) or (3. 7')) on the initial vector ¥ which
ensure the convergence of the indicated methods when T is a nonnegative reducible
matrix. In this sense, Theorem 3.3 gives new information in finite-dimensional
cases.

Example 2, Let Y=C°[0, 1] be the Banach space of all real-valued continuous
functions on {0, 1], with the uniform norm, and let K be the cone of all con-
tinuous nonnegative functions on [0, 1]. Clearly, any positive function in X is
quasi-interior. Then, for each pair of positive functions x and y in K, there
exist constant >0 and << oo such that

axEy=fx.

Consequently, if T€[Y] is any positive semi-nonsupporting operator having prop-
erty S, and if x is any positive function in K, the inequalities of (3.7’) hold, and
thus the results of (3.1)—(3.3) and (3.5) —(3.6) are again valid.

Example 3. Let Y=L,[0, 1] be the Hilbert space of equivalence classes of
all Lebesgue square integrable functions on [0, 1], and let K be the cone of equiv-
alence classes of functions of Y which are nonnegative almost everywhere on
[0, 1]. Suppose that T€[Y] is a positive semi-nonsupporting operator having
property S such that for any quasi-interior element y, there exists a positive
integer #(y) =7 and a positive real number «(y) =« such that

(3.9) we<T'y, where e(s)=1 forall se[0,1].

Furthermore, for every y€Y, assume that there is a positive integer # such that
T™y is a bounded function almost everywhere on [0, 1]. Then, we assert that
constants » >0 and 7<C oo exist such that (cf. (3.7'))

(3.10) ve= B e=ve.

To show this, the hypothesis that 7" is a positive semi-nonsupporting operator
coupled with the remark following the proof of Theorem 3.3 gives us that B, ; x
is quasi-interior if x€K is nonzero. Thus, it follows from (3.9) with y set equal
to B, ,e that

we < T' (B e)= (r(T)) By e,
and hence

iy =B

which gives the first inequality of (3.10).

On the other hand, by hypothesis, there is a positive integer m for which
T™B, ;e is a bounded function almost everywhere on [0, 1], and hence

T"B,e=ae
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with ¢ < +4c0. But, 7" B, ; = [#(T)]" B; ;, and hence t

which gives the second inequality of (3.10). Thus, fro
of (3.1)—(3.3) and (3.5) —(3.6) are again valid.

Corollary 3.1. Let Y be a Banach lattice, and let
operator whose spectral radius #(7) is a pole of the
Let x be any element of the cone K such that 7,(
Then, (3.1) —(3.4) and (3.5) —(3.6) are valid.

Proof. A well known conjecture of Schaefer [21],
Niiro and Sawashima [16], says that if #(7T) is a pc
semi-nonsupporting, then all singularities of R (A, T)
| 2| =7(T) are simple poles. Thus, 7" has property S a
3.1 follows from Theorem 3.3. Q.E.D.

Corollary 3.2, If T is a nonsupporting operator ha
is an arbitrary element of K, then (3.1) —(3.6) hold.

Proof. The relations (3.1) —(3.6) are direct conseq
3.2, the assumptions of which are fulfilled according t«

Remark. It is casy to see that the strongly K-pos
absolutely K-positive operators [15] are nonsupportin
interior operators [21] are semi-nonsupporting. It can
operators [7, p. 60] can be treated as nonsupporting
cone TK in the space ¥;=TK —TK generated b
Also, the strongly K-positive, absolutely K-positive a
in finite-dimensional spaces, with K being the set of
components, essentially coincide with primitive irredu
and quasi-interior or semi-nonsupporting operators cor
irreducible nonnegative matrices, the #,-positive ma
ducible.

§ 4. Comparison Theorems

In the case that two of the methods discussed i

computing upper and lower bounds for 7 (7) are conve

is which converges more rapidly. A partial answer to
in the following theorems.

Theorem 4.1. Let T€[Y], not necessarily positive
that #*(T') <<+ oo, and assume that
(41)  0=y@B)=y(p+1) and Ip+1)=
Then,
(4.2) P (@) =n(p)
Thus, if Plim y(p)=lm I'(p) =»(T), then

p—>0

(4.3) plimjy () :p]il}lf[ (p)=r(T




e above inequality becomes

m Theorem 3.3, the results

[" be a semi-nonsupporting
esolvent operator R (4, 7).
By 1) >0 and 7" (B, ;) < co.

affirmatively answered by
le of R(A, T), where T is
lying on the circumference
1d the validity of Corollary

ving property S and x==0

ences of Theorems 3.1 and
) Sawashima’s theory [17].

tive operators [8] and the
g [17], and that the quasi-
be proved that #,-positive
yperators, according to the
v differences of x, yeT K.
1d nonsupporting operators
~vectors with nonnegative
cible nonnegative matrices,
respond in general to cyclic
trices being in general re-

| the previous sections for
gent, the obvious question
this question will be given

, let xe K with »==0 such
forall p=o0.

?) forall p=2.
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Proof. 1t again suffices to consider only the first inequality of (4.2). From the
definitions of (1.1) and (1.2), it follows that (T'*lx, x') =y (£) (T'w, x'> for
all #’€eH’, for any nonnegative integer ¢. Since the y (p)’s are all nonnegative
from (4.1), we can take products over £, giving

(TP, 25 = (H y (2P +k)) (T#%y, 'S forall »eH,
f=0
where v =27"% —1. Thus, from the definitions of (1.1) and (1.4), we have

()" Ekljg TR = (y (20

the last inequality following from the monotonicity assumption of (4.1). Thus,

we have n(p) =y (2077,

the desired inequality of (4.2). The result of (4.3) is then an obvious consequence
of (4.2). Q.E.D.

Theorem 4.2. Let T€[Y ], not necessarily positive, be such that 7% is a positive
operator for some nonnegative integer g, and let x€K be such that 7% x==0
for all 2=¢. Then,

(4.4) 0(p—1)=<n(p) and H(p)=A(p—1) forall p=gqg-L2.
Proof. To establish the first inequality of (4.4), we have from Lemma 1 that
r (T x<T %

for any ¢ =0. Since T2 is a positive operator, so is 7% for all £ =g¢. Applying
the positive operator 72*~* where p —2 Z=¢ to the above inequality for £ = 272,

we have (TP TP x < TPy,  p=q+2.

Thus, by directly appealing to the definition of (1.1), this gives that
7o (T¥7) S rqowm2, (T2,

which from the definitions of (1.3) and (1.4) gives the first inequality of (4.4)
Q.E.D.

As an immediate corollary of Theorems 4.1 and 4.2 and the inequalities of
(2.11), we have

Corollary 4.1. Let T€[Y] be a positive operator. Then, for any x€K such
that 7% x == 0 for all » =0, the inequalities of (4.2) and (4.4) are valid for all p > 2.

Several remarks are now in order. First, Theorems 4.1 and 4.2 compare the
various methods of obtaining nested bounds for »(7') without the assumption
that these methods are convergent. Next, Hall and Spanier [6, Theorems 6 and 7]
have proved in the matrix case inequalities like those of (4.2) and (4.4), but
for all p sufficiently large. Because of our slightly modified enumeration in
Yamamoto’s method, the inequalities of (4.4) compare the {d, A} and {5, H}
methods in the case T is a positive operator for all p =2.

From Theorem 3.2, we know that all three methods {y, I'}, {9, 4}, and {5, H}
of computing upper and lower bounds for the spectral radius 7(7) of a positive
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operator T€[Y] having property S are convergent if
value of 7T, ie., A€q(T) with |A| =7(T) implies A

of the resolvent operator R (A, T) of multiplicity g. V
the asymptotic convergent rates of these methods in
7(T) > 0. We shall also assume that the elements x’ of

(4.5) Iy =1,

and that x€ K is such that

(4.6) 0<n={By % 5>

for all x’€H’ for which {B; ,%, ') =40, where x is ind
that the normalization in H’ of (4.5) and the inequali

restrictions for finite-dimensional cases. In infinite d
these assumptions can exclude some K-total sets.

With £, (1) =»"¢"! (r (/1[) ) we proceed as in the 1
7(T) >0 is a pole of multiplicity g of R(4, T),

\ S i
(47) fn(T):kE (k ( 1)! ) Bl"+ 27 /

=1 ‘,‘

This can be written as
4.7")
whereV,,, an element of [ X, satisfies, asin the proof of

With the expression of (4.7') and the result of Lemr

. oo (TH = (DY i AT -
(48) o (T = (r(D)] nf (B gt V)7, 27
(Trx, %50

and

(4.9)

(4.10) y(2P7%) =
<T°”“2x #5+0
(4.11) 0(p) =r(T) [ Jnf, {(—)r 2= -1
q (%, 430
an

(4.12) n(p)=r(T) {2“
N (T2 2 2540

Now, from the definition of the operator V, of (4.7
of |V, |x; can be verified:

(4.13) Wil ==




7(T) is a dominant eigen-
-7(T), and »(T) is a pole
‘e consider now, as in [6],
this dominant case where
H' are normalized so that

ependent of x’. We remark
ty of (4.6) are not essential
mensional cases, however,

roof of Theorem 3.2. Since

ve from (2.5)

AR, T)dA.

’

heorem 3.2, lim |V, [y =0.
Nn—> 00

12 3, we can write that

.
sl PRt

\

)I@p—?)x, x’/l}

2) %, &)

7p-1) %, 27 2=e=h)
-1) (,,(T))g—l 2 x’)} P

2—-(p—2)
Vyp-1) x, %')}J .

> following sharper estimate

>1,
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and

77

(443) Wn=e(,try) i e=1,

where ¢ is a constant, and ¢” is such that A€o (T) with |A] =7 (T) implies that
| 2| <@"<7(T). By direct computation with (4.10) and (4.11), we have, using
(4.13) and (4.13"), the following general asymptotic convergence rates:

(4.14) y (2072 =¢(T) {1+@(7}_—2)} as p-—>oo for g>1,
(4.14") y (2078 = (T) {1 +0 ((7%),>2p-2)} as p-—»oo for g=1,
and

(4.15) 5({)):7(2‘){1—{—(9(%:17)} as p—>oo for g>1,
and

(4.15") 6(7)):¢(T){1+(0(ﬁ>} as p-roco for g—1
Similarly, we deduce from (4.12) that

(4.16) n(p):r(T){1+@<~(-;j;\)} as p-soco for g>1,
and

(416" n(p)= w(T){1 + ?}_—5 0 ((ﬁ;)—)zw)} as p->oo0 for g=1.

We remark that the asymptotic convergence rates of (4.14') and (4.16) agree
with the finite-dimensional results of Hall and Spanier [6] for the special case
g=1 and operators whose spectra have the following structure: all spectral
points lying on the circumference | 1| = g, where g is such that Aco (7T), A ==7(T),
implies | A| =g, are simple poles of the resolvent operator R(A, T). But the rate
(4.15") improves upon their estimate, and (4.14), (4.15) and (4.16) extend more-
over their results.

Thus, in the dominant case under consideration, the results of (4.14) —(4.16")
show that Collatz’s method and the hybrid method of Hall and Spanier have
essentially the same asymptotic rates of convergence. Because of this, Collatz’s
method is probably in general preferable because of its inherent simplicity. If,
however, the powers T2 can be easily determined, then the hybrid method of
Hall and Spanier is preferable because of the additional factor of 2% in (4.16")
for the case g=1. For Yamamoto’s method, it is clear from (4.14) —(4.14’) and
(4.15)—(4.15") that its asymptotic rate of convergence is never befter than that
for Collatz’s method in the dominant case. Moreover, because the inequalities of
(4.6) are valid when T is a positive operator, we know in this case that the hybrid
method of Hall and Spanier is always superior to Yamamoto’s method. We
finally remark that because of the generality of the initial vector x€ K, we expect
that the estimates of (4.13) and (4.13') produce realistic asymptotic convergence
rates in (4.14) —(4.16).

The expressions in (4.14) —(4.16) also reveal the important fact that, in the
dominant case, one can expect worse asymptotic convergence rates for the various
methods of estimating 7 (7)) only if one has the case where # (7)) is a pole of R (4, T)
of multiplicity g>1. ,

5 Numer. Math., Bd. 14
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For the nondominant case, i.e., there exist A€a (7)
A ==7(T), we again assume that T€[Y] is a positive of
and we assume that x€K is such that the inequalitie
from (3.8), there exist positive numbers o >0 and <
(T et
aBy 4= (m)—) x<p B, x forall
From this, it follows that
/ ’ — / T
alBy % %) = <( (1)

for any #’'€H', and hence

for any x'€H’ for which (B, ,x, ") >0. From this e

0 (5)

\2—(P—2)

and consequently,

(4.17)

In other words, the rate of convergence of the meth
the nondominant case coincides with the rate of conver
in the dominant case when g >1 (cf. (4.14)). Thus, if ¢
of the Collatz method is larger in the dominant cas
always try to be in the dominant case, with g=1 w
If Te[X] is a positive operator with property
preceding discussion suggests considering the shifted o

W) =T+7I, >0

with shift 7. For any real 7> 0, it is clear that W(7) i
with property S, but now 7 (W(T)) >0 is a dominant
of W (). Thus, the three methods of obtaining upper ar
are, from Theorem 3.2, convergent for any fixed 7>
to the determination of a best possible shift v for 7.
For T€[X] a positive operator with property S ar
optimal shift vy for T can be defined as the 7, =0 for

720

o At | A
(4.18) 1nf< sup 7("[#7 ): SUp |7

Aeo(T)

ieo(T)
A+ (T)

A2 (T)
The problem of determining 7, seems to be in general
of determining 7 (7). But, for particular classes of
7, can be easily determined.

With the above assumptions on 7', assume that all
lying on the circumference |A| =7(T) >0 are given

(4.19) Zj:y(T)e"“", 1=j<s, s>1, where 0




with | A| =7(T) such that
erator having property S,
s of (3.7') are valid. Thus,
oo such that

p=1,2,....

B0 % %),

xpression, we deduce that
—~(p—-2)

>

— 00,

od of Hall and Spanier in
ence of the Collatz method
=1, the rate of convergence
e, and it is reasonable to
henever possible.

S and with »(T)>0, the
perator

s again a positive operator
sigenvalue of the spectrum
d lower bounds for 7 (W(7))
), and it is natural to turn

d with #(T) >0, a positive
which

+ 7
)+ |

as difficult as the problem
perators with property S,

the singularities of R(4, T)
recisely by

=0y << g -+ <A< 27.
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It is readily verified by direct calculation that

. A+t . Ai+7(T) l_
int (oo | e ) = |ty =0
where
1 +2rga§ (cos ;) 13
(4.20) 7= {_LZS.___} <1

ie., if the only points of the spectrum o (7T) are those of (4.19), then 7,=7(T)
is the optimal shift for 7". Continuing, suppose that all points 2 of o(7T), except
for 4;=7(T), lie in the disk in the complex plane with center —7(7) and radius
2q,7(T), ie.,

(4.21) [A+7(D)| =29,7(T), A==r(T).

It is clear from the definition of 7, in (4.18) that v,=7(7) is the optimal shift
for T'. In particular, if 2¢, =1, then since | A +7(T)| < | A] +7(T), it follows that
To=7(T) also if all the points A of ¢(T), other than those of (4.19), lie in the disk

(4.22) Al < (2¢,—1)r(D),

assuming that those Z€¢(7) for which equality holds in (4.22) are poles of R (2, T).
We state this as

Theorem 4.3. Let T€[Y] be a positive operator with property S and with
7(T)>0, and let all the singularities 4 of R (4, T) lying on || =7 (T) be of the
form (4.19), and let the remaining singularities 2 of R(4, T) satisfy (4.21) or
(4.22), and if equality holds, let them be simple poles of R(4, T). Then, the
optimal shift for T is 7y=7(T). Moreover y (p) =V r( (1)) (W(r(T))) and]N’({)) =
WP (W (r(T)) ) denote the Collatz bounds for the operator W ((T)) = T 47 (T) T
with spectral radius 2#(7) for any x€ K with x==0, then

(4.23) POV =T)=2r(D{1+0(@)} as p—>oo,
where ¢, is defined in (4.20).

We remark that the asymptotic expression in (4.23) follows from (4.14'), and
(4.23) becomes 0 (pEgt) if the multiplicity of 2 for which equality holds in (4.22)
is g.

Example. Let Y =R", m =4, be real Euclidean space, let K be the cone of

all elements in R™ with nonnegative components, and let the positive operator T
be given by the matrix

- O O O
S O O -
O O = O
S =~ O O

S*
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where Q is an (m — 4) X (m — 4) matrix with nonnegative
Then, 7(T) =1 and the singularities of R (4, T) on ||
with a;=27(j —1)/4, 1=7=4. In this case, g4=1/]

7(Q) =2 —1, then 7,= 7(T) =1, and for any x€K W
we have that

50 =Ty =2{1+0(5p)} e

The problem of determining the optimal shift 742
Te[X] with property S and 7(T) >0 whose spectrun
symmetric operators in Hilbert spaces, is also easily

singularities A ==7(T) of R(4, T) satisty
—r(N=a=i=p<r(T).

Then, by direct calculation from the definition of (
for T is given by

(4.24) 7, = max {0; jy—j_g)—} .

§ 5. Shifts and Nested Bounds

The preceding considerations suggest using the fo
nested bounds for the spectral radius #(1') of a posi
scheme is optimal (with respect to the positive shifts) |
are such as described in Theorem 4.3. In particular, thi
cyclic matrices all of whose eigenvalues are of the san

Let T€[Y] be a positive operator, let x€K with
o (1) =r.(T),
Further, define

@ (’N -+ 1) = 7’T<,¢)..,T(1)x (T) and T(aHfl) =1
Similarly, if 7*(7) < oo, let T =T+ @ (n +1)I,"
@) =+*(T) and D(m+1)=r""
Theorem 5.1. Let T be a positive operator having p

be a pole of order g =1 of the resolvent operator

that B; %30, and such that x Sw By ,% holds wit
has been defined in (2.4). Further, assume that 7, (T

Then, we have

(5.1) ()=

(5.2) lim ¢(n) = lim @(n)=7(

n—> 00 n—> 00

Proof. From the fact that the operators

T=T+@k) I, TO=T+®RI




entries such that 7 (Q)<1.
— 1 are of the form (4.19)
/3, and if we have that
ith positive components,

p—co.

0 for a positive operator
is real, as in the case of
solved. Assume that the

18), the optimal shift 7,

llowing scheme to obtain
ive operator A€[Y]. Our
or operators whose spectra
s class contains the class of
e modulus 7 (7).

€K, x=0, and define
NI.

epm 1)1,

vhere

‘...T(l)x(T)_

roperty S, and let (1) >0
2(%, T). Let x€K be such

h 0<<w<-oo where B, ,
) >0 and 7*(T) <+ oo.
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are positive operators which commute with T for all positive integers % >1,
the validity of (5.1) is a consequence of Lemma 2.

To prove (5.2), let us consider the operator function g,=g,(7T), where

( _1)!]‘11( )
gn(l)=m,

and where "
)= IT (49 0)).
Hence, " ] N
A= 3 e 3 75 [7(T) + 9 (7).
f‘?é;l

We evidently have that lim g,(4) =0 if either || <#(T) or A=#(T) exp{i ¢}

with 0<<@<C2s. Since T is a positive operator having property S, and A,=7(T)
is a pole of order g of the resolvent operator R(J, T) then all the elements
g5 -+, A lying in ¢(T) and on the circumference | 1| =7(T) are poles of R (4, T)
of at most order g, according to Schaefer’s theorem [20].

Thus, by (2.5") £ i
gn = Z ;

j=1%

(F—
where hm |1Z,)x;=0. Since lim g (Z):O for k=0,1,...,g—1 for X;eq(T),
e :}:7( ) vand lim gh(r (T)):O for k=0, 1, ..., g —2, we have in the [X]-norm

that :
lim g,(T) = By ,.
N> 00
Consequently, by Lemma 5,
. . : <Tgn(T) X, x/>
= 1 f e Y N
{en(T)%, ' )+0
. {T Bygx, %"
= f =28 vi - T N
;’IelH’ <B1,gx: x> 7‘( )
<Bl,gx;x'>=f=0

which proves one part of (5.2). The remainder is similarly proved. Q.E.D.

In fact, we have just proved a slightly more general assertion, which is useful
in cases for which the optimal shifts are not known.

Theorem 5.2. Let T€[Y] be a positive operator having property S and 7 (T)>0.
Let x€K be such that the relations x <w B, ¢%=0 hold with some positive
integer ¢ and 0<<w<<+oco. Let {r,} and {R,} be sequences of positive numbers
bounded below and above respectively. Then we have

yl= =)= =r(D=- =Pm) < P(1),
where
d y (k) =11y g+ (D)
an
T(k) E7,(T+Rkl) (T+R11)x(T) .
Furthermore

lim o (n) = lim ¥{(n)=7(T).

> 00 n—>00
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