Richard S. Varga

ACCURATE NUMERICAL METHOD:X
FOR NONLINEAR BOUNDARY VAL
PROBLEMS'

1. Introduction. The use of variational or projectional meth
mate solutions of nonlinear boundary value problems has receiv
of attention lately, cf. [3], [9], [10], [23], [25], [26], and [39]. Of co
using the Ritz-Galerkin method to approximate these solutions is
is new, however, is that effective error bounds for such approxima
developed (cf. equation (2.5)) at roughly the same time that spli
piecewise-polynomial functions have independently grown intc
spline and Hermite functions are particularly attractive for high-s
since the proper choice of basis functions for these subspaces
coefficient matrices which are sparse (cf. [12]). The net result is
nation of using spline and Hermite functions in a Ritz-Galerkin sett
error bounds offers a highly effective tool for approximating the s
nonlinear boundary value problems.

The purpose of this paper is to show how this combination dos
very accurate numerical approximations of solutions of nonlinear
problems. Since most of the extensive numerical computations
Hermite functions have been for one-dimensional problems, we :
discussion and numerical results to such problems.

In §2, we give a theoretical background for the special results
in §3, we look specifically at two-point nonlinear boundary valu
§4 contains sample numerical results of particular experimen
techniques developed also apply quite easily to one-dimens:
problems, we study such eigenvalue problems in §5, and give r
results.

1 This research was supported in part by AEC Grant AT(11-1)-1702.
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2. Theoretical background. The theoretical basis for the material presented
here is contained in [14]. Let B be a reflexive Banach space over the real field, and
let B* be the dual of B. We denote respectively by ||| and ||-||* the norms in B
and in B*, and (-, -) denotes the usual pairing between B and B*, i.e., if v* ¢ B*
and % € B, then the value of the functional v* at u is (v*, u).

Let T be a (possibly nonlinear) mapping from B into B* satisfying the
following two hypotheses:

(H;). T is strongly monotone, [9], [26], and [39], i.e., there exists a continuous
and strictly increasing function ¢(r) on [0, +-00) with ¢(0) =0 and
lim, ,, , ¢(r) = 4+ oo such that

(2.1) [(Tu — Tv,u —v)] =c(||lu —2]]) |lu — || forallu,ve B,

(Hy). T is finitely continwous, i.e., T is continuous from finite-dimensional
subspaces of B into B* with the weak-star topology of B*. In other words, given
any finite-dimensional subspace B* of B and any sequence {w,}., of elements of
B* which converges to an element % € B*, the sequence {(T,, )}, converges
to (T'w, v) for any v € B.

We consider the following problem, called Problem P: determine u € B such
that

(2.2) Tu =0,
or equivalently, determined % € B such that
(2.3) (Tu,v) =0 forallve B.

Similarly, given a finite-dimensional subspace B of B, we consider the following
approximate problem, called Problem P*: determine u, € B* such that

(2.4) (Tuy, v) = 0 for all v € B,
We now state the following result, due to Browder [9]:

Levma 2.1, Let T satisfy (H;) and (H,). Then Problem P has a unique
solution w. Stmilarly, given any finite-dimensional subspace B* of B, the corre-
sponding Problem P* has a wnique solution u,.

To have an estimate between the solution u of Problem P and the solution u,
of Problem P*, we need additional hypotheses on the mapping 7' (cf. Theorem 2.1).
These in turn will allow us to obtain sufficient conditions guaranteeing the con-
vergence of the u,’s to the solution u (cf. Corollary 2.1). We begin with

TuroreM 2.1.  Let T satisfy (H,), (H,), and (Hy): T is bounded, i.c., T maps
bounded subsets of B into bounded subsets of B* (with respect to the strong topology
of B*). Then, given any finite-dimensional subspace B* of B, there exists a constant
K, independent of B*, such that

(2.5) c(llwg — wl) * llug — u| < Kinf {lw — u|; we B
Similarly, let 7' satisfy (H,),
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(H}). Condition (H,) holds with ¢(r) = ar, « > 0, ie.,
(2.6) (T — Tv,w — )| = a(llu —v|)? forallu,veB
and

(Hj). T is Lipschitz continuous with respect to the strong top
bounded arguments (a special case of hypothesis (Hj)), i.e., gives
exists a constant C(M), depending only upon M, such that
2.7) ||Tu — Tol|* < CM) |u —v| for allw, » € B with ||u], |

Then, given any finite-dimensional subspace B* of B, there exists
independent of B¥, such that

(2.8) lu, — u|| <K inf{|w—u|; we B"}.
Proor. We begin by showing that (H;) implies that the same
holds for both the solution u and the “approximate’ solutions
using (2.1) and (2.4)
olllwel) llugll < [(Twy — TO, wy)| = [(T0, w)| < [|TO]*

and thus c(||u,l|) < M, with My = | T0|*. Clearly, the same bou
Let w be now an arbitrary element of B*. Then by (2.3) anc
(Tu, — Tu, w, — w) = 0 since {w, — w} € B* = B. Thus from (2

ol — wl) llw, — ull < [(Twy — T, we — w)| = |(Twy, — T

< | Ty, — Tull* |w — u.

If T is bounded, then |7, — Tu|* is bounded independently
conclusion of (2.5) follows, since w is arbitrary. Similarly, if 7' s
(H}), the conclusion of (2.8) follows with K’ = C(M)/«, by (2.9).

As an immediate consequence, we have:

CorOLLARY 2.1. Let {B*}°, be a sequence of finite-dvmensiona
with the property that
(2.10) lim {inf {[w — u|; w € B*}} =0,

k=400

where w is the unique solution of Problem P. If T satisfies (Hy), (Hy,
as a special case (H}), (H,), (Hy)), then

(2.11) lim {J|lu, — u} =0,
k=4 o0
where uy, k =1, 2, ..., are the unique solutions of Problem P*.

We now introduce some standard notation for the following
a positive integer, the Sobolev space W™[a, b] consists of all real-
f(x) defined on [a,b] such that f and its distributional deriv
0 <j < m all belong to L?[a, b]. The Sobolev space Wm2[a, b] is
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with respect to the inner product

b, m

(2.12) (w, v),, Ef { Diu(z) - D"v(x)} dx, wu,ve W™a,b],
a \7=0

and we denote the norm associated with this inner product by |-|,,. The space

Wi2a, b] is then the closure in the norm [, of all infinitely differentiable
functions with compact support in [a, b]. Finally,

(2.13) HwHLw[a’b] = sup |w(x)|

xe[a,bl

denotes the uniform norm of any real-valued function w(z) defined on [a, b].

3. Two-point boundary value problems. As a particular application of the

theory given in §2, consider the approximate solution of the following two-point
nonlinear boundary value problem:

(3.1) Mu(@)] + flz, u(x) =0, a <z <b,

where

(3.1 Mu(z)] = > (=1)'D’(0; J(x)Diu(z)), n >1, = Ll-,
0<i,j<n dx

subject to the homogeneous boundary conditions of
(3.2) Diu(a) = Du(d) =0, 0<j<n—1.
For the coefficient funections 0:,5(%), 0 < 4,5 < m, of (3.1'), we assume that

(i) the coefficient functions 0;,4(%), 0 < i, j < n, are bounded, real-valued
and measurable in # in [a, b], and

(ii) there exists a positive constant ¢ such that

(3.3) f b{ S o, (@) Dw) - wa(x)}dx > ¢ w2

0<ii<n
for all w(x) € W?[a, b].
It follows from (3.3ii) that

f,’;{Eog,an 0; (@) Dw(x) - D%(x)} dx

(3.4) A= inf
welWo™ *[a,b] Jow? () da
w%()

is positive. With respect to the function flx, u) of (3.1), we assume that

(i) f(x, u) is a real-valued function on [@, b] X R such that f(x, uo(2)) €
L?[a, b] for any uy(x) € Wi-2a, b], and
(ii) there exists a real constant » such that

> — A

f(x:u)'—f(x7 U) 27’

U — v
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for almost all z € [a, b], and all — c0 &L u, » < + O W
(3.5) (iii) for each positive real number ¢, there exists a positive
such that
f(xi u) _f(x’ ’U) g AM(C)
U — v
for almost all z €[a,b], and all — o0 <u, v < +
and |u| <e¢, |v| <c.

With these assumptions, the following result is a slight ex
Theorem 7.1] to the nonselfadjoint case.

THEOREM 3.1.  With the assumptions of (3.3) and (3.5), the two-
boundary value problem of (3.1)~(8.2) has a unique generalized s
Wn3[a, b]. Moreover, if B* is any finite-dimensional subspace of
the approximate Problem P* (cf. (2.4)) has a unique solution u,()
positive constants K, and K,, independent of the choice of B, such t}

(3.6) 1 D(uy — ul]) poogany = Ki lug, — ull,, < K, inf {[lwy, — wll,;-

forall 0 <i <n — 1.

¢

Proor. For any u, v € WI?[a, b], we formally define the
form from (3.1):

b

(3.7) a(u, v) :—:f { 0;. (%) Diu(z) - Div(z) + f(z, u(x)) - vz
a \0<i,i<n

From the assumptions of (3.3) and (3.5), it is easily seen that

u € Wi[a, b], there exists a constant K = K, depending only «

(3.8) la(u, v)| <K, |v||, forallve Wg?a,b].

Consequently, a(u, v) is for each u € Wy?[a, b] a continuous line
v € Wi2[a, b], and we can thus write

(3.9) a(u, v) = (Tu, v), for all u, ve Wi?a,b],
n 0

where T' defines a mapping of W7-*[a, b] into W-*[a,b]. That
bounded and finitely continuous also follows easily.
To show that 7 is strongly monotone, we have from (3.7) and

(Tu — Tv,u — ), = alu, v — v) — a(v, u — )

— b{ S o,,Diu—v) Di(u —

0<i,i<n

N (f(x, W —f@ v)) o m‘z}c

U — v
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Using hypotheses (3.3ii) and (3.5ii) and the positivity of A, it then follows that

)w—m

for all u, v € W§2[a, b],

o
(3.10) (Tw — Tv,u — v), > ¢ A + min (y, 0)
A
and hence, 7' is strongly monotone.
We now show that 7' is Lipschitz continuous for bounded arguments. For any
u, v, w € W-?[a, b], we have, using Schwarz’s inequality and hypothesis (3.5iii),
that

[(Tu — Tv, w),| = |a(u, w) — a(v, w)|
b
= f { > o, Di(w— v)- Diw
a |0<t,5<n
+ (f(x, u) — f(=, ”)) (w — v) - %} dx
% — v
where we have assumed that 7= 3,_; ;_, 0,1l L°(, ;> and that [[u] e, ,; <o,
vl Logg 5y < ¢ Thus,
(311 [Tu— Tol, = sup TNy fu— o,
weW™ a0 lwl,

which establishes that 7' is Lipschitz continuous for bounded arguments. Finally,
as a consequence of the Sobolev Imbedding Theorem in one dimension (cf. [38,
p- 174]), we know that there exists a positive constant K, such that

[ D*wl| o0y < Ky llw]|, forallwe Wy*a,b]l, all0 <i <n— 1.

The remainder of Theorem 3.1 then follows immediately from Theorem 2.1.
Q.E.D.

Our objective now is to specialize the general finite-dimensional subspaces of
Wi-?[a, b] to subspaces of L-splines, which were considered in [2] and [34]. To
briefly explain the nature of L-splines, let L be any rth order linear differential
operator of the form

”
(3.12) Liv@)] = Y ci(@) D'v(x), r =1,veCa,b],
=0
where we assume that the coefficient function ¢,;(x) is in (7[a, b] forall 0 < j < 7,
and that in addition there exists a positive constant w such that

(3.13) c(®) = w >0 forall z€a,b].
Next, let A: a = xy < 2; < -+ <y, = b denote any partition of the interval
[, b], and let z = (2, 2y, . . ., 2y), the incidence vector associated with A, be any

vector with positive integer components z; satisfying 1 <z, <rforalll <i < N.
Then, Sp(L, A, z) is defined [34] as the collection of all real-valued functions s(x),
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called L-splines, defined on [a, b], such that
L*L[s(x)] =0 for x € (x;, #;,,) foreach ¢ 0 <

3.14
( ) Dis(w,—) = Ds(x;+) forall0 <k <2r — 1—2,1<

where L* denotes the formal adjoint of L, i.e., for any v(z) € O’[a
LA m~z~4mf (x)v(®)).

As an important special case, if Llu(z)] = "u(z), and £, = £, =
then the elements of Sp(D", A, Z) are then umply the natural spli
and Sp(Dr, A, Z) becomes Sp”(A) in the notation of [36]. |
Liu(x)] = D'u(z) and Z, =2, = -+ =2Zy =1, the elements of
then simply the Hermite piecewise-polynomial functions, and Sp(D
H™(A) in the notation of [12] and [36].

Given a function f(z) € C"[a, b], where 7 is the order of the diff
L of (8.12), there are various ways in which one might interpolate
As a particular case, it is shown in [34] that there exists a

s(z) € Sp(L, A, z) such that
Dks(x;) = Dif(x,), 0 <k <z — 1,1 <i¢<N,

(3.15) : . .
Dks(x,) = DM(x,), 0 <k <r—1lfori=0andi=]

This element s(z) is called the Sp(L, A, z)-interpolate of flz) «
example, if f(x) € C'[a, b], if L{u(x)] = Du(), and if 2, = 2, -
then the piecewise-cubic function s(z) € Sp(D?, A, 2) which sati
r = 2, is just the natural cubic spline interpolation (of Type I) o
that, given the parameters a, 0 <k <z; — 1,0 < i <N-+1
for convenience z, = zy., = r), there exists a unique function s(
such that

Dis(a) =olP, 0 <k <z—1,0<i<N-+1

and we denote by Sp/(L, A, z) the finite-dimensional subspace
all such functions.

We now give some error bounds for interpolation in Sp!(L,
partition Az a = xy < @, < <y = bof[a, b], let A = max,
and let z = (z,...,2y) be any associated incidence vector
extension of results of [12, Theorems 7 and 9], it was showr
f(x) € Wr2[a, b], then there exists a positive constant M su
partition A of [a, b] and any associated incidence vector z,

(3.16) 1D (f — )| p2paor < MAY 7 NLf | oy 0 <7 <

where s(x) is the unique Sp/(L, A, z)-interpolate of f(x)
f(x) € W?2[a, b], there exists a positive constant M’ such that
A and any associated incidence vector z,

(3.17) 1D7(f — M(AP7 | L*Lf || e 0 =<7

S)HLz[a,b] <
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With these error bounds for interpolation in Sp’(L, A, z), we can apply the
results of Theorem 3.1 as follows. For r > n, let Spl(L, A, z) denote the subspace
of Sp!(L, A, z) of elements which satisfy the homogeneous boundary conditions of
(3.2). Then, it follows by construction that Spi(L, A, z) is a finite-dimensional
subspace of Wp2[a, b]. Applying Theorem 3.1 with B* = Sp{(L, A, z) gives us
(cf. [14, Theorems 7.2])

THEOREM 3.2. With the assumptions of (3.3) and (3.5), let u(x) be the unigue
generalized solution of (3.1)-(3.2) in Wila, b] and for any partition A of [a, b], and
any associated incidence vector z, let 4 be the unique solution of the approximate
Problem P* for the subspace B* = Spl(L, A, z), where the order r of L satisfies
r =>n. Then there exist positive coristants K, and K,, independent of A and z, such
that if w(z) € Wh2[a, b] with t > r, then
(318) [ D — w)l pogany < Ky 1 — ully < Ko(AY™ | Lat] 209

forall 0 <i <n — 1. Similarly, if u(x) € W"%a, b] with ¢t > r, then there exist
positive constants K, and K, independent of A and =, such that

(319) | Dd — W)l oopay < Ky 14— ull,, < Ko(B) ™ | L*Lul| £agg 09

forall 0 <i <n — 1.

The error bounds of (3.19) of Theorem 3.2 can be improved, [11] and [13], if
(i) the generalized solution u(z) of (3.1)—(3.2) is smoother, say of class W2™2[q, b]
where m = n + ¢ and ¢ is a nonnegative integer, and (ii) appropriate L-spline
subspaces are selected. Specifically, suppose that we can express the differential
operator M of (3.1") as

(3.20) Miv@)] = Hlo@)] + 3 (—1)D(g, (=) Do(a)

0<d,j<k

IA

where 6, ,(x) € C'[a, b] for all 0 < 4,j <k, where 0 < k < n, and

(3.21) I[o(x)] = io B,(@) Do (),

where we assume that f,(x) € ("[a, b] for all 0 < j < n, and that §,(z) > w > 0
for all x € [a, b] for some positive constant w. In this case, we select the finite-
dimensional subspaces H (I, A, z) of Wi-*[a, b], which are described in detail in
[30] of this volume (see also [22] and [28]). The improved error bounds are then
given by (cf. [28, Theorem 5])

TueoreM 3.3. With the assumptions of (3.3), (3.5), and (3.20), assume that
u(x), the unique generalized solution of (3.1)-(3.2) in W*[a, b], is of class W™ 2[a, b]
wherem = n + q,q > 0,and foranypartition A: a = xy < @, < -+ < @y, = bof
[a, b] and any associated incidence vector z = (zg, 2, . . . , 2y41) With 2y = 2y, =
m-+qand 1 <z, <m—+qforl <¢ <N, let d(x) be the unique solution of the
approximate problem P* for the subspace B* = H (I, A, z). Then there exist positive
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constants K, and K,, independent of A and z, such that

(3.22) [ Dl — )| o,y < Ky(R)Pmmexted 0 <4 <,
where § = max {2k — n; 0}, and

(3.23) (DX — )7, opa,py < Kop(B)Prmax@i=12 0 < i <n

To check the assumption in Theorem 3.3 that the generalized
(3.1)—(3.2) is of class W2™2[a, b], m = n, one can use known reg
[27, Chapter 4]. For example, if the coefficient function o, ;(z) o
than just bounded and measurable (cf. (3.3i)), say of class
0 < i,j < n, then the solution u(x) is in W*"2[a, b].

Improved error bounds in the uniform norm can be similarly
somewhat stronger hypotheses (cf. [28, Theorem 5]).

THEOREM 3.4. With the assumptions of Theorem 3.3, let F b
subspaces H (1, A, z) of W?[a, b] such that @(x), the unique H (1, .
of u(x), vn the sense that

(3.24) Diii(x) = Diu(z;), 0<j <z —1—2q,
for z; =1 4 2q, satisfies for some positive constant K’

. B m—i
(3.25) 1D — w)l g, o0 < K'(R)

o

forall0 <i <n—1,all H(l, A, z)e#.
If u(x) is in C2"[a, b], then there exists a positive constant K such t

(3.26) | Di(d — w)| f, opang < Kg(B)Pmmax@a, 0 <4 < —
and all H (I, A, z) e F.

Other finite-dimensional subspaces of W7?[a, b] can of course
Ritz-Galerkin approximation of the solution of (3.1)-(3.2). Thu
sometimes useful in this regard [1], [33], and [34].

However, because the use of polynomial subspaces of Wg
Galerkin methods is classic, and because the associated theory is
suited to the numerical result of the next section, we now summ
cation of the classical results of D. Jackson and S. Bernstein
approximation to the problem (3.1)-(3.2). Details can be found ir

Let P be the collection of all real polynomials py(x) of de
which satisfy the boundary conditions of (3.2), where N > 2n —
is a finite-dimensional subspace of W-?[a, b], having dimensio
Thus, using the inequalities of (3.6) of Theorem 3.1 in conjur
results of D. Jackson (cf. [24, p. 66]) and S. Bernstein (cf. [24,
gives us (cf. [12])

THEOREM 3.5. With the assumption of (3.3) and (3.5), let w(s
generalized solution of (3.1)—(3.2)tn Wg’2[a, b, and let Py(x) be the
of the approximate problem P* for the subspace B* = PN If u(x)
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t >n and N = max (t,2n — 1), then there exist positive constants K, and K,,
independent of N, such that

K, 1
——=— w( Du;
(N —n)=" ( N — ")

forall 0 < i <n — 1. Moreover, if u(x) can be extended to an analytic function in
some domain which contains the real interval [a, b], then there exists a constant u with
0 < u < 1 such that

(3.27) |1 D¥(py — WL < Ky llpy — ul, <

(3.28)  lim sup (| Di(gy — )|l og, )Y <@ forall0 <i <m— 1.
N-ow

The constant u of (3.28) can be given a precise geometrical interpretation when
the interval [a, b] is such that e = —1 and b = +1. Let & ,» be the largest ellipse
in the complex plane with foci at 2 = —1 and z = -1 such that u(z) is analytic
in &,. If 4 and B are respectively the semimajor and semiminor axes of & ,» then
Bernstein has shown [24, p. 75] that

1

3.29 - )
(3.29) 2 11 B

In particular, if u(z) is an entire function, then u=0.

4. Numerical results. To show how the error estimates of the previous section
compare with actual numerical results, we consider the particular special case of
(3.1)—(3.2) [12], [21]:

(4.1) —Du(z) + €@ =0, 0 <z <1,
subject to
(4.2) #(0) = u(1) = 0.

For this problem, o, () = 1 and 0;4) =0, 0 <7+ j <2 in (3.1'), and the
assumptions of (3.3) and (3.5) are all valid. Specifically, using the Rayleigh-Ritz
inequality [19, p. 184], (3.3ii) is valid with ¢ = 72/(1 + =?), and A of (3.4) is =2
Choosing any u,(x) in W3§-2[0, 1] shows that (3.5 i) is satisfied, and » can be chosen
to be zero in (3.5ii). Similarly, (3.5iii) is easily seen to be valid.

A classical solution of (4.1)—(4.2) is known, viz.

(4.3) u(r) = —In 2 + 21In {csec [c(x — 1/2)/2]}, ¢ = 1.3360557

which can be extended to a function which is analytic in the region in the complex
domain defined by an ellipse with foci at z = 0 and z = 1, and semiaxes 4.7 and
4.6. In this case, u of (3.29) is approximately 0.107.

To give an application of Theorem 3.4, we choose [ = D in (3.21) with all
0, 4(x) =0, and k = 0, and we choose m = 2, so that n — ¢ = 1. Using a uniform

partition A(k) of [0, 1], i.e., A(h): 0 = wo(h) < @y(h) < -+ < xy,y(h) = 1 where

z;(h) = j/(N + 1), the choice of the incidence vector z — (3,2,2,...,2,3)T is
such that the finite-dimensional subspace H,(D, A(R), z) of W}2[0, 1], described
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in §3, is in fact the Hermite space HP(A(R)) of piecewise cubic poly
this subspace, it is known [4], [7], and [35] that the inequality of (3.
any collection &, and thus the inequality of (3.26) is valid, i.e., in t

(4.4) la(h) — ull geoe,y < Ko(A))*.

Table I below gives the associated numerical results for this case.

N dmHPA®) AR —ulrepy @

1 4 5.10 - 103 —
2 6 1.21 - 10-% 3.54
3 8 4.24 - 10-¢ 3.65
5 12 9.58 - 107 3.65
7 16 3.10 - 107 3.93
9 20 1.28 - 107 3.96

TABLE I

More accurate numerical results were obtained for the polynor
PN and these are given below in Table I1. In this case, as previon
the semimajor and semiminor axes are respectively 4.7 and 4.6, so tl
This means from Theorem 3.4 that for N large, we expect [Dy;
be roughly 0.107 times ||y — ull o o0 Which is already the cas
from Table I1 for N quite small.

. . A

N dim P& Py — ullLero,

3 2 4.23-10*

5 4 3.12 - 10-%

7 6 5.03 - 10-®
TasLe IT

5. Eigenvalue problems. We next consider the eigenvalue prot
(5.1) PLlu@)] = Al ux)], 0<w<l,
where

Llu(e) =3 (1 Di(p o) Duta),
(5.1

Mu(x)] = Eo( 1)’ D(q,() D’u(®)),
subject to the homogeneous boundary conditions of
(5.2) Diy(0) = Du(l) =0, 0<j<n— 1.

We assume that 0 < r < n, and that the coefficient functions p,(:
real-valued functions of class €7[0, 1], 0 < j < n, and class C*[0,



momsials. For
25) is valid for
his case,

nial subspaces
1sly remarked,
at u = 0.107.
— u”LOO[O,l] to
se numerically

lem

r) and ¢,(z) are
1,0<k <,
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respectively, and in addition, we require that
(5.3) p,(z) and g,.(x) do not vanish on [0, 1].

Letting & denote the set of real-valued functions in 02"[0, 1] which satisfy (5.2),
we assume that (cf.(2.12))
(Llul, v)g = (u, L[v]), forall u,veD,

64 (Au], v)y = (w, M[v]), forall u,ve2,

and that there exist positive constants K and d such that
(5.5) (Llul, u)y = K(Mu], u)y = d(u, u), foralluec.
Defining the following inner products on &,

(u, ) = (M[u],v), forallu,ve,

.
(56) (w, v)y = (L[ul, v), forallu, v €D,

denote by Hj, and Hy the Hilbert space completions of & with respect to the
norms ||, and |||y, respectively. It is then well known [15], [16], [17] that
solving the eigenvalue problems (5.1)—(5.2) is equivalent to finding the extreme
values and critical points of the Rayleigh quotient:

(5.7) Rlw] = |[w|%/lwl} w(x) e Hy.

With the above assumptions, it is well known [8] that the eigenvalue problem of
(5.1)-(5.2) has countably many eigenvalues {,},°; which are real, have no finite
limit point, and can be arranged as

(5.8) O< <A< <A <Ay <.

Moreover, there is a corresponding sequence of eigenfunctions {¢,(x)}, of (5.1)-
(5.2) with ¢,(x) € &, for which L[¢,] = 1, #[¢,;]. These eigenfunctions are ortho-
normal in the sense that

(5.9) (b b))p = 8, foralli,j=1,2,...,

and the sequence {¢;(x)},2, is complete in H .

Employing the Rayleigh-Ritz method, i.e., finding the extremal values of
R[w] of (5.7) over particular finite-dimensional subspaces of Hy, the following
results have been proved [13]. These results extend the results of Birkhoff, de
Boor, Swartz, and Wendroff [6] for cubic spline functions, which correspond to the
special case m = 2 and » = 1 of (5.10) and (5.11). We now state these results.

TurorEM 5.1.  With the assumptions of (5.4)—(5.6), let {A;}7° | be a sequence of
partitions of [0, 1], let {z;}° | be a corresponding sequence of incidence vectors associ-
ated with {A;}°, and let ;s and $k ;(x) be the kth-approximate eigenvalue and the
kth-approximate eigenfunction of (5.1)-(5.2), obtained by applying the Rayleigh- Ritz
method to the subspace Spy(L, A, z;) of Hy. If the eigenfunctions {¢,(x)}: ; of
(6.1)~(5.2) are of class W40, 1], with t > 2m > 2n, there exists a positive constant




164 R. S. VARGA

K,, independent of j, and a positive integer jo such that

(5.10) Mo < Dy < Aot Kl(Aj)Z(zm-m for all j = jo-

i.e‘, 0<11<)\-2< °

Moreover, if the first k etgenvalues are simple,
and a positive integer |

exists a positive constant K,, independent of Js

(5.11) "$k9 — ¢l e <K H(Z;ka — dlly = Kz(Aj\Fm“n for al

Explicit calculations of eigenvalues by Birkhoff and de Boor

exponent of A in (5.10) is best possible. The analogue of this for ths
(5.11) is similarly true for the eigenfunction approximation in t]
However, in the norm ||| Lo 11 the exponent of A in (5.11) is not
possible, and can in fact be improved using particular [-spli
Specifically, it is shown in [29] for particular cases that the exponen
can be increased to 2m.

The choice of the polynomial subspace Pé’”) of Hy, where m -
similarly gives from the Rayleigh-Ritz a kth eigenvalue approxi
A and a kth eigenfunction approximation $k.m(x) to ¢y(x). For s
we again state the following result of [13]. V

TaEoREM 5.2. With the assumptions of (5.4)—(5.6), assume
functions {p, (@)}, of (5.1)~(5.2) are of class cto, 11, with ¢t = 2
exist constants M, and M, such that

[max ® (D‘(f)i, 1
m

1<i<k —

(5.12) A = pm < et Ml{

(m — n)"

for all m = M, Moreover, o< <A< < Ay, there exi
and M, such that

(513) [ Bem — del oo < K I1dum — dilly = Mo
% { 1 [max [0) (thii, _
(m — n)"1<i<k m -

for all m = M. Ifthe eigenfunctions {$;(%)}i_, can be extended to a

in some domain in the complex plane which contains the interval
<land 0 < py <1, su

exist two constants uy and py with 0 < iy

(5.14) lim sup (Agm — M)"™ = th
and "
(5.15) lim sup (|| $km - ‘f’k”L‘”[o,u)l/m = HUo-

There are extensive numerical results in [6] for cubic splines a
subspaces as applied to the Mathieu equation. However, we¢
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complementary numerical results here for a simpler eigenvalue problem [13], [20],
namely

(5.16) —D?u(z) = Ju(z), 0 <z <]I,
subject to the boundary conditions of
(6.17) %(0) = u(l) = 0.

If the quintic Hermite subspace H®(A(R)) is applied to (5.16)—(5.17), then the
inequality of (5.10) of Theorem 5.1 is valid with m — 3,n =1, i.e., the exponent
of A; in (5.10) is 10. The numerical results are given in Table ITI. On the other

k| dim (H®(A(R)) J(h) — Ao(h) — 4w | Ay(h) — 972 | Au(h) — 16m2
1/2 7 1.27 - 10-7 1.65 - 10-3 3.51 - 10-2 3.83 - 10-1
1/3 10 3.66 - 10 1.18 - 10-5 5.98 - 10-3 3.59 - 10-2
1/4 13 2.42 - 10-10 9.96 - 10-7 1.18 - 10~ 1.32 - 10-2
1/5 16 7.41 - 10-11 9.53 - 108 1.62 - 10-5 5.06 - 10-4

Tasre III. Quintic Hermite Subspaces H® (A (k)

hand, since the eigenfunctions of (5.16)~(5.17) are entire functions, i.e., analytic in
the entire complex plane, then (5.14) of Theorem 5.2 is valid with Uy = 0. The
exceedingly rapid convergence of the approximate eigenvalues in this case for the
polynomial subspaces P{™ is given in Table IV.

m dim P:)"‘) ll’m — 72 22,,,, — 47 23’,,1 — 972 24,,,, — 1672
4 3 1.45-10-¢ 2.52 13.3 —_—

6 5 8.66 - 10-8 2.31-10-2 3.47 - 101 42.6

8 7 2.60 - 1012 5.56 - 108 3.03-10-3 2.08

Tasre IV. Polynomial Subspaces P{™

For further numerical results for Rayleigh-Ritz methods applied to piecewise-
polynomial subspaces, see also [6], [18], and [37].

REFERENCES

1. J. H. Ahlberg and E. N. Nilson, The approximation of linear functionals, SIAM J.
Numer. Anal. 3 (1966), 173-182.

2. J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, The theory of splines and thesr applications,
Academic Press, New York, 1967, 284 pp.

3. Jean-Pierre Aubin, Approvimation des espaces de distributions et des opérateurs differentiels,
Bull. Soc. Math. France, Mémoire 12, 1967, 139 pp.

4. G. Birkhoff and C. de Boor, Error bounds Jor spline interpolation, J. Math. Mech. 13
(1964), 827-836.

5. , ‘“Piecewise polynomial interpolation and approximation,” in Approximation
of functions, edited by H. L. Garabedian, Elsevier, Amsterdam, 1965, pp- 164-190.

6. G. Birkhoff, C. de Boor, B. Swartz, and B. Wendroff, Rayleigh-Ritz approzimation by
precewise cubic polynomials, SIAM J. Numer. Anal. 3 (1966), 188-203.




166 R. S. VARGA

7. G. Birkhoff, M. H. Schultz, and R. S. Varga, Piecewise Hermite interp,
two variables with applications to partial differential equations, Numer. Math. 1]

8. Fred Brauer, Singular self-adjoint boundary value problems for the di
Lz = AMx, Trans. Amer. Math. Soc. 88 (1958), 331-345.

9. F. E. Browder, Existence and uniqueness theorems for solutions of n
value problems, Proc. Sympos. Appl. Math., vol. 17, Amer. Math. Soc., |
1965, 24-49.

10. J. Céa, Approximation variationelle des problémes aux limites, Ann.
(1964), 345-444.

11. P. G. Ciarlet, An O(h?) method for a non-smooth boundary value proble
2 (1968), 33-49.

12. P. G. Ciarlet, M. H. Schultz, and R. 8. Varga, Numerical methods of h
for nonlinear boundary value problems. I. One dimensional problem, Numer
394-430.

13. , Numerical methods of high-order accuracy for nonlinear bounda
III. Eigenvalue problems, Numer. Math. 12 (1968), 120-133.

14. -, Numerical methods of high-order accuracy for nonlinear bounda
V. Monotone opérator theory, Numer. Math. 13 (1969), 51-717.

15. L. Collatz, The numerical treatment of differential equations, 3rd ed
Berlin, 1960, 568 pp.

16. R. Courant, Variational methods for the solution of problems of equilibris
Bull. Amer. Math. Soc. 49 (1943), 1-23.

17. R. Courant and D. Hilbert, Methods of mathematical physics, vol
New York, 1953, 561 pp.

18. C. C. Farrington, R. T. Gregory, and A. H. Taub, On the numerical .
Liowville differential equations, Math. Tables Aids Comput. 11 (1957), 131-1

19. G. H. Hardy, J. E. Littlewood, and G. Pélya, Inequalities, 2nd ed.,
Press, 1952, 324 pp.

20. R. J. Herbold, Consistent quadrature schemes for the numerical solution
problems by variational techniques, Doctoral Thesis, Case Western Reserve U

21. R. J. Herbold, M. H. Schultz, and R. S. Varga, Quadrature schemes
solution of boundary value problems by variational techniques, Aequat. Math. (

22. B. L. Hulme, Interpolation by Ritz approximation, J. Math. Mech. 1¢

23. H. B. Keller, Numerical methods for two-point boundary-value pr
‘Waltham, Mass., 1968, 184 pp.

24. G. G. Lorentz, Approximation of functions, Holt, New York, 1966, 1

25. S. G. Mikhlin, ‘“Variational methods of solving linear and non-linea
problems’’ in Differential equations and their applications, edited by I. Bt
Press, New York, 1963, pp. 77-92.

26. G. Minty, Monotone (nonlinear) operators in Hilbert space, Duke M
341-346.

27. J. Nedas, Les méthodes directes en théorie des équations elliptiques, Ma
1967, 351 pp.

28. F. M. Perrin, H. S. Price, and R. S. Varga, On higher-order numericc
linear two-point boundary value problems, Numer. Math. 13 (1969), 180-198

29. J. G. Pierce and R. S. Varga, Higher order convergence results for
method applied ‘o a special class of eigenvalue problems (to appear).

30. H. S. Price and R. S. Varga, Error bounds for semidiscrete Galerkin
parabolic problems with applications to petroleum reservoir mechanics, tl
pp. 74-94. '

31. M. E. Rose, Finite difference schemes for differential equations, Math.
179-195.

32. 1. J. Schoenberg, Contributions to the problem of approximation of e
analytic functions. Parts A and B, Quart. Appl. Math. 4 (1946), 45-99, 112-

33. —, On the Ahlberg-Nilson extension of spline interpolation: the
optimal properties, MRC Technical Summary Report 716, Madison, Wiscons

34. M. H. Schultz and R. S. Varga, L-splines, Numer. Math. 10 (1967),

85. A. Sharma and A. Meir, Degree of approximation of spline interpolati
15 (1966), 759-767.




olation n one and
| (1968), 232-256.
ferential equation

mlinear boundary
Providence, R.I.,

Inst. Fourier 14
m, Aequat. Math.

igh-order accuracy
. Math. 9 (1967),

ry value problems.
ry value problems.
. Springer-Verlag,
«m and vibrations,
. 1, Interscience,
solution of Sturm-
50.

Cambridge Univ.
of boundary value
niversity, 1968.
for the numerical
50 appear).

 (1968), 337-342.
oblems, Blaisdell,

88 pp.

r boundary value
vbuska, Academic
ath. J. 29 (1962),
sson et Cie, Paris,
'l methods for non-

the Rayleigh-Ritz

approximations of
1ese Proceedings,

Comp. 18 (1964),

quidistant data by
-141.

g-splines and their
in, 1966, 35 pp.
345-369.

on, J§. Math. Mech.

NONLINEAR BOUNDARY VALUE PROBLEMS 167

36. R. S. Varga, “Hermite interpolation-type Ritz methods for two-point boundary value

problems” in Numerical solution of partial differential equations, edited by J. H. Bramble, pp.
365-373, Academic Press, New York, 1966.

37. B. Wendroff, Bounds for eigenvalues of some differential operators by the Rayleigh- Ritz
method, Math. Comp. 19 (1965), 218-224.

38. K. Yosida, Functional analysis, Academic Press, New York, 1965, 458 Pp.
39. E. H. Zarantonello, Solving functional equations by contractive averaging, MRC Technical
Report 160, Madison, Wisconsin, 1960.

Case WESTERN RESERVE UNIVERSITY




