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§ 1. Introduction
Let L denote as in [6], the 2n-th order real differential operator defined by

(1.1) Lu(x) =2 (—1)Di{p,(x) D'u(x)}, o<x<1,

pr
where # is some positive integer, and D*=d*/dx*. Throughout this paper, we
shall assume that

(1.2) p;€C¥ [0, 1] forall 0<j<u,
and that
(1.3) Po(X)=w>0 forall 0= x=1,

where o is a constant. With (., .) denoting the usual inner product in L2[0, 1]
and ||. || denoting the corresponding norm, i.e.,

(u, v) .=0f1u ) v(g)dé, and |u]=(u, u)k,

the Sobolev space W;2[0, 1] then denotes the collection of all real-valued func-
tions » defined on [0, 1] such that »€C"~* [0, 1] with D"~ absolutely continuous
and D"u€L?[0, 1], and which satisfy the Dirichlet boundary conditions

(1.4) D*4(0)=DFu(1)=0 forall 0=k=<n—1.

Writing S=W,"2[0, 1] for brevity, the space S is a Hilbert space, with inner
product defined by

(1.5) (u, v)s = (D'u, D'v), u,veS,

i=0

and norm defined by

(1) Jult = 5 107l

In what follows, we make use of the fact that positive constants oy, B, exist
such that for all w€S

(1.6) [DFul| < oy |lufs forall 0<k<u,
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and
(1.7) HD’u[lmEsup{{Dlu(x)];Oéxé’l}_é_ﬁ,nuﬂs for all 0=I<n—1.

We now associate with the differential operator L of (1.1) the symmetric
bilinear form

(1.8) ; a(u, v) :j{é@(") Diu (%) Div(x)} ax

which is defined for all #, v€S. It follows from the assumptions of (1.2) and the
inequalities of (1.6) that the bilinear form a(., .) is continuous over SXS, ie.,
there exists a constant K; such that

(1.9) |a(u, v)| < Ky |uls|v)s, for all u, VES.

Finally, we assume that the bilinear form (., .) is (strongly) coercive in the
sense that there exists a positive constant K, such that

(1.10) Ky (|uls)? < a(u, w) for all u€S.

Using the case k=0 of (1.6) and the Rayleigh-Ritz characterization of the
eigenvalues of L, the assumption of (1.10) gives us that all eigenvalues A of
Lu= Au, subject to the boundary conditions of (1.4), are positive. Combining
(1.9) and (1.10),

Ky (|uls)? = a(u, u) = Ky (|uls)®
it follows that

(1.11) {a(w, w)}

is a norm on the space S, equivalent to the norm |u|s of (1.5"), and
(1.42) [u, v] = a(u, v)

is an inmer-product over the space S.

With the assumptions and notations just made, we now give an outline of
the material to be presented in the subsequent sections. In §2, we introduce
the discrete variational Green’s function G{‘.’ (%, &) which is such that the variational
approximation @ of the solution @ of

(1.43) Lu(x)=f(x), 0<x<1, with DFu(0) =DFu(1)=0, 0=k=n—1,

relative to the subspace S¥ of S (cf. (2.17)) is given by
1

(1.14) DV (x) = [GN (v, &) [(H)dé, O0=x=1.
0

In the next sections, we then specialize the subspaces S¥ of S, and compare
the function G¥ (x, &) with the usual Green’s function G (x, &) for the operator L.
In particular, in §4 we compare there Green’s functions for Hermite L-spline

subspaces of S.
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§ 2. The Discrete Variational Green’s Function

Let us first recall a few relevant and classical properties of the Green’s function
associated with the operator L of (1.1) and the boundary conditions of (1.4).

Theorem 1. With the assumptions of §1, there exists a Green’s function G (x, &)

defined on the closed unit Square 0=z, §=1, which possesses the following
properties:

(2.1) G(x,€)=G(& %) in the closed unit square,
(22)  G(% & eC™®  in the closed unit square,

(2.3) Glx, &) eC in the subsets 0 <x < £<1 and 0<¢&<x=<1 of the
closed unit square.

Given any 0 <¢ =1, let G, denote the function defined for all ¢ =x=1 by
Gs(%) =G (x, &). Then,

2.4) D™ 'G.eL®[0,1], and moreover sup{| D> 1G] ; 0<E<1 =0 <00,
¢ p &
(2.5) DEGe(0) = D*G:(1) =0 for all 0=k=n—1,

and (as a consequence of (2.4) and (2.5))

(2.6) G¢€S,  and moreover sup{|Gyfs; 0=<¢&< 1}=7<+ oo,
: 2n—1 1 2n—1 — L‘Jﬁ ‘

(2.7) Jim DG () JHim D236y (x) = NG

(2.8) LGe(x) =0 forall x=¢.

Given any f€C?[0, 1], the unique solution @ of

(29)  Lu(x)=f(x) forall 0<x<1, and D'« (0)=D*u(1)=0

for all 0=k=n—1,
is given by

2.10) Os) = G, 18 46 = (G, 1.

The Green’s function admits the absolutely and uniformly convergent ex-
pansion

3

(2.11) G(x, &) = lipqsp(x)@(g) forall 0<w, &<,
p=1

where 4,, p=1, 2, ..., are the eigenvalues of L arranged in increasing order of
magnitude: 0 <A <1, < ---, and the functions @,, p=1, 2, ..., which belong
to C?7[0,1] and satisfy the boundary conditions of (1.4), are the associated
eigenfunctions of L ie.,

(212) LO,=),D,, or equivalently, a(Dy, w) = 2, (D), w)
forall weS, p=1,2,...,

9 Numer. Math., Bd. 16
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these eigenfunctions being orthonormalized in the sense that
(2.13) (D, @) =06,, and a(D,, B)=1,0,,,

where 0, , is the Kronecker delta.
Finally, given any 0 <& <1 and any we€S, let

(2.14) . : Ew]l=a(w, w) —2w(&).
Then, G, strictly minimizes the functional F.[.] over the space S, i.e.,
(2.15) F[G¢] =Inf{F, [w]; weS}.

Proof. With the assumptions of §1 for the operator L, the results of (2.1) to
(2.13) are well-known (cf. Brauer [3], Kamke [13], and Courant-Hilbert [7, p.360]).
To prove (2.15), consider any w€S, and write w ==¢ +G,. Then,

Fw]=E[G:] +ale, o) +2{a(Ge, &) —e(®)}.

But, using the result (2.26) of Theorem 3, to be proved later in this section, the
term in brackets vanishes. Since a(e, ¢) >0 if e==0, the conclusion of (2.15)
follows. OQ.E.D.

It is readily verified, using integration by parts, that the unique solution @
of (2.9) satisfies

(2.16) a(D, w) = (f, w) forall weS.

Given any finite-dimensional subspace SV of S, the variational approximation
procedure, as applied to the numerical solution of the boundary value problem
(2.9), then consists in finding the unique element @V in SV which satisfies, in
analogy with (2.16),

(2.17) a (D, w)=(f, w) forall weS™.

Remark. The function @Y may be equivalently characterized by the fact
that F[@Y] =Inf{F[w]; weS"}, with Fw] =a(w, ) —2(f, ). For details about
the variational, or Rayleigh-Ritz procedures, see for example Mikhlin [15].

Following Ciarlet [5], we now characterize the unique element @Y in S¥
which satisfies (2.17) in terms of a kernel G¥(x, £). This is the object of the next
theorem, which may be viewed as the discrete variational counterpart of
Theorem 1. As the proof of Theorem 2 is straight-forward, we omit it.

Theorem 2. Given a finite dimensional subspace S¥ of S, there exists a discrete
variational Green's function GY (%, &) defined on the closed unit square 0 < %, & <1,
which possesses the following properties:

(2.18) G (x, &) =GN (&, x) in the closed unit square.

Given any 0=¢& =<1, let GQ’ denote the function defined for all 0 =< x <1
by G¥ (x) =GV (x, £). Then,

(2.19) GYeS forall 0<¢&=<1, and sup{|Gls; 0=EZ1}< oo,
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Given any f€C°[0, 1], the unique variational approximation @% in SV, de-
termined by (2.17), can be expressed as

1
(2.20) OV () =0fGN(x, § 1§ ads=(GF, D).
The function GV («, &) can be expanded as
(2.21) N (x, &) :ZLN N(x) @Y (&) forall 0=z E<1,

where 4, 1=p <N, are the approximate eigenvalues of L arranged in increasing
order of magnitude: 0 <AY <AV =< .-- <A}, and @}, 1=p =N, are the ortho-
normalized approximate eigenfunctions of the operator L obtained by applying
the Rayleigh-Ritz approximation procedure over the same subspace SV, i.e.,
they are those functions of SV which satisfy

(2.22) a (D), w) =2 (D}, w) forall weS¥, 1=p=<N,
orthonormalized in the sense that
(2.23) (@), DY) =06,,, and a(P), PY)=12]6,,.

For extensions of Theorem 2 to higher dimensions for second order operators,
see [5].

We now come to an important property (Theorem 3) which is shared by
both the Green’s function and the discrete variational Green’s function, but first
we must recall some notions from functional analysis: Given a real Hilbert space H
with inner product (., .)z and whose elements are real-valued functions defined
on a certain set X, the space H is said to have a reproducing kernel K(x, &) if
and only if the following two conditions are satisfied (cf. [1], [9, p. 316] or [21,

p-95]):
(2.24)  For each x€X, the function K, is in H (again, K, is the function defined
for all §€X by K, (§) =K(x, £)).

(2.25) For each x€X and each weH, w(x)=(K,, w)g.
Then we have the following easily-established result (cf. [2] and [5]).

Theorem 3. The Green’s function G(x, &) is a reproducing kernel in the
space S, i.e.,

(2.26) w(x) =a(G,,w) forall x€[0,1] andall weS,
and likewise, the discrete variational Green’s function G¥(x, &) is a reproducing
kernel in the subspace SV, i.e., w
(2.27) w(x)=a(GY,w) forall x€[0,1] andall weSV.
Several consequences will now be derived from Theorem 3. The first one

(Theorem 4) is the discrete version of the characterization of (2.15). Its importance
lies in the fact that it gives a way of actually computing the function GV (x, &).

9*
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Theorem 4. For any fixed £€[0, 1], then GY strictly minimizes the functional
F.[w] of (2.14) over S¥, ie.,
(2.28) E[GY]=Inf{F [w]; weS™).
Proof. For any weSY, write w=¢ +GY. Then,
a(w, w) =a(GY,GY) +ale, &) +2a(GY, &) = a(GY,GN) +al(e, &) +2¢(),

by making use of (2.27). Thus, I [w] = I;[GY]+a(e, &), which completes the
proof. Q.E.D.

An essential feature possessed by the variational approximation procedure
is that (cf. [20]) the approximation @Y is the projection of the solution @ on the
subspace SV in the sense of the inner product a(.,.), ie,

(2.29) a(P— DY, w)=0 forall weSV.

We now prove that a similar property holds for the discrete variational Green’s
function:

Theorem 5. For any fixed £€[0, 1], then
(2.30) a(Ge—Gy, w)=0 forall weSV,

Proof. It suffices to apply both relations (2.26) and (2.27) to any function
weSY., Q.ED.

As an immediate consequence of Theorem 5, we now have
Corollary 1. For any fixed £€[0, 1], then
(2.31) |Ge —GFlls = inf {|G, —w

and
(2.32) [le(waGgV)”gAkinf{I]GE-w”5; weSY},  forall 0=k=<n,
(233)  |DHG:—GE)|., = B)inf{|G, —w|s; weSN}, forall 0=<I<n—1,

'S; 'IIJESN}‘

where A, and B, are positive constants.

Proof. The relation (2.31) follows directly from (2.30), and the inequalities
of (2.32) and (2.33) are mere applications of (1.6), (1.7), and (1.10). Q.E.D.

The quantity inf{|G; —w|s; weS™} which appears in the error bound (2.31)
of Corollary 1 depends upon &, and it is of course desirable to have an error
bound valid for all £€[0, 1]. This is given in Corollary 2 below. To this end,
we define S, as the space whose elements « are functions u: (x, £) —u(x, &)
defined on the unit square 0 < x, £ <1 such that

1) if we(x)=u(x, &), then us€S forall 081,

i) sup{feegls; 0=£=<1}< oo
Then, S, is a normed linear space with respect to the norm defined by
(2.34) loell = sup {Jerefs; 0= & <13.

From Theorems 1 and 2, we see that G(x, &) and G¥(x, &) are elements of S .
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Corollary 2. If we identify a function w: x€[0, 1] —w(x) of SV with the
function w: (x,&) —w(x) of S, forall 0=<&=1, then

(2.35) ' e =GNl = ini{|G —w]|

ws WESY}.

Proof. For any weS", we have from (2.31) that |G —GY s =[G —w]s for
all 0=&=1. Hence, from the monotonic character of the I ®-norm ie., if
0=U() = V(é) forall 0 =¢ <1, then |U|, =|V],), it follows that [|G —GY|],, <
|G —w]|,, from which (2.35) follows. Q.E.D.

As a consequence we now have a convergence criterion :

Theorem 6. Let {SM}2°, be a sequence of (not necessarily nested) subspaces
of S. If for a fixed £€[0, 1],

(2.36) lim_[inf{|G; —wls; wes¥)] =o,
then

(237) Jm G —Ggifs=o.
Simearly, if

(2.38) Z_»I)iinoo[inf{m G —wl|,; wes¥1=o,
then

(239 lim |6 6], =o.

Proof. The first part of Theorem 6 is a direct consequence of Corollary 1,

and likewise, the second part of Theorem 6 is a direct consequence of Corollary 2.
Q.E.D.

Remark. If condition (2.38) of Theorem 6 holds, then it follows by using {(1.7)
with /=0 that the sequence {G™ (x, £)}{2; converges uniformly to G(x, £) in the
closed unit square, i.e., '

é_l)iinoo[sup{]GM(x, § —G(x,8)|; 0=x E<1}]=0.

In the next sections, we will prove directly similar results in particular sub-
spaces of S.

§ 3. The Eigensubspace &V
As in §2, let 4, and @,, p=1,2,..., denote respectively the eigenvalues
and the associated eigenfunctions of L, orthonormalized as in (2.13).
The subspace of S spanned by the first N eigenfunctions @,, 1<p <N, will
be called the eigensubspace Z™. In this particular case, the corresponding discrete
variational Green’s function is, from (2.21), given by (cf. [5, Corollary 1])

N

(3.1) M (x, 5)-:27;- D, (%) D,(£) forall 0=w E<1,
p=1

and thus (by (2.11))

(o)

(32) G & —GV(x,8 =D - B,(x) D) forall 0=z E=1.

b M
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As a consequence, some of the results proved in §2 (such as Theorem 5 for
example) become obvious; but, in addition, the relations (3.1) and (3.2) allow
us-to give more precise answers to other questions, such as how well the function
G (x, &) approximates the Green’s function G (¥, &). We begin with

Theorem 7. Let the operator L of (1.1) be the second-order operator
Lu(x) = — D {py(x) Du(x)} + po (%) u(x).

Then, the associated discrete variational Green’s function GV (x, &) obtained over
the subspace XV is such that

(33)  Suwp{|G(r& —G¥(n|; 0=xES1}= & forall N1,

where K is a constant independent of V. Moreover, the above asymptotlc order
of convergence is best possible.

Proof. By the assumptions of (1.2) and (1.3), p, is of class C2[0, 1] and is
strictly positive on [0, 1], so that we may reduce the operator L to a simpler
form by using a classical change of dependent and independent variables (cf.
[7, p. 336]). Specifically, let

x 1
1 .
={p()fu(x), and t=4 / {p ()} Yy, with K= f {po ()} 4.
0 0
Then, {2,, @,(x)} is an eigensolution of
Lu(x): w(x), 0<x<<1, with u(0)=u(1)=0
if and only if {u, =K21,, ¥, (t) = {, (%)} D, (x)} is an eigensolution of

—%(t)+9(t)v(t)=uv(t), 0<i<1, with v(0)=v(1)=0.

Here, x is understood as being a function of £ Note that

0 () = K2y () — {pn (1)} o= ({40 (1)} Y)

is, by virtue of the assumptions upon p,, #;, a continuous function for 0 <¢<1.
Thus, we can apply to this simpler problem the known asymptotic formulas

[7, p-336]:
‘upzpznz_l_OU), and EP ]/Zsm;bnt—{—O(p) as p— 4 oo,

the eigenfunctions ¥, being orthonormalized in the L2-sense. Thus, going back
to the eigenvalues and eigenfunctions of the operator L, we see that

2
dp= g p2H0(1), and @, =0(1) as p->+ oo,

so that we obtain, by making use of (3.2),

0

|G (%, &) —G"(x, &) :O( 2 }3—2> :01(11\7)

p=N+1

uniformly in the unit square 0 < x, £ <1, which proves (3.3).
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To show that the asymptotic order of convergence is best possible, consider
the spec1a1 case where L= —D?2 Then, A,=p*n% @,(x)=)2sinpnx, p=
1,2, and

o

G5 3) - (5 3)=2 PW—O( ) Q.E.D.

p=N+1
p odd

Extending the classical definition for second-order operators [8, p. 326], we
say that a 2x-th order differential operator L such as that of (1.1) satisfies the
maximum principle if any function @€C?"[0, 1] which satisfies

LO(x)=f(x)=0, O0<x<1, and D*®00)=D*®1)=0, 0<ki=n—1,
is such that

D(x) =0, O0=x=1.

By the representation (2.10) of Theorem 1, it is clear that the maximum
principle holds if and only if

G(x &=0 in 0=xE<1.

- Likewise, if @V is the variational approximation to the solution of (2.9),
we say [5] that a discrete variational maximum principle holds in the given finite
dimensional subspace SV of S if and only if

PV (x)=0, O=x=1, whenever f(x)=0, O0=x=1.

Equivalently, by the representation (2.20) of Theorem 2, the above discrete
variational maximum principle is valid if and only if

GN(x, &) =0 in 0=x, 1.
We now prove

Theorem 8. In the special case where L = D2, the discrete variational
maximum principle holds in the eigensubspace 2V for any N =1.

Proof. We must prove that G¥(x, £ =0 in the closed unit square 0 <x, £ <1,
with

GV (x, &) = "nz__ sinprasinpmé.

L
L P?

ﬂMz

Since G¥(x, &) =GN (&, x) and GV (x, &) =GN (1—§&, 1—x), we can restrict our-
selves to the portion 0 <x—&=<x+&=<1 of the unit square, where we have

GN (x, &) = 71} {cos pm(x — &) —cos pa(x + &}

N .
{Z su;pnnt}dt’
p=1

>
,!.MZ

&

&\i

I

x
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so that GN(x, £) is a nonnegative function if and only if

sy(0) = Z sinp 6 =0 forall 007,
p=1 b
To prove this, observe that s;(0) =0 for all 0 =0 =, and assume that the

property is true up to sy_,(6). The relative minima of the function sy (f) over

[0, 7] occur [17, p. 78] at the points 6,:3]\,7d for I=1,2,..., [»]\Z

—1
T} B where

[«] denotes the integer part of the real number «. At such a point 0, sy (0,) =
Sy—1(0)) since sin NG;=0, and as a consequence of the induction hypothesis,
ie., that sy_;(0) =0 for all 0 <6<, it follows that sy(0,) =0 for all I=

1,2,..., {—&2:1}, which completes the proof. Q.E.D.

§ 4. The L-Spline Subspace Sp(L, IIY, 2)

Given the operator L of (1.1), and given any (not necessarily uniform) parti-
tion ITV: 0 =xy < %, < +-+ < %y, =1 of the unit interval, let 2 = (2, 2, ..., 2y),
the sncidence vector associated with I77¥, be an N-vector with positive integer
components satisfying 1<z, <# for all 1=<¢ <N. Then, any real-valued function
defined on [0, 1] is said to be an L-spline if

seC*[x;, x,.,] foreach?, O=<i<N,
(4.1) Ls(x)=0 forall x€(x,, #;4;) foreachi, O0=¢+=N, and
DFs(x;—) = DFs(x;+) for 0=k=<2n—1—2z, 1=i=<N.

The class of all L-splines for fixed [TV and z is denoted by Sp(L, IT%, ). Such
spaces, recently studied by Lucas [14] and Golomb and Jerome [10], are extensions
of the L-splines studied in [19], in that it was assumed in [19] that L has the
special form L = — £* %, where £ is an #-th order linear differential operator
and Z* is its formal adjoint.

For our purposes here, we shall restrict our attention to L-spline subspaces
of S, i.e., we consider only those elements of Sp(L, I7%, 2) which satisfy the
homogeneous boundary conditions of (1.4). We shall denote such subspaces of
S by Spo(L, IT¥, z). It is readily verified that the dimension of Spy(L, 77V, 2)

£

5
is 2z,
i=1
We now give a result of Lucas [14]. This type of result can be traced back

to Rose [18], and many authors (cf. [4, 12, 16]) have contributed generalizations
of Rose’s results.

Theorem 9. For a given f€C®[0, 1], let @ denote the uhique solution of the
boundary value problem (2.9), and let @Y denote the approximation of @ in
Spe (L, ITY, 2) which satisfies (2.17). For convenience, we define z,=2y.,=1.
Then,

(4.2) DFON (x) =DFD(x), O0=k=z—1, O0=i=N-1.

Again, a property similar to that established in (4.2) holds for the function
G¥ (x, £). This is the object of
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Theorem 10. Let GV (x, £) be the discrete variational Green’s function associated
with the L-spline subspace Spy(L, IV, ). Then, for any &€[0, 1],
(4.3) D*GY (%) =D*Ge(x;), O=k=z—1, O=i=N-1.

Proof. From the representations of (2.10) and (2.20), we have for any 1 <7 < NV,

1
Dro(s) =[S0 (5,8 @) a5, oshsz—1,

0
and

lakGN
DFON () = | —p o (%, €) F(E)dE, O0=<h= z,—1.

0
The differentiation under the integral can be indeed carried out for both G (x, &)

- .G ok GN . o
and GV (x, &) since ——- («, &) as well as ——— («, &) are continuous functions in

oxk oxk
the closed unit square for all 0 =%k <% —1 (cf. Theorems 1 and 2).
Thus, by applying Theorem 9, we must have, for any 1<7 <N,

1

[{5 tn-S2 theco, ozaza,
0

and the relations (4.3) are then a consequence of the fact that the above relation
holds for any function f€C9[0, 1]. Q.E.D.

Given a partition IV of the unit interval, let D, ; denote the open subsets
of the unit square defined by

Dij=1{(% 8§ €R x; <x<wyyy, 5;<E<x,}, O=ij=N.

Theorem 11 (The “ Diagonal Squares Theorem”). Let GV (x, &) denote the
discrete variational Green’s function for the Hermite L-spline subspace Spy (L, I1%, 2),
where 2= (n,#, ..., n). Then,

(4.4) GN(x, &) =G (x, ‘§) except for (x,£)eD,;, O0=<:i<N.

In other words, G¥(x, &) coincides with G (#, &) over the closed unit square except
over the open diagonal squares formed by the partition /7% (cf. Fig. 1).

Proof. Let £€[0, 1] be given with £€(x;, x; ;) for some 0 =4y <N. Then,
forany 0 <7 <N, we have, by Theorem 10,

DH(Ge (w;) —GF (%)) = D*((Ge (;.4) —G (%:41)) =0, O0=k=n—1,
and, if moreover ¢ 5=17,,
L(Gs(x) —GY (%)) =0 for =< x< %4,

since on the one hand LG (x) =0 (cf. (2.8)) and on the other hand LGfEV (%) =0
in (%, #;41) (cf. (4.1)). Thus, it follows that Ge (%) =G () for x,<x<<x,.,
©==14,, by virtue of the uniqueness of the solution of the boundary value problem
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