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§ 1. Introduction

In [2] and [3], the numerical approximation of the solution of real nonlinear
two-point boundary value problems of the form

(1.1) Liu(x)]+ (% u(x))=0, o0<x<1,
with Dirichlet boundary conditions
(1.2) Dhu(0)=D*u(1)=0, D=, osk=n—1,

was considered, where

M=

(—1)/Di{p;(x) Du(x)}, n=1,

(1.3) Llu(x)]=

7=0

is a 2#u-th order self-adjoint linear differential operator, and it was shown that
the Rayleigh-Ritz-Galerkin method is an efficient scheme, both theoretically
and numerically, for solving such problems.

Our aim here is to extend the results of [2] and [3] to the case of nonself-
adjoint linear differential operators whose coefficients have a singularity at one
or both end points of the interval [0, 1]. For ease of exposition, we shall restrict
ourselves here to second order operators, as in the particular case of

(1.4) Llu()]=Du(x) + - Du(x), 0<x<1,

where ¢ is a constant satisfying 0 <o<1, and we will consider the associated
real nonlinear Dirichlet problem

(1.5) Llu(x)]=g(x u(x), o0<x<1,
(1.6) u(0)=oa, u(1)=4.
We remark that the one-dimensional boundary value problem of (1.4) —(1.6) can

in certain cases be obtained by a separation of variables from the two-dimensional
degenerate elliptic problem, treated by Gusman and Oganesyan [5].
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In [4]. we also considered nonself-adjoint problems such as D2y (x) =
f(x, u(%), Du(x)), 0<x<<1, and % (0) =a, u(1) =f. However, if we write (1.4)
and (1.5) as D2u(x) =g (¥, u(x)) — (0/%) Du (x) =F (%, u (), Du(x)), the particular
dependence of f(x, #, v) on its third argument is such that the analysis of [4]
is not directly applicable. Thus, we feel that the problem (1.4) —(1.6) has interest
in itself.

The particular singular boundary value problem (1.4) —(1.6) has been recently
considered by Jamet [6, 7], and Parter [9], in the linear case only. In particular,
Jamet has studied the application of a standard three-point finite difference
scheme associated with a uniform mesh of mesh size %, and he has shown that
the error is O (4'~°) in the max-norm, the exponent (1 —o0) of / being best possible.
Jamet’s method is essentially equivalent to finding the Rayleigh-Ritz-Galerkin
piecewise-linear approximation of the solution @ on a uniform mesh. By using
a more suitable subspace for Rayleigh-Ritz-Galerkin’s method, we shall improve
Jamet’s result by proving in inequality (3.16) that the error in the uniform norm
for our Galerkin approximation is O (k*7°), the exponent of % again being best
possible.

In order that we may apply our techniques to solving (1.5)—(1.6), we first
replace the boundary conditions of (1.6) by homogeneous ones. If we were to
subtract off the linear function o+ (f —a)» from u(x) in (1.5), a singularity
might be added to the function g(x, ) of (1.5) for the new problem. Instead,
we put o(x) =u(x) — (2 + (B —a) 42), so that solving (1.5)—(1.6) is equivalent
to solving

(.7) L)) =h(x,v(x), o0<x<1,
(1.8) v(0)=v(1) =0,
where (x, v) =g (¥ v+a+(f—a)22) —2(f —a) (1+0).
Next, we put the boundary value problem of (1.7) —(1.8) into a self-adjoint

form, using the fact that @ is a solution of (1.7) —(1.8) if and only if it is also a
solution of

(1.9) D{x’Du(x)} =f(x u(x)), o<x<1,
(1.10) u(0)=u(1)=0,

where

(1.11) f(x, u)=x"h(x, u).

At this point, we generalize the differential equation of (1.9) to

(1.12) D{p(x)Du(x)} =] (x u(x), o0<x<1,
where we assume that the function p (x) satisfies

i) p(x) >0 in (0,1),
(1.13) (i) peC'(0,1), and

(iif) MV eL1[o, 1].
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It is easy to verify that the particular choice p(x) =% 0=<c¢<1, does in
fact satisfy all the conditions of (1.13).

To begin our discussion, we define S to be the linear space of all real-valued
functions we ([0, 1] satisfying the boundary conditions of (1.10), such that w
is absolutely continuous on [0, 1], and such that

(1.14) VP (%) Dw (x)€L2[0, 1].

Note that Hg[0, 1]¢S, where Hy[0, 1] is the Sobolev space of absolutely continu-
ous functions defined over [0, 1] satisfying the boundary conditions of (1.10),
and such that DweL?[0, 1]. That we are actually obliged to extend the definition
of our space of admissible functions (which, in [2], was S = H§[0, 1] in the special
case of second-order problems) to a space containing strictly H§[0, 1] may be
seen from the following example: The boundary value problem D{x°Du(x)} =
—3(0+2) xM°, 0< x<<1, together with the homogeneous boundary conditions
of (1.10), has the unique solution @(x) = x'~“ — x3 which belongs to S for 0=< o<1,
but does not belong to H§[0, 1] whenever 1 <¢ <1. Also, the space S as defined
above is a special case of the so-called weighted Sobolev spaces, such spaces being
a useful tool in studying weak solutions of singular boundary value problems
(cf. Necas [8, Chapter 6] and Gusman and Oganesyan [5]).

Next, we introduce the positive quantity (see Lemma 1)
1
[P (%) [Dw(x)]2ax
(1.15) A=inf?®

wEeS N 2
o\ﬁ@?«vu dx

w==0

We assume that the real function /(x, ) given in (1.12) is continuous in [0, 1] X R,
and continuously differentiable with respect to # for all 0 < x <1, and all real #,
and that there exists a constant y such that

(1.16) [, (x, u) m%w (x,u)=y>—A, forall 0=<x=<1, and allreal ».
We remark that the theoretical results to follow remain valid if we replace (1.16)
by a weaker assumption, based on divided differences of f (cf. [2, §8)).

To outline the subsequent material, §2 briefly lists the basic results con-
cerning the application of the Rayleigh-Ritz-Galerkin method to the problem
(1.12) —(1.10), and since these results are identical to those given in §§ 2—4 of [2],
the corresponding proofs will be omitted. However, an essential difference arises
when particular subspaces are considered in § 3. This is due to the fact that the
solution of (1.12) —(1.10) has in general unbounded derivatives at the end points
of [0, 1]. Thus, the error bounds derived in [2] are no longer valid since they
depended upon L*-bounds of some derivative of the solution, and this difficulty
is circumvented by introducing an appropriate approximating subspace. In so
doing, we employ a method introduced by Ciarlet [1] and then generalized by
Perrin, Price, and Varga [10]. Finally in § 4, a numerical example is included.

We remark that by the classic change of variables,

3 d
=[5

0
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where z(x) is a continuous strictly increasing function, the problem (1.10) —(1.12)
can be reduced to the following nonsingular form:
(1.12") iy}ﬂmﬂ? UR), o<z<zn=z(1),
(1.10) U(0)=U(%) =0,
where, if x(z) denotes the inverse function of z(x), then
Up)=u(x(z)) and F(z, U)=p(x(2))f(x(), U).

Although this reduction is possible, we feel that it is desirable, as in [7], to directly
consider the numerical approximation of the solution (1.10) —(1.12).

§ 2. Variational Formulation
We begin with the following result.

Lemma 1. The quantity
1 ¥
e1) leh={J 2 Dw(x2as)
is a norm over the space S, and the following holds:

(2.2) @] o0,y =sup{|w(*)]: 0=x=1} =Jr(1) |w|, forall weS,

where 7 (x) is defined by

- at
(2.3) ) H.\§ for all xe[0, 1].
0
Finally, the quantity A defined in (1.15) is positive.

Proof. Let weS. Since |/p (x) Dw (x)€L?[0, 1] and p (x) > 0in (0, 1)by (1.13) (i),
it follows from w (0) =w (1) =0 that ||, is a norm over the space S.
Next, since w(x) is absolutely continuous and @ (0) =0,

sgu\bim&mn.\‘_\www:\Emv.wimvv&m forall  xefo, 1],
0 0

so that, using the Cauchy-Schwarz inequality and the definition of 7(x) in (2.3),
we have

[w(®)| =)r(1)-|w], forall xelo,1],
which proves (2.2).
Finally, it follows from the inequality of (2.2) that

fpe) Dw@rar
A=inf *— (1)
wes  Jw@ear

v

>0,

which completes the proof. Q.E.D.



Numerical Methods of High-Order Accuracy 91

As in [2], we make the hypothesis that the boundary value problem (1.12) —
(1—10) has a classical solution @ (i.e., @€C°[0, 1]~ C2(0, 1)). This implies that
DeS, since it follows from (1.42) that

p(X)DD(x) = [[(n, D)) dn +p(x) DD(x,), forall x, x,€(0, 1).
Keeping x, fixed, we see that p (x) D @(x) can be extended to a continuous function
over [0, 1], say ¢(x), and thus, from (1.13) (iii), }/p (x) D ®(x)€L2[0, 1]:

1

1
\Es Sﬁx:w%n\ﬁmwv% i

0

Next, we have as in Theorem 1 of [2],

Theorem 1. With the assumptions of (1.13) and (1.16), @ strictly minimizes
the following functional

1 w (%)
(2.4) = {1500 w2 +1 1 dnfa,

over the space S, and thus @ is the unique solution of (1.12)—(1.10).

Proof. 1t is readily verified with the above assumptions that
Flw)=F[®] + ,xx\w.*.“\v \ [w(x) — D(x)]2dx, forall weS,

proving that Flw]>F[®] unless w=®. Q.E.D.

We now briefly describe the approximation scheme. Let S,; be any finite-
dimensional subspace (of dimension M) of S, and let w;, 1<7 <M, be M linearly
independent functions in Sy . Then, the above inequality allows us to prove,
exactly as in Theorem 2 of [2]:

Theorem 2. With the assumptions of (1.13) and (1.16), there exists a unique
M
function @,; = ) #;w,in S,; which minimizes the functional F[w] of (2.4) over S,,.
i1
In what follows, we shall for brevity call @, the Galerkin approximation of
@ on the subspace Sy, .

As in [2, Lemma 2], we have

Lemma 2. Let g be a continuous function over [0, 1] satisfying
(2.5) —A<y=gx)=I', forall xe€f0,1],

for some constants y, I". Then

2:) lely=1{ 0 (Dw (0P (9 ()]
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is a norm over the space S, and moreover this : orm is equivalent to the norm
|- o of (2.1), i.e., there exist two constants m =m (y, ) and M = M(y, I") such that

(2.7) m(y, I') |w|, < |w|o= My, I')| for all weS.

As in Theorem 3 of [2], we have the following fundamental result:

Theorem 3. Let @ be the (classical) solution of (1.12)—(1.10) subject to the
assumptions of (1.13) and (1.16), let S,; be any finite-dimensional subspace of S,
and let @y, be the unique Galerkin approximation which minimizes F'[w] over Sy, .
Then, there exists a constant C, which is independent of S,;, such that the following
error bound is valid:

(2.8) @y — Pllroro,n = V7 (1) @0 — Py =

— Dly; weSy}-
The following is then an immediate consequence of Theorem 3.

Theorem 4. Let @ be the (classical) moEEos of (1.12)—(1.10) subject to the
assumptions of (1.13) and (1.16), let {S,,}72; be any sequence of (not necessarily
nested) finite-dimensional subspaces of S, m:m let ?SS 2, be the corresponding
sequence of Galerkin approximations obtained by minimizing F[w] over the sub-
spaces Sy,. If

(2.9) lim {inf{|w — @|

1—>00

0> NQmMN,\?WW“ 0,

then {@,,};2, converges uniformly to @.

§ 3. Approximating Subspaces
Let I1: 0=1xy< ;<< %y<<---<wy,,=1 denote any partition I of [0, 1].
Then, with 7, we define the space S™ as being the subspace of S whose func-
tions w satisfy

(3.1) D{p(x)Dw(x)} =0, x,<x<w;, forall 0=Zj=N.

For computational purposes, a convenient basis for S¥ can be obtained in terms
of the function 7(x) of (2.3) as follows. Let %;(x)=7(x) —r(x,) and let w,,
1<7 =N, be defined by:

0, 0=x=ux; 4,
@b (5), wa=x=a,
GNV %@ARVM 1 3 7. < r<
1 Iﬁ A V\ A i.u.v R X R«%Hg
Oa RI‘MARA\—

It is readily verified that each w;, 1 =<7 =N, belongs to the space S, and satis-
fies (3.1), as well as w,(0) =w (1) =0. Since in addition

any function geS” can be expanded with respect to the basis {w;}i_, as

g(x)= (%) w; (%) .

D=
og

=1

It



Numerical Methods of High-Order Accuracy 93

Given @€S, we define its S™-interpolate % to be the unique element in S
which satisfies
(3.3) w(x,)=D(x,), O0Zi<N-H+1.

We then prove

Lemma 3. Let @ be the solution of (1.12)—(1.10), and let @ be its unique
S™.interpolate. Then,

(3-4) @ — Do,y =M - £(I1),
where M =sup{|f(x, ®(x))|; 0= r=1}, and

e

E2)

~

Proof. Consider any interval [x,, x,.,], 0=4¢<N. Since % — @ vanishes at
the two end points of this interval, an integration by parts gives us that

Fig1 Fig1

x pO{D (B(t) — D(¢))}2 dt = i.\ Dip(t) D (@ () — D)} (@ () — D)) dt.

We remark that this integration by parts is valid even in the cases i=0, N
Next, as D{p(t) D@ (t)} =0 in [x;, ,,,], and D{p(?) Dd(t)y=f(t, D)), the
integral can be expressed as

Xit1 ¥ip1

«\é {D (@) lesv%&n.\ F(t, D) (@(2) — () dt,

and thus,

Xig1

(3-6) JpOAD (@) — PW))}2dt = M (%, — %) [ — B g, -

xi
Next, we can write for any x€[x,;, x,,,], 0 =7 <N, that

X 5 x 1 - .
() =00 = [ D0 — o)ar = [ (PODEO o0 ar,

[

and hence by applying the Cauchy-Schwarz inequality, we obtain

B0 —0@i=) [ ) ([ 0060 c0)

Xig1 3 Xig1 3
2 %,

As this holds for all x€[x;, x,,,], we have

Xipa ([ % 3

= P [ ) [ 2O E0 - 00)pary

X X
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Combining this with the inequality of (3.6) then gives

Xit1
dat
=M%, — %) P’

and thus, with the definition of #(/I) of (3.5), the desired inequality of (3.4)
follows. Q.E.D.

We can now prove:

@ — Dlpo

Zig1]

Theorem 5. Let @ be the solution of (1.12) — (1.10), subject to the assumptions
of (1.13) and (1.16), and let @ be the unique Galerkin approximation which
minimizes F[w] over the subspace S™. Then, there exists a constant C, independent
of the partition /7 such that

(3.7) 1@ — Dllw 0, =C-£(I]).

Proof. Following Ciarlet [1] and Perrin, Price, and Varga [10], the basic
idea is to compare @ with the SZ-interpolate @ of the solution @ (cf. inequality
(3.13)), using the fact that the functions of ST satisfy in each open interval
(%, %;41), 0=1 =N, the differential equation D{p(x) D w(x)} =0 of (3.1).

Let

1

ki=[{p(x) D (x) Dw;(x) +f(x, @ (%)) w;(x)}dx, 1=i=N.

0

Since
1

[{p(*) D D(x) Dw;(x) + [ (% D(x))w;(x)}dx=0, 1=i=N,

0

as an integration by parts shows, we may rewrite &; as

1
\:H.,:w (%) (D (%) — D D(x)) Dw; () +§ (x) (B (x) — P(x)) w,(x) }dx,
where g(x) =/, (%, O(x) B (x) + (1 —O(x)) D(x)) with 0< @(x) < 1. By hypothesis,
we know that g(x) is a continuous function on [0, 1], and moreover, from (1.16)
and the fact that a priori bounds, independent of %, can be found for @(x) and
W(x) (cf. [2, Lemma 4]), then

I\_A%MWQVMNZH forall 0=x=1,

where [" is some constant independent of /.
Next,

%Hﬁﬁ«v (D% (x) —DD(x))Dw,(x)dx=0, 1=i=N,

0

as an integration by parts shows, using (3.1) and (3.3), so that

(3.8) F.H\Hwﬁa (@ (%) — DP(x))w;(x)dx, 1=i<N.
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As in [2], it is easy to see that the unique function @ which minimizes F[w]
over the subspace S¥ satisfies

1

J{p (x) D@ (x) Dw,(x) + f (=, @ (x))w;(x)}dx=0, 1=i=N,

0
so that we may also express &; as

1
(o) Ri= {0 (DB () =D () Dioy() +2 () (B(3) —B() wi ()},
1=</<N,
where g(x) similarly satisfies the bounds
—A<y=<gx) =D, forall 0= x=1,

r being some constant independent of 4.

N N
Writing @ = ) 4;w;, and @ = Q) 4,w;, we obtain from (3.8)
im1

=

N 1
X (d—i) k=g (

=1 0

A

x) — D(x)) (W (x) — @ (x)) dx,

and similarly we obtain from (3.9)

28— b= () DB () — DB+ ) B () — B (W1 v,

=1

so that, using the norm of (2.6),
B10) (%= 20 (B) — D) (B @) dx,

and hence from (2.7) and (3.10),

5.41) (17—l = (M, D)2 (|5 —2]p)*

=G| — Plesgo, 1 | B— Ber .15,

with C; = {M(y, N\J% (max{|y|, _Nﬂ_t Since by (2.2),

(3-12) | —@|e2f0,1) = | — Do 0,0y = V7 (1) | @ — By,

from (3.11), we obtain |# — @]y < C,|® — D@|r210,4;. Consequently, using (2.2),
(& — @ 0,1 = V7 (1) | — D]y

A W
(3.13) < Cy|B— Dlis0,11 = Cs|— Pl 0,17

Thus, by combining the inequalities (3.12), (3.13), and (3.4) of Lemma 3, we
finally have:
| — Plrwo,1) = @ —Bro,1) + B — Plr= o1y
Aﬁ.\‘h__g @:N\SMO:AQ \A.\Nv

which completes the proof. Q.E.D.
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Several consequences of Theorem 5 can now be deduced. First, if the func-
tion £ («, u) of (1.12) is independent of u, then the function g (%) in (3.8) is necessarily
zero, and it follows from (3.10) that @ (x) =@ (x), and consequently, @ (x) inter-
polates @(x) in the points x;, 0 <47 <N --1. This gives us

Corollary 1. Let f of (1.12) be independent of «, and let @ (x) be the unique
Galerkin approximation in S” which minimizes the functional F [w] over S™.
Then, @ (x)=®(») where @ (x) is the unique interpolate in S¥ of the solution
D(x) of (1.12) —(1.10). Thus,

(3.14) k) =DGh), 0=<i<N-1.

The results of Theorem 5 and Corollary 1 make no assumptions on the parti-
tion /7 of [0, 1]. In particular, the error bound of (3.7) of Theorem 5 does not
resemble typical error bounds, in that no explicit dependence of # ({I) on a mesh
size h appears. For this reason, we investigate several types of partitions of [0, 1].
First, consider a uniform partition I7": 0 = Ko<l x;< -+ <xy.;=1 where x;=1h,
0=jJ=N -+1=h"1 of the interval [0, 1]. In this case,

(i+1)h
W _ _at |
(3.15) oI =h .@wﬂ\ pu | =he ).
ih

Note that from (1.13) (iii), 7 (k) =0 (1) as A —0. Hence, for a uniform partition /7%,
the error bound of (3.7) of Theorem 5 is at least of order 4. In the case that
?(x) 2w >0 for all x€[0, 1], then 7(h) =0 (k) as h—0, so that (T =0 (h?),
which agrees with the error bounds of [1] and [10]. On the other hand, if p
vanishes at one end point of [0, 1], say x=0, then it is clear that for 4 suf-

ficiently small,
B

dt
T Q«v = mmvl .
0
Hence, #([1") is ultimately determined by the behavior of # in the neighborhood
of x=0. For example, if p(x)=1° 0=o< 1, then T(h)= IMWIWM for all 2>o0,
and thus
(3.16) |@ = Plewoy=C-£UT") = C 17

The result of (3.16) is an improvement of the recent results of Jamet [6, 7],
who established by means of difference methods for Lnear problems a discrete
result like that of (3.16), however, with an exponent of % reduced to 1 —¢. We
further remark that, in the linear case, the determination of Jamet’s discrete
solution and the determination of the Galerkin approximation @ (x) for our
variational approach both depend upon the solutions of tridiagonal matrix equa-
tions, so that computationally, the methods are comparable. The numerical results
of §4 do confirm the rate of convergence of (3.16), so that the subspaces of S
which correspond to the above uniform partitions 71" of [0, 1] are attractive
for such singular problems.
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It is natural to ask if an error bound such as that of (3.16) is sharp. To show
this, consider the function @(x)= x*~° —x®~°, which satisfies the boundary con-
ditions of (1.10).

Then,

D{(x*DP(x)}=0—2, 0<<x<1,

and thus ®(x) is the unique solution of (1.12)—(1.10) with f(x, ) =0 —2. Be-
cause f is independent of  in this case, then @ (x) = @ (x) from Corollary 1. Hence,

|@ — Pl 0,17= & — Plr=0,1 = |# — Pro 10,01-
By direct calculation, we find that
|@ — ®|n 0,1 = Ca 7,

1—o \1—0o 1—0\2—0
e={=) -G )
Hence, |@ — @ (0,1;= C24*°, showing that the error bound of (3.16) is sharp
in this case.

Another form of partition of the interval [0, 1] is suggested by the following
considerations. Given a fixed number N of interior mesh points x,, 1<i1<N,
of (0,1), then the function ¢(II) of (3.5), considered as a function only of the
N variables 0 < ;< %, < --- = xy =<1, clearly assumes its minimum for at least
one optimal partition IT. In addition, it is not hard to show that the associated
N points %, are distinct points in (0, 1), i.e., IT: 0<i < Gp<< -+ < &y<1,

1

and that £ (IT) = wwﬂx (I1)}, for a fixed N, if and only if

where

Fit1
. Lo de . .
LI = (R0 — %) e foreachz, O0=¢

P N

IA

x

Hence, the problem of finding an optimal partition amounts to finding N distinct
Tiga
points #;€(0, 1) with the property that all the quantities (x;,4—x;) r\w&iﬁwd
xi
0= <N, which occur in #(/I) are equal. The advantage of an optimal partition
is of course that for a given computational work (the solution of an N XN tri-
diagonal system), it is the one that minimizes the upper bound (3.7) of the error
|@ — @|» 0,1, However, searching for such an optimal partition may be time-
consuming. Instead, the above characterization of optimal partitions may be
used as follows: Fix the quantity Z(IT) in (3.7) so that the error |& — @[ 0 1)
is less than or equal to a given accuracy. Then, define recursively 0==%,<<#<C
%y<< -+, in such a way that
Firl
ESMQI&V\&P@.HO:.
@+H s. %ANV w -~

~

X

If no #; is unity, set #y,; =1, where N is the last point of the above sequence
in (0, 1). Otherwise, if ;=1 for some 7, set ., =1. In view of the above remarks,
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~

such partitions I7: 0<< # << %,<< --- << Xy<1 can be called gquasi-optimal, in
1

that only the final quantity (1— %y) i may be smaller than 7 (/). Such

P ()
AN
quasi-optimal partitions have the advantage that for a fixed 7 (I), they lead to
systems with the smallest possible number of unknowns, i.e., they minimize the
computational work.

Finally, other finite-dimensional subspaces of S can also be considered. Spe-
cifically, if the subspace Hg(II) (cf. [2]) of continuous piecewise-linear functions
of S is used with a uniform partition I7* of mesh size 4, then the analogue of
(3.16) for the case p(x) =4x"is

(3-17) o — Do E.&MGST&.

which is essentially the same as Jamet’s result. Moreover, the exponent of % in
(3.17) can be shown to be best possible.

§ 4. Numerical Example
Consider the particular singular nonlinear boundary value problem:

(4.1) D{yxDu(x)}=u*— (§ +x(1—2x)%), O0<<x<1,
subject to the homogeneous boundary conditions
(4.2) u(0)=u(1)=0,

which corresponds to the choice p (¥) =° with o= { in (1.12). By restricting
our attention to nonnegative solutions, it is known that there exists a unique
nonnegative solution @(x) of (4.1)—(4.2) (cf. [2, p. 419]), which is given explicit-
ly by

(4.3) D(x)=xt—2a2, 0=x=1.

For our numerical example, we chose a wuniform partition IT": 0= x,<< x;<<
< g4 =1 of [0,1] with x;=7% and A =N +1. Calling the resulting sub-
space of §3 S*, the nonnegative Galerkin approximation @, (x) were determined
for various values of the mesh spacing #==1/(N +41). The results are given in
the table below.

Table

h dim S* |2 — @y, o (0,1 [Exponenta
0.5 1 1.3142- 1071 -

0.25 3 4.6716 - 1072 1.492

0.125 7 1.6713 - 1072 1.483
0.0625 15 5.9575 - 1073 1.488
0.03125 31 2.1159 1073 1.493
0.015625 63 7.4962 - 1074 1.497

0.0078125 127 2.6507 - 107% 1.500
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The last column in the table gives the experimentally determined exponent o

of h in ||@), — D=0, :INQ%, for each halving of the mesh 4. The theoretical
value of « is, from (3.16) given by 2 —o¢= 3, which agrees well with the com-
puted values of a.

2
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