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The Effect of Quadrature Errors in the Numerical Solution of

Boundary Value Problems by Variational Techniques *
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§ 1. Introduction

In [4], the approximate solutions of a class of real nonlinear two-point boundary
value problems were obtained from the application of the classical Rayleigh-Ritz
procedure to the variational formulation of these problems by minimizing over
finite-dimensional subspaces. For certain sequences of approximating -subspaces, such
as the piecewise-polynomial Hermite and spline subspaces, upper bounds for the rates
of convergence of these approximations can be theoretically determined. In practical
computation on a digital computer, these approximate solutions are however not
precisely obtained since certain integrals arising in the Rayleigh-Ritz formulation
are replaced necessarily by quadrature formulas.

The object of this paper is to investigate the errors introduced in the approximate
solutions by such quadrature formulas. In particular, we shall obtain bounds for the
errors introduced by such quadrature schemes, as they apply to finite-dimensional
subspaces of piecewise-polynomial functions, and we shall determine when these
quadrature errors are consistent with (i.e. the same order as) the approximation errors
of the Rayleigh-Ritz method. We shall also show how certain quadrature schemes
coupled with particular finite dimensional subspaces give well-known difference ap-
proximations to such boundary value problems. In addition, numerical results based
on such consistent quadrature schemes are also presented.

§ 2. Formulation of the Problem

As in [4], we consider the following real nonlinear two-point boundary value
problem Llu)]=f(nuk), O<x<I, @.1)

with Dirichlet boundary conditions
i .
Du(0)=D'u(1)=0, 0<k<n-—1, bm&l“ (2.2
X
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where
LuE]= X (=" D[p;(x) Du(x)], n>1. (2.3)

The coefficient functions p;(x) are assumed to be of class C/[0, 1], 0<j<#, although
weaker assumptions are also possible (cf. [4, § 8]).

Let S denote the linear space of all real functions w(x) satisfying the boundary
conditions (2.2), such that w(x)eC"~*[0, 1] with D"~ w(x) absolutely continuous
in [0, 1], and D" w(x)e*[0, 1]. As in [4], we assume that there exist two real con-

stants f and K>0 such that
1
1/2

ol = swp (<K [ (£ n@w@P +pmeR) el 2o

xel0, 1]
0

for all weS. This assumption, as noted in [4], is implied by either of the following

1
1/2

ID'w - < K % A\Mo p;(x) (D'w(x))* + B(w Axvvnv dxy (2.5)

1 ,
1/2

0 e <K [ (£ 00 @) + Bl o)) 25
for some /, 0</<n—1. ’

Next, we introduce the finite quantity A (cf. [4, Lemma 1]), defined by
1
[13 nw @y} ax
iS

0

A = inf . : (2.6)
w0 ,‘, {w(x)}? dx

We then assume that /' (x, u)e C° ([0, 1]) x R), and that there exists a constant y such
that

\?5;\?53

>—A 2.7
u—7v

for all xe[0, 1], and all —oo <u, v< +o0 with u#v and for each ¢>0, there exists
a real number M (c) such that usv, |u|<c, |v] <c implies that

\‘ Axv :v - \Axv cv

u—v

SM(c) <o 2.7
for all xe[0, 17.
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Inequality (2.4) implies that the quantity

1
1/2

wl, = %% A\Muo p;(x) (D'w(x))* + y(w O@vwv dx (2.8)

(o]

is a norm on S, and this is the norm basically used in the sections to follow. By
Corollary 2 of [4],if (2.4) is valid for some constants ff and K, then (2.4) is in particular
valid for f=1y. Hence, for all weS, we have

Iwllze < K fiwll, . 2.9)

From Section 2 of [4], we know that if ¢(x) is a classical solution of (2.1)-(2.2),
then ¢ (x) strictly minimizes the functional

17 w(x)

Flw] = ,“ 1 &.Wo p;(x) (D'w(x))* + .‘ f(x,n)dnydx (2.10)

]

over the space S, and thus ¢@(x) is the unique solution of (2.1)~(2.2). We shall assume
in the following that (2.1)~(2.2) possesses a classical solution ¢ (x).

For any finite-dimensional subspace Sy, of S, it is known [4, Theorem 2] that
there is a unique function W,,(x)€S,, which minimizes F[w] over S, In theory,
determining the unique element W, (x) which minimizes F[w] over Sy can be ac-
ooE@:mw&mmmozosm.>mm555m9mﬁ?;§wpE.o_533\Ea%ocmg:cbomosm

which span Sy, then simply solving the nonlinear system of equations

M
oF ﬁM fs\;
i=1

u;

for the unknowns uy, u;, ..., uy, uniquely determines Wy, (x) in S);. By using the defini-
tion of F plus integration by parts, this system can also be expressed as
1
n M X .
0= .‘ A\Mo p;(x) A».MH :»Ggw@vv Dw, Axvv
0 . (2.11)
+\Axu Y 55Axvv wi(x)pdx, 1<i<M,
ji=1

where the uy, u,, ..., 4y, are unknowns. Defining
1
n
a;, ;= ,‘, Y pe(x) D*wyx) D*w;(x)pdx, 1<i,j<M, (2.12)
k=0

0
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and
1

M
gi(u) = %\Axv .HMH :&.ﬁ.gv w,(x)dx, 1<i<M, (2.13)

0

system (2.11) may be written in the matrix form
0=Au+g(u), (2.14)

where A=(a, ;) is an M x M real symmetric matrix.

Practically speaking, the entries a; ; of the matrix 4 can be computed exactly,
since, in most cases, the evaluation of these entries involves the integration of piece-
wise-polynomials, which is easily automated on a digital computer. This is true in
higher dimensions as well. The evaluation of the quantities g;(w) in (2.13) is more
troublesome, since the given function fin (2.1) is not in general a piecewise-polynomial
function. This prompts us to use a quadrature scheme to evaluate the quantities in
(2.13), which then generates a new system of nonlinear equations

ﬁ 0= Au+ g(u), (2.15)

where §;(u) is obtained from applying a particular quadrature scheme to g;(u). The
solution i of (2.15) in turn generates a new function

M

Wi (x) = M &w; (x)

i=1
in Sy.

In the next section, we shall discuss the choice of quadrature schemes for a given
sequence of piecewise-polynomial subspaces {S,};2; of S so that the theoretical
approximations {Wy, (x)};Z, determined successively from (2.14), and the approxi-
mations {W,, (x)}2 ;, determined successively from (2.15), have the same general order
of accuracy. .

§ 3. Linear Case
In this section, we begin with the assumption that the function fof (2.1) is in-

dependent of u. The integrals of (2.13) are then also independent of u, and in this case,
we have

g= [ 1@ d =L @wm@], 1<i<, (3.1)

where the integral of (3.1) is regarded as a bounded linear functional L, on C° [0, 17.
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We now associate with the subspace S, a linear functional L, which is to approximate
L, and we define
G=Lylfx)w(x)], 1<i<M, (3.2)

as the approximation of g; in (3.1). Note that the matrix problem of (2.14) reduces
now to
Au+g=0, : - (3.3)

and the use of the approximate linear functional L,, gives the associated matrix
problem
Au+g=0. (3.9

As previously noted, 4 is a real symmetric M x M matrix, but the assumption of
(2.7) gives us in this case that 7y is at most zero, and hence A must be positive. Since
it can be verified that the quadratic form y” Ay can be expressed in terms of the norm

I-llo by }
YAy =1 3y (I3 (3.5)

then 4 is obviously positive definite. This implies that each of the matrix problems of
(3.3) and (3.4) admits a unique solution, denoted by @ and i, respectively. The asso-
ciated functions in S, are respectively denoted by

M M
Wy (x) = Y dw;(x) and Wy (x) = Y Tw;(x).
i=1 i=1
It then follows from (3.3) and (3.4) that A(i—#)=§—g, and premultiplying by
(6—1)" and using the identity of (3.5) then gives

(6 —0)"A®@ — 1) = [Py — Wyllg =@ — D' (E-g).

Using the definitions of the functionals I and L, the last quantity above can be
expressed as (Ly— L) [ f(x) (W (x) — Wy (x)], and thus

Iag = Waglld = (Lag — L) [f (%) (03 (x) — Wy (x)]. (3.6)

This equation will be used repeatedly in this section.

Our object now is to bound || Wy, — W], for certain types of quadratures Ly, after
making particular assumptions on f(x) and the subspace S, Because of (2.9) for
the case y =0, such a bound for ||, — Wy || o Will give a related bound for w,, (x) — Wy (x)
in the uniform norm.

We now restrict our attention to subspaces Sy (n) of S of piecewise-polynomial
Sfunctions. More precisely, m:0=xy<x| <+ <xy.;=1 is a partition of [0, 1] such
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that for any w(x)e Sy (%), w(x) is a polynomial of degree n, on each subinterval
(x}, x41) of [0,1] defined by =. Such subspaces include the Hermite subspaces
H{" (m) and the spline subspaces Spg™ (r) as special cases (cf. [4, § 6-7]). For non-
trivial subspaces of S, we remark that n, necessarily satisfies n, >n. Next, we assume
that the function f of (2.1) is such that D*f(x) is continuous on each subinterval
[}, x}4,] defined by = for all 0<k <mj,. This latter hypothesis is of course valid if
f(x)eC™]0, 1], but it also holds for functions /' (x) whose m,-th derivative is piece-
wise continuous on [0, 1], with points of discontinuity a subset of the joints x} defined
by the partition 7. The important point is that since f is given, the quantity m, and
the possible points of discontinuity of D™ f can be determined directly.

As our first choice for the bounded linear functional L, consider a quadrature

scheme of the form
Ym

%QQV &%MSQQ_.Y G.d
5 i=0

where y,<7o<7 < <1,<y, are selected points of [y, ¥, ]. Then, given any

a(t)eC™ [y9, ¥m)> Mo determined from f, it is always possible to select (cf. [6, p. 36

and p. 40]) a quadrature schenie of the form (3.7) such that the quadrature error of

(3.7) satisfies

Ym
m

M o:.o.?mvl R« QQV&HMWHC&:! wovsi H __bsoq__hsg“ ?_f Aw.wv
i=0 e

where K| is independent of the interval length. For example, if m,=2, the trapezoidal
rule with m=1 can be selected in (3.7); if m,=10, a five-point Gaussian quadrature
scheme with m=4 can be selected in (3.7). This being the case, the basic quadrature
scheme of (3.7) can, after a linear change of scale, be applied on each subinterval
(x}, x4 1) determined by =, and this in turn defines the linear functional L,, of (3.2),

which takes the composite form
m(N+1)

Ly[o(x)] = »WJLO Bro (xi) s (3.9

where 0=x(<x, <+ <X, <X] <X, 1, < <Xyy=1, and the coeflicients 8, depend
upon the coefficients o; of (3.7) and the mesh lengths x}, ; —xj. For additional nota-
tion, let h;=x}, , —x}, and let T=max, <<y #;. This brings us to

THEOREM 1. Assuming that f of (2.1) is independent of u, let n:0=x, <x) <--- <
<xy41=1 be any partition of [0, 1] such that D"f is continuous on each subinterval
[x}, xj44]1, O<j<N, for all 0k <my, and let Sy () be any finite-dimensional subspace
of S such that for any w(x)e Sy (n), w(x) is a polynomial of degree ng, on each subinterval
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defined by n. Then, for my=ng, the linear functional Ly defined in (3.9) is such that
Wy — Wprllo < K ()™, (3.10)

where K, is a constant, independent of 7.
Proof. Expressing (Ly—L) [ f(w—W)] as a sum of terms and applying (3.8) to
each of these terms gives

1B — Warllo = (Lo — L) [f Azxv (W3 (x) — Way (x))]
<Ky 3 ()10 D = Bl ety GiAD

where K, is independent of 7. By hypothesis, there exists a constant C;, independent
of 7, such that .
max max A:b»,\ :hoomx‘% x\.T:uw = QH 5

O0<k<mg OSjsSN

and consequently, using the Leibnitz formula for differentiating a product, the sum
of (3.11) is bounded above by

N " §o. m R .
CiKy Y (h)t' Y A »ov 1D [ = By Tl w1 (3.12)
j=0 k=0 . "

Because of the assumption that the elements of Sy, (%) are piecewise-polynomials of
degree n, with ny<m,, the sum on k in (3.12) can be reduced to 0<k<n,. Now, by
a theorem of Markov [11, p. 138], there exists a constant C,, independent of 7, such
that

QN :_\\SS - &E__NBT\& X gt 1] Aw va

% /o .
:U AEE - Eﬁv:hsmx\b x'j4+1] < w»
: J

for all 0<j< N, and all 0<k<n,. Substituting (3.13) in (3.12), and using the fact
that M.wno h;=1, then we have from (3.11) that there exists a constant K,, dependent
on mg and n, but independent of =, such that

N
~ ~ 2 ~ ~ — +1 - — ~ ~
[War — Warllo < Ky [ Wyy — Wl o M mu_.s T LK, ?vso "Wy — 53__?_”9: .

ji=0
(3.14)

But as ||v]| - < K|v|, from (2.9) for any ve S, we can cancel a term ||[Wy—Wyllo in
(3.14), which gives the desired result of (3.10). Q.E.D.

We see from (3.10) that if we have a sequence {Sy,(n;)};~ of finite dimensional
subspaces of S such that the elements of any Sy, (zn;) are piecewise-polynomials of
Jixed degree ny, and if lim,_, , 7,=0, then if m,, dependent only on f, satisfies m, > n,,
we evidently have

lim [y, — Wpg o = 0.

i— o0
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This means that the quadrature error, introduced by computing W, rather than w,, ,
tends to zero with 7. This error, however, may or may not be small relative to
Wy, ~@llo. This brings us to

DEFINITION 1. Let C be a collection of partitions 7 of [0, 1], and for each ne C,
let Sy (n) be a finite dimensional subspace of S consisting of elements which are
polynomials of fixed degree n, on subintervals of [0, 1] defined by =, and let iy, (x),
the function which minimizes F[w] of (2.10) over Sy (1), satisfy

%y — @lly < K3(7) forall meC, (3.15)

where K3 and / are positive constants independent of 7, ¢ (x) is the solution of 2.1)-
(2.2), and |- ||y is some norm on the space S. Then, the choice of linear functionals
in (3.9) is consistent in the norm || - ||y 'With the bounds of (3.15) if there exists a con-
stant K, independent of 7, such that

Wy — Wylly < Ky () forall zecC. (3.16)

We remark that with the triangle inequality, the bounds of (3.15) for the norm
*[lo» and the result of Theorem 1, it follows that

_

W = @llo < Wy = Dygllo + oar = @llo < Ky (W)™ 7™ + Ky (7)), neC. (3.17)

Thus, it follows that mg—ny =1 gives a consistent choice of functionals in (3.9) in
the norm |||, which preserves the asymptotic accuracy of (3.15) in this norm. It is
also true that even if this choice is nof consistent in the norm [+ llo. €., if 1 <mg—ng <,

o0

it nonetheless follows that when the collection C is a sequence of partitions {m;};2,,
then the associated sequence {War, ()}{2 4 converges uniformly to ¢(x) as i—co when
lim;,, @;=0.

If we assume that the differential operator .% in (2.3) is strongly elliptic [14, p. 175],
ie., p,(x)>w>0 for all xe[0, 1], then the following improvement of Theorem 1 is

possible.

THEOREM 2. With the hypotheses of Theorem 1, assume that the operator £
of (2.3) is strongly elliptic. Then, for the linear functional Ly, defined in (3.9), there exists
a constant K, independent of the partition n, such that

War — Warllo < Ks (R)™ if mg <m, (3.18)
and
Wy — Wllo < K (7)mo ™ min(mo, mo) +n=1 if min(mg, ny) > n, (3.18")

where n is determined from (2.3).
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Proof. As in the proof of Theorem 1, we can write (cf. (3.12)) that

B . N " mo m . N _
Wa — %E:w < Gk, M F.o+~ »Mo A Wov :b»?\z - EEV_FsquL\\;fL. (3.19)

If r=min(m,, 1), the sum on k above can be restricted to 0<k <r, and this sum is
then divided into 0<k<n—1, and n<k<r:

N n—1
o m " ~
War — éa__o C:K; .Mo 3 ot »Mo A wov __U»?\E - Ezv:hsig, xj+1]
i= =

o (m (3.19')
+ ¥ A xov 1D* (31 — Wa)| Lotony a1 -

Of course, if r<n, this last sum is omitted. For any v(x)eS, it follows from the
boundary conditions of (2.2), the fundamental theorem of calculus, and Schwarz’s
inequality (cf. [13, § 3]) that

:bu@:hgmo Hu :bh\fHQ:N\NHO 1] %OH mmw o : - H

Also, it is evident, for all 0<j<n—1, that
1

ID7 ol a0, 13 < 10l 2 = % FMG;@NT

1/2

for any v(x)eS. Thus, we see that the first sum on k in (3.19") can be bounded above
a constant, dependent now on n and m, but independent of 7, times [|[W—W|,, . For
the second sum on k in (3.19'), we again use the Markov inequality, viz.

n—1
k D ?cs - Eiv:rs? Hx 1]
__b AS\EISMEV:NSQEXN.YLAQ b» n+1 P \W\«WS.

Combining these inequalities with the inequality of (3.19") gives
Z\mo—r+n—1 :&vll ed::.wwu Aw.NOv

s — Wl < Ko {(R)™ [1¥nr
where the last term is omitted if r<n. Finally, because the operator £ of (2.3) in
this case is strongly elliptic, it follows by Garding’s inequality [14, p. 175] that there
exist positive constants ¢; and ¢, such that __Sr ,<c ollg+e, __c_?l:o 17 for all
v(x)eS. Moreover, since A of (2.6) in the linear case is, by hypothesis (2.7), necessarily
positive, it follows from (2.6) that A [[v] 120,13 [0]0 for all v(x)€.S, whence

C2

lolz 2 <|es +N‘ loll5-

With the above inequality applied to (3.20), the results of (3.18)~(3.18") follow.
Q.E.D.
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There is another convenient way to approximate the quantities g; in (3.1). Suppose
we substitute for /(x) in f5 f (x) w;(x)dx, a function f(x) which is an interpolate of
f(x), and we evaluate R J(x) w;(x)dx exactly. If we again assume that we have a
partition 7:0=x, <x} < <x---y4 ;=1 of [0, 17, then if w;(x) is a polynomial on each
subinterval [}, x{, ], 0<i< N, defined by 7, and if f (x) is a polynomial on [x}, x/ ],
0<i<N, this integral [§ f(x) w;(x)dx is simply the sum of integrals of polynomials
over [xj, x;, 1], 0<i<N, and hence is easy to calculate on a digital computer. We
determine how accurate an approximation f (x) must be to f(x) in order for this type
of quadrature scheme to be useful in our variational technique.

As before, if we approximate f(x) by fy(x) in (3.1), we generate a system of
equations (3.2) where

wﬂ..ﬂ Ly [fw;]= hTJEEL = % MEC@ wi(x)dx, 1<j<M. (3.21)

This in turn again serves to define Wy (x)=>{L, #w;(x) from the solution of (3.4).

THEOREM 3. Assuming that f of (2.1) is independent of u, let n:0=x{ <x} <+ <
<Xyy1=1 be any partition of [0, 1] such that f is continuous on each subinterval
[}, Xj4 1], OGN, and let Sy (n) be any finite dimensional subspace of S such that
Jor any v(x)eSy (), v(x) is a polynomial on each subinterval defined by m. If fi; (x; 1)
is a continuous piecewise-polynomial interpolate of f(x) such that f,(x; ) is a poly-
nomial on each subinterval defined by m, let Ly be the associated linear functional of

(3.21). Then, for the constant K of (2.9),
0re = Waello S K If = fullr forany 1<r<+o0. (3.22)

Proof. From (3.6), we have
e = il = [ L) = £ GO (9 () = e () i,
0

and applying Hélder’s inequality gives
. R . N 1 1
19 — Warlls < g = Sl 04 — Wyl where w+ﬂ =1. (3.23)

But from (2.9),
1Wa — Wl < 10y — Wpgllpoo < Kl — Wiyl

and we can cancel a factor ||W, — Wy, in (3.23), which gives the desired result of
(3.22). Q.E.D.
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From the inequality of (3.22), it is now clear how the piecewise-polynomial inter-
polate is to be chosen so as to have a consistent quadrature scheme in some norm.
If f (x)e C?™ [0, 1], we then have ([3, Theorem 2] and [10, Theorem 9]) that there is a
continuous piecewise-polynomial interpolate far(x) such that

If — Fulle < K(R)™, (3.24)

where K is independent of z. For example, if /'(x)e c? [0, 17, then the piecewise linear
interpolate fy (x) of f(x) satisfies || =Tl < K@)
To illustrate the results of these theorems, let us consider the particular boundary
value problem
Du(x)=f(x), 0<x<1, with u(0)=u(l)=0, (3.25)

corresponding to the choice #=D? n=1, in (2.1)~(2.2). For this example, & is
strongly elliptic, and we can apply the results of Theorem 2. Using the continuous
piecewise linear functions of the Hermite space H D(n), then ny=1, and if
f(x)eC™ [0, 1], my=0, then the results of [4, Theorem 10] give us that the ine-
quality of (3.15) is in fact valid for /= “llo, 1.6,

I — @lo < K3(m), i=1.

Thus, in order to obtain a collection of linear functionals consistent with the above
inequalities in the norm | * |4, it is clear from Theorem 2 that m, must satisfy my>2.
As previously mentioned, the quadrature error of (3.8) for my=2is valid in particular
for the trapezoidal rule. Thus, quadrature based on the trapezoidal rule gives a collec-
tion of linear functionals consistent with the above error bounds in the norm ||
We remark that Theorem 1 also gives the same conclusions in this case.

We now show that the interpolation technique of Theorem 3 for the EoEoE of
(3.25), when used in conjunction with the elements of the continuous piecewise linear
functions of the Hermite space HG"(n), can give rise to standard finite difference
methods for (3.25). For a uniform partition my:0=xy <xj <+ <Xy, ;=1 where x;=ih,
h=1/N+1, the following functions {#,(x)}}=, form a basis for H" (ny)(cf. A of Fig.
1 of [4]):

(x = xi—)/h, xi-y1<x M x;

ti(x) =1 (xis1 = X)h, x<X<X{4q 1
— Ov Xmﬁou Huu Xﬂ_”ua—lr ~+HH_

/)
)
=

The associated N x N matrix A=(a;, ;) of (3.3) has entries given by

’ 2h, i=j
s:.u%a@ixv%n —1/h, li—jl=1 (3.26)

s 0, otherwise.
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Now in (3.3),

q \
X i X i+1

mmu?%@:? FE T Y ax s [ s

7

Xip1 — X

— dx 3.27
; x (327)
for 1<i<N. Suppose we wish to use the trapezoidal rule to approximate the last
two integrals of (3.27). We thus obtain

h X; — Xj_ h o (Xipq — X
= [ ST [ e (P ) = e, 1<isw.
Hence, the system (3.4) can be written as
Bii = f, (3.28)
where
EN | -1l ]
‘N O (x7)
N ~flx)
muﬂ O N and f= ”
-7 N2 * ,
~f{x)
The system (3.28) then yields a solution fi=(dy, @,,..., #iy)" and W(x)= w”_ it (x)

is our approximation to the solution of (3.25). Note that #,=W(x}) is our approxi-
mation to the solution of (3.25) at x;. In fact, the system (3.28) is exactly the same
system one obtains when one approximates the solution of (3.25) at the points
Xi, X3, ..., Xy by the standard three-point finite difference technique described in
[8, p. 63] and [12, p. 61]. Hence, the three-point finite difference scheme may be thought
of as applying the variational technique to the subspace H (r) of continuous piecewise
linear functions, followed by an application of the trapezoidal rule.

To push this observation further, consider the same problem, subspace and mesh,
but now let us approximate g; in (3.27) by a different method. For £ (x) in

'
Xi+1

g = % S (x) 1;(x) dx,

n
Xg-1

suppose we substitute the quadratic interpolation polynomial

) = 3 L = xi0) (6 = X £ () = (5= ) (5 = 1) £ (59
(=) () £ ()]
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and integrate exactly; here, f;(x) is simply the Lagrange interpolation of f (x) on
[xi-1, Xi+1] at X;_y, x;, and x;, ;. Hence, our system (3.4) is

Bu=yv (3.29)
where B is the same as B in (3.28) and

,
X i+1

H x
b= ,‘v Ji(x) t;(x) dx.

It can be verified that

10f (x7) + f (xi41) + f (xi=1)
12 |

The system (3.29) yields a solution vector i=(#,, i, ..., fiy)" and we note that

is the approximation to the solution of (3.25) at x;. But system (3.29) is exactly the
same system one obtains from approximating the solution of (3.25) at the points
X\, X5, ..., Xy by Collatz’s Mehrstellenverfahren, described in [5, p. 164] and also in
[12, p. 180]. Collatz’s method is 0(A*) at the mesh points, assuming that the solution
is in C°[0, 1]. In other words, this known finite difference method is a special case of
the variational approach to the problem (3.25), coupled with an appropriate quadrature.

§ 4. Nonlinear Case

In this section, we assume that the function f of (2.1) depends on w. Furthermore,
we will assume that the differential operator & in (2.3) is strongly elliptic, i.e., by
Garding’s inequality [14, p. 175], (2.5") holds for /=n— 1. Hence, as shown in Corol-
lary 2 of [4], it is easy to verify that the norm || - ||, is equivalent to the Sobolev norm.

For the general problem (2.1)—(2.2), if we approximate the integrals g;(u), | <i< M,
in (2.13) by a quadrature scheme and denote these approximations by g;(w), | <i< M,
this gives us the new system of equations

0= Au + g(u). @

Unlike the case in which f is independent of u, we are not assured that the system
(4.1) has unique solution. As in the last section, we will denote by Ww,,(x) the approxi-
mation generated by the system (2.14) using subspace Sy,.

Let n:0=x)<x]<...<Xy,;=1 be a partition of the interval [0, 1]. Writing
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g;(u) as the sum

5T (e ) mea

and applying (3.7) to the N+1 integrals in this sum, we obtain the approximation,
which we write in a simplified notation, as

gi(u) = .Mwo B;f Axv TMH UpWy, Ax\.vv wi(x;), My=m(N +1). (4.2)

Putting g;(w) in (2.14) for g;(u), we obtain the system (4.1). We will now prove that
the new system (4.1), when proper restrictions are put on the quadrature scheme (3.7,
has a unique solution ii.

THEOREM 4. Given any finite-dimensional subspace Sy of S spanned by the
linearly independent set {w,(x)}}L | and given the quadrature scheme
m M
%QC& dy = M o0 (t;),

i=0
Yo

where yo < 1o <17y < < Ty SV, if 0,20 for 0<i<m, Yo % =Ym— Yo, and if, in the

notation (4.2),
1

Mo
2 B () w5 = [ wy () dn 43
0
Jor 1<i, j<S M (note that o, >0 implies >0 and Y i o o;=y,,— v, implies Y 20, f=1),
then there exists a unique solution @ to the system (4.1) which may be written, using the
notation of (4.2), as
1

0= [43 290 ( T ) PP i
0 Mo M (4.4)
+ M Buf Avsa M :EC.OQVV wi(xp), 1<i<M

Proof. Because of the similarities with the steps of [4, § 3], we shall only skeich
the proof here. Complete details are given in [7].
We first define the following functional on Sy,

o

-

uiwi(xi)
1 i=
M

1= [ 11 2 5@ (03 wn)) fas Yo [ reuman

i=1
[¢]
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where w(x)=Y 1L, uw;(x). Note that if we take the partial derivatives of H with
respect to u;, 1 <i< M, and set them equal to zero, we get exactly system (4.4). Hence,
if we can show that the functional H[w] has a unique stationary value over S,,, then
this would imply that (4.4) has a unique solution. H[w] is a functional over RM and
we write H[w] as H[u] where u=(uy, u,,..., uy)". In order to show H[u] has a
unique stationary value, we first show that H[u], ue R, is bounded below. Next,
we verify that the set {ue R™; H[u]<H[0]=0} is compact. Then, we prove that
H[u] represents a strictly convex surface. These facts then imply that H[u] has a
unique stationary value, which is a minimum, and therefore imply Theorem 4.

Q.E.D.

THEOREM 5. Let C be any collection of quasi-uniform partitions n:0=x, <.+ <
<xyy1=1 of [0,1], ie., if m=ming<;<y(Xj11—X]), then there exists a constant
0>0 such that on >7 for all ne C, and for each neC, let Sy(rn) be a finite-dimensional
subspace of S consisting of polynomial L-spline [10] functions such that for any
v(x)eSy (), v(x) is a polynomial of degree at most ny on each subinterval defined by .
If 0%10x* (x, v(x)), 0<k<my, is continuous in each subinterval defined by =, for all
v(x)e Sy (m), for all ne C, the solution ¢ of (2.1)«(2.2) is in C™™* ' [0, 17, the quadrature
scheme (3.7), used to approximate the g;(w) in (2.13), satisfies all the hypotheses of
Theorem 4 for each subspace Sy (), and my>=ng, then there exists a positive constant
K, such that

[Wy — Wyll, < K;(7)° forall neC, (4.5)

where s=min(my—ng+n—1,n,+1—n).
Proof. For any partition neC, let {w;(x)}!L,, be a basis for Sy (n). We recall
from (2.14) that @ satisfies the system

1

(Au); = — ,‘,\ Axv W_ :\.f.?vv w;(x)dx, 1<i<M, (4.6)

0

and we have from (4.4) that @ satisfies

Mo M
(== 3 fuf (50 T () m(w), LSI<M. @D
k=0 i=1

Letting %CQHMWH 1 @;w;(x) be the interpolate in Sy, of the unique solution ¢ (x) of
problem (2.1)-(2.2), we define

1
mmnﬁ_._vl.,‘,\?&@vv wi(x)dx, 1<i<M,
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which can be written as

(Au); = — M Bif (3o W (x)) i (3x5) + &
e (4.8)

[ m st X () w0,
for 1<i<M. wcvﬁ.mom:m (4.7) from (4.8) and premultiplying by (ii—)7 we obtain
=" AG -0 = 3 A7 (o P00 = f (o WG] (7 5) = 9 5)

+({@—i) e+ NM Bef (3 W (1)) (W (x,) — W (%))

- % £ G () (7 (x) — (%)) dx,

where w(x)=Y L fi;w;(x). From (2.7), we know that

[ (50 9 (9) — 1 (5 )] (59 = () = 7 (P — WP . (410)
Since we are assuming f, =0, 0<k < M,, then (4.9) and (4.10) imply
@0 A=) +7 3, A((w) ~ H(s)f <@-D)e

3 B (o ) ()~ ) G

— [ 1) () = ) .

Now by assumption (4.3) and the definition of |- |,, the quantity on the left of the
inequality above is just :%I&:w“ and hence

= B <@ @) et D Bef (oo 7 (x0) (7 Cx) — W)
k=0 (4.12)

- %\ (x, w(x)) (W (x) — Ww(x)) dx.

The quantity

Mo Bif (xi (x,)) (9 (i) — W () — \ 1 (x, 9 (%)) (7 (x) = () dx
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on the right hand side of (4.12) is simply the error in applying our quadrature scheme
(3.7) on the intervals [x}, x{,,], 1 <i<N, to the function f(x, w(x)) (W(x) — W (x)).
We see from (3.8) that this error is bounded above by

N
K &.Mo Q\vai.m |D™ A\ A ’ %v A& - &vw__hahxc.“ 11t (4.13)

In an argument similar (cf. [7, pp. 60-62]) to that used in the proofs of Theorems 1
and 2, using the assumed smoothness of f and the boundedness of derivatives of the
L-spline interpolate w(x) from Theorem 10 of [10], we can bound the term (4.13)
above by

Kg 1% — W[, (R)me "ot~ 1 (4.14)

where Kj is a positive constant. It can be verified (Section 5, Chapter 1 of [7]) that
there is a constant K, such that

(@—- 0" e<Kol|w— |, %~ wl,. (4.15)
Hence, using (4.12), (4.13), (4.14), and (4.15), we have

W — Wi, < Ko [|[# — ]|, + Kg ()™ "1, (4.16)
Hence,
1% = Wil, < W — W[, + % — W],
L+ Ko) [ — W, + Kg ()™ ™+~

<
< (
S (14 Ko) Ko (™1 7" + K ()™,

where the inequality || W — ||, <Ko (7)™ "' ~"isprovided by [10, Theorem 24]. Q.E.D.
We remark that, for particular polynomial L-spline subspaces of S, it can be shown
(cf. [9]) that W —1w||, <Ko (@)™ !, From (4.16), this means for such subspaces that the
result of (4.15) of Theorem 5 is valid for s=min(mg—n,+n—1, ny+1). This will be
useful in § 5.
We now discuss the analogue of Definition 1 for the nonlinear case.

DEFINITION 2. Let C be any collection of quasi-uniform partitions of [0, 1],
and for each neC, let Sy, (n) be a finite dimensional subspace of S consisting of poly-
nomial L-spline functions such that for any v(x)eS, (n), v(x) is a polynomial of
degree at most 7, on each subinterval defined by 7, and let W, (x), the function which
minimizes F[w] of (2.10) over S,,(n), satisfy

1%y — 0lly < Kq1 (7)), forall zeC, 4.17)

where K;; and / are positive constant independent of 7, ¢ is the solution of (2.1)-
(2.2), and |||y is some norm on the space S. Then, the choice of the quadrature
scheme in (3.7) is consistent in the norm |+ ||y with the bounds (4.17) if there exists
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a positive constant K| ,, independent of 7, such that

Wy — Waelly < Kq, (7)) forall neC. (4.18)

COROLLARY. If the hypotheses of Theorem 5 hold, then the quadrature scheme
in (3.7) is consistent in the norm ||, with the bound ||Wy—ol| , <Ky (@)t
provided by [9, Theorem 24], if my=2+2n,—2n.

It is interesting to consider what happens if we take the quantities g;(u) in (2.13)
and instead of applying a quadrature scheme such as (3.7) to f (x, wsu L uw;(x) wi(x),
we interpolate f by f and then evaluate

1

7.(u) = % A 5 ssgv wy(x) dx (4.19)

o =t
exactly. The new nonlinear system that we would generate is
O = mmu.Aﬂv = A»Aﬂvm :.T Wmﬁﬂvw H M N m Ev A&..Nov

where 4 is defined in (2.12) and g;(w) in (4.19). The first thing we must do is to try
to make assumptions on f so that we are assured that (4.20) has a unique solution.
As we saw earlier in this section, a convenient way to do this is to find a strictly convex
functional such that its gradient set to zero is exactly the system you wish to solve.

From Theorem 10.45 of [1], we know that in order for there to exist a functional
whose gradient set to zero is our system d;(w)=0, 1<i<M, described in (4.20), we
must have

G oW
m:. ] N b = .

13

When we would want to obtain a very accurate approximation to the solution of
(2.1)-(2.2) using this interpolation method, we would probably want to use an inter-
polation scheme, such as piecewise Hermite interpolation or spline interpolation,
which would use derivatives of f(x, wmu 1 u;w;(x)) with respect to x at certain points.
Notice that these derivatives depend upon the derivatives of the basis functions with
respect to x. For example, ;

&&x Axv M :&s\kxvv A MH u; ,Xxvv \Axv W :E%xvv AM,MA” :aaéﬁmx?

=1

Suppose we assume that the interpolation Fin our system (4.20) depends on the values
of
d

\Axﬁ.m :g.sc.@vv‘ and — A M:ékxvv
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at certain points. Then it is clear that the equality of

od; ()
Ou;

J

and mmm@zv
ou;

would depend on the equality of w’;(x) w;(x) and w;(x) w;(x), which, in general, does
not hold. Therefore, we see that we are not assured that there is a functional whose
gradient is the system (4.20). This implies that we may not be able to use the computa-
tionally attractive minimizing algorithms which the existence of a strictly convex
functional allows us to use. Therefore, although in some cases it may be applicable,
in general, generating schemes to approximate g;(u) in (2.13) by interpolating fis not
useful when f'is a function of u as well as x.

It should be pointed out that the quadrature methods discussed so far in this
section and in the previous section are not always applicable since it may be the case
that either the function f does not satisfy the necessary differentiability assumptions
or the degree of the polynomials in the subspace Sy, of the sequence {S,,}{2, ‘may be
increasing with i, as is the case with the polynomial subspaces described in [4]. One
quadrature scheme which can be used in these two cases, and, in fact which can always
be considered consistent is Romberg integration. The computational disadvantage
of Romberg integration is the large number of integrand evaluations necessary,.as
compared with, say, Gaussian quadrature.

§ 5. Numerical Examples

Let us now cite some particular examples of the use of consistent quadrature
schemes.
Consider the special case of problem (2.1)-(2.2) given by

— D*u(x) = — (x* + 14x® 4+ 49x> + 32x — 12) ¢*, O<x <1, (5.1)
where
u(0)=u(1)=Du(0)=Du(l)=0, 5.2)

which corresponds to the bending of a thin beam, clamped at both ends. For this
problem, (2.5") is valid with /=0, K=1/zr, and f=0. Also, it is easy to see in this case
from (2.6) that 4 is positive, and y in (2.7) can be chosen to be zero, since f'is independ-
ent of u. The unique solution of (5.1)~(5.2) is u(x)=x*(1—x)%e*, 0<x<1, which
strictly minimizes the functional

1

Flw]= % {Z(D*w(x))” = (x* + 14x> + 49x% + 32x — 12) e*w(x)} dx, weS. (5.3)
0
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Let Sy, =H (ny), the subspace of piecewise cubic Hermite polynomials [4, § 6],
and assume 7y is the uniform partition on [0, 1] with mesh size hy=1/(N+1). If we
denote by Wy(x) the unique element which minimizes F[w] in (5.3) over HP (my),
then from [9] we know that there exists constants K; and K, (independent of N)
such that

I — Wyl < Kby, (549
and

1D (@ = #n)l < Kby, (5.5)

where ¢ is the unique solution of (5.1)-(5.2). The three-point Gaussian quadrature
scheme with weight function unity was used to approximate the integrals involving
the function (x*+ 14x°+49x*+32x—12) € in the system of equations generated in
minimizing F[w] in (5.3) over HE? (ny), and the approximation obtained in H$ (ry)
is denoted by Wy(x). Noting that the differential operator D* in (5.1) is strongly
elliptic and also that (x*+ 14x° +49x* + 32x — 12) e*e C* [0, 1], we see from Theorem
2 with mg=6, ny=3, and n=2 that there exists a constant K, such that

oy — Wyllo < Kshy. (5.6)

Therefore, the three-point Gaussian quadrature scheme with weight function unity is
consistent by Definition 1 in the norm |*[|.» with the bounds (5.4). Now from 2.9)
and (5.6), we have

n = Wyl < KK3hy, (5.7

and by applying the Markov theorem cited in § 3 to (5.7) there is a constant K, such
that

1D (B = Wn)ll Lo < Kahiy - (5.8)
Hence, from (5.4), (5.5), (5.7), and (5.8),

o — Wyllr- < (Ky + KK3) hy, (5.9)
and
ID(@ — Wy)lL» < (K, + K,) hy. (5.10)

The numerical results are given in Table 1, and in this table, we include the quantity

Wy e h
2 = log (10 = Fmll=) [i 0 (hn) (5.11)
__ﬁb - $\=N=H\8 Nsan

defined in terms of successive values of the mesh spacing /4. The motivation for (5.11)
is the fact that asymptotically, as Ay—0, we have

o = Wyll o ~ K (hy)*
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Table 1
Subspace Ho'?)(ntw)

T T I T Ll O

1/4 6 1.56-10-2 - 1.98-10-2 -

1/5 8 6.94-104 3.67 1.09:-10°2 2.70
1/6 10 3.53-1074 371 6.63:10°8 2.73
1/8 14 1.19-10-4 3.81 291.1073 2.88
1/10 18 5.05-1075 3.86 1.55-10°3 2.83
/12 22 2.51-1075 3.88 4.27-1074 2.84
1/16 30 8.21-10°¢ 3.90 4.06-10¢ 2.88
1/20 38 3.44-10°¢ 390 2.15-104 2.88
1/24 46 1.70-10-6 391 1.27-104 2.92

for some constants « and K which are independent of Ay. Then for two successive
values of A, h, >h,,, we have, asymptotically

19 = Wl (hn)

~

5.12
:Q - &:n__hoo \ezn A v

and (5.11) follows from (5.12). In the table, enough values of / are given to show
that the computed exponent of (5.11) agrees quite well with the asymptotic value of
a=4 from (5.9). The quantity « in this table is defined similarly; and computationally
agrees well with the exponent =3 from (5.10).

As our second example, we consider

Du(x)=¢€", 0<x<1 with u(0)=u(l)=0. (5.13)

In this sample, we verify that (2.4) is valid for K=4, =0, and 4 in (2.6) is n*. We
can choose 7 in (2.7) to be zero. The unique solution of (5.11) is [2, p. 41]:

o(x)=—In2+2In{csec[c(x —%)/2]}, c=1.3360557,

which minimizes the functional
1
F[w] = % A (Dw(x) + @ — 1} dx, weS. (5.14)
4]

The solution to problem (5.13) was approximated by minimizing F[w] in (5.14) over
the cubic Hermite subspace H$? (ny) and also the cubic spline subspace Sp ) (),
where in each case the partition 7y is the uniform mesh on [0, 1] with mesh size
hy=1/(N+1). When the functional F[w] in (5.14) is minimized over either of these
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subspaces, the resulting approximations wy(x) satisfy [9]
lo — Wyl L < Kshy. (5.15)

For the two subspaces considered, the four-point Gaussian quadrature scheme with
weight function unity was used to approximate the integrals resulting from the term
fo (") =1) dx in the functional. Denoting the resulting approximations by Wy(x),
it follows from the remarks after Theorem 5 that, for these subspaces, the result of
(4.5) of Theorem 5 is valid for s=min(m,—ny+n—1, ny+1)=4 where m,=38 and
no=3. Thus, with (2.9), we have

oy = Wyl < K Doy = Wyllo < Kehy - (5.16)

Hence, from (5.15), and (5.16), the four-point Gaussian quadrature scheme is con-
sistent in the norm |- |/~ by Definition 2 for either of the subspaces considered, and
we thus have

lo — Wylle < (Ks + Kg) hy.

The numerical results in the norm |+ ||;.. for the cubuc Hermite subspaces HS? (ny)
and the cubic spline subspace Sp§* (ny) are given in Tables 2 and 3 respectively. In
both cases, we include the quantity o, as defined in the previous example, to indicate
the ratio of convergence computationally obtained in the norm | *|/;.. Note that the
observed accuracy in this norm is K/y.

The last example we consider is the second order problem

D*u(x)= fo(x,u), 0<x<1 with u(0)=u(1)=0, (5.17)
where
— 9.5u(x) + 6x* — 5x + (12/9.5),
0<x<$
—9.5u(x) + 6x% — 5x + (12/9.5) — 15(2x — 1)'/2/9.5
—(2x—1)"?, 1<x<1.

\OAXV :vﬂ

Table 2
Subspace Ho® (ny)
Dim of ~
hy ey o) —wy()|z> «
12 2 5.10-10-° -
1/3 6 1.21-10-° 3.54
1/4 8 4.24.10°6 3.65
1/6 12 9.58-10"7 3.65
1/8 16 3.10:1077 3.93
1/10 20 1.28-10~7 3.96

1/12 24 6.28-10-8 , 3.91
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Table 3
Subspace Spo2(nx)

Dim of ~
hy Spo® (7x) lo@) —wy @]z a

14 5 5.70-10-6 -

15 6 2.39-10-6 2.47
16 7 1.19-10-6 3.90
17 8 6.44-107 3.97
18 9 3.63-10~7 4.18

As in the last example, we verify that (2.4) is valid for K=1, =0, A==, and that
we can choose y in (2.7) to be zero. The unique solution of (5.17) is

_ f(6x* = 5x)/9.5, 0<x<1
() = (6x? — 5% — (2 — 1)°7)9.5, 1<x<I, (5-18)
which minimizes
1 w(x) :
MT&H% 1 (Dw(x))* + .‘. fo(x,n)dnpdx, wesS. (5.19)
0 0

The subspace of piecewise linear function HS" (ny), where again my is the uniform
mesh with mesh size y=1/(N+1), was used to obtain approximations to u(x) in
(5.18). Denoting by iy (x) the element which minimizes F[w] over Hy" (my), we know
from [8] that [¢@—wyllie<K,;h3. Because ¢(x)eC?[0,1], but @(x)¢C*[0, 1],
Romberg 58%@&0: was used to evaluate the integrals involving the function
fo(x, u) in the system of equations generated by minimizing F[w] in (5.19) over
H{Y (ny) and Wwy(x) denotes the resulting approximation. The numerical results are
given in Table 4 and again we include the quantity «, as defined in (5.11). We should

Table 4
Subspace Ho™) (nx)
Dim of .
hx Ho (7y) lo(x) —wa()[z*  «
1/4- 3 6.27-10-2 -
1/8 7 2.67-10°2 1.18
1/10 9 1.94-10-2 1.58
1/16 15 8.54-10-8 1.75
1/20 19 5.62-10-3 1.88
124 23 3.97-10-3 1.90
1/32 31 2.26-10-3 1.96
1/40 39 1.46-10-3 1.97

1/48 47 1.02-10-3 1.98
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mention here that the standard three-point finite difference techniques [5, p. 63], as
applied to this problem (5.15), in contrast only give that
~. < Kgw| D? ' V< K
— ;) < Ko ; —,
NI Nt

max || ——:
0<i<N+1 N+1

where v; is the associated discrete approximation to ¢ (i/N+1), and w is the modulus
of continuity.

REFERENCES

[1] ArostoL, T. M., Mathematical Analysis, (Addison-Wesley, Reading, Mass., 1960), 559 pp.

[2] BELLMAN, R. E. and KALABA, R. E., Quasilinearization and Nonlinear Boundary-Value Problems
(American Elsevier Publishing, New York 1965), 206 pp.

[3] BIRKHOFF, G., SCHULTZ, M. H., and VARGA, R. S., Piecewise Hermite Interpolation in One and
Two Variables with Applications to Partial Differential Equations, Numer. Math. 1/, 232-256
(1968). .

[4] CiarLET, P. G., ScHULTZ, M. H., and VARGA, R. S., Numerical Methods of High-Order Accuracy
for Nonlinear Boundary Value Problems, 1: One dimensional problem, Numer. Math. 9, 394-430
(1967).

[5]1 CoLLATZ, L., The Numerical Treatment of Differential Equations, 3rd ed. (Springer, Berlin-
Gottingen-Heidelberg 1960), 568 pp.

[6] Davis, P. J. and RaBINOwITZ, P., Numerical Integration (Blaisdell Pub. Co., Waltham, Mass.,
1967), 230 pp.

[7] HerBoLD, R. J., Consistent Quadrature Schemes for the Numerical Solution of Boundary Value
Problems by Variational Techniques, Doctoral Thesis, Case Western Reserve University (1968),
189 pp.

[8] Lees, M., Discrete Methods for Nonlinear Two-point Boundary Value Problems, in Numerical
Solution of Partial Differential Equations, J. H. BRAMBLE, ed. (Academic Press, New York 1966),
pp. 59-72.

[9] PERRIN, F., Pricg, H. S., and VARGA, R.S., On Higher-Order Numerical Methods for Non-
linear Two-Point Boundary Value Problems, Numer. Math. 13 , 180-198 (1969).

[10] ScHULTZ, M. H. and VARGA, R. A., L-Splines, Numer Math. 10, 345-369 (1967).

[11] Topb, J., A4 Survey of Numerical Analysis (McGraw-Hill, New York 1962), 589 pp.

[12] VARGA, R. S., Matrix Iterative Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1962), 322 pp.

[13] VARGA, R. S., Hermite Interpolation-Type Ritz Methods for Two-Point Boundary Value Problems,
in Numerical Solution of Partial Differential Equations,J. H. BRAMBLE, ed. (Academic Press, New
York 1966), pp. 365-373.

[14] Yosipa, K., Functional Analysis (Academic Press, New York 1965), 458 pp.

Case Western Reserve University
Carnegie-Mellon University




