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WITH APPLICATIONS TO NUMERICAL ANALYSIS*
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Richard S. Varga

1. Introduction

The object of this paper is to present results in
two rather different areas of approximation theory, and to
sketch their applications to numerical analysis. In
Sections 2-4, we discuss results concerning Chebyshev
rational approximations of reciprocals of certain entire
functions (such as f(z) = e%) on [0, +=), and we show
how these approximations can be used numerically in the
solution of semi-discrete parabolic partial difference
equations. We also discuss in Section 4 results of
numerical experiments testing such Chebyshev semi-discrete
approximations.

In Section 5, we discuss improved error bounds for
spline and L-spline interpolation. These improved
“error bounds for spline interpolation are then used to

* .
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Kent State University.
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RICHARD S. VARGA

deduce improved error bounds for Galerkin approximations of
solutions of particular two-point nonlinear boundary value
problems in Section 6.

2. Chebyshev Semi-Discrete Approximations of Parabolic

Partial Difference Equations

As described in Cody, Meinardus, and Varga [3], con-
sider any linear system of N coupled ordinary differential
equations -of the form

dc(t)

= - Ac(t) + g, V¥Vt> 0,

where A is assumed to be an N x N time-independent
Hermitian positive definite matrix, and c(t), g, and

¢ are N-vectors. Typically, such coupled equations can
arise from semi-discrete approximations to linear parabolic
partial differential equations, in which all spatial
variables are differenced, but the time variable, t, is
left continuous (cf. [14, Chapter 8]). The solution c(t)
of (2.1) is given explicitly by

-1

(2.2) c(t) = A Vg + exp(-tA){E - A 'g} , V¥t 30,

where as usual exp(-tA) = 7§ (—tA)k/k!
k=0

To define the Chebeyshev semi-discrete approximations
of (2.1), we turn to the following approximation problem.
If T denotes all real polynomials p(n) of degree at
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NUMERICAL SOLUTION OF PDE —1II

most m, and T on analogously denotes all real rational
functions rm’n(x) = p{x)/q(x) with p¢€ T G € T
then let

= 4 —X_ ‘
(2.3) km,n _ﬂ%?ijle rm’n(x)H L_[0,+]

denote the minimum error in approximating e on [0, +e)
in the uniform norm over m. . These constants Am , are
called the Chebyshev constants for e with respect to

[0, +«). It is obvious that A js finite if and only

3

if 0 <men, and moreover, given any pair (m,n) of

nonnegative integers with 0 <mgn, it is known (cf.

Meinardus [6]) that there exists a unique ?m Jxlem o

(after dividing out possible common factors) with

1k

(2.4) roo(x)

man B0 /Gy n(x)

and with am n(x) >0 on [0, +~), such that

(2.5) Moo = e - Fnt L_[0,+e)

Since am,n(tA) is a polynomial in the matrix A , it is
evident that am,n(tA) is a Hermitian positive definite

NxN matrix for any finite t>0 . Thus, we can define the
(m,n)th  Chebyshev approximation Cm,n(t) of c(t) of (2.2)

as

(2.6) c. n(t) = A_]g + ?m n(tA){E - A']g} , Vt=20,

q (tA))’ltﬁm L(EA)E - Alg)l, vtk 0
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In other words, Cn n(t) is defined for each finite t > 0

as the solution v of the system of linear equations

(th) - v = k(t) =4 (tA) - ATlg

(2.7) qm,n m,n

£ p (AT - ATNg)

3

To estimate the error in c(t) - <, n(t), we use
i N

. _ * %
£,-vector norms, i.e., [ v]] , = (viv)EIf {Ai}jz} denote
the (positive) eigenvalues of A, then the Hermitian

character of A gives us for any t » 0 that

(eh)] i
tA) ]|, = max |e - r o (trs)
4 2 T<igN !

llexp(-tA) - L m.n )

where H-j[z denotes the induced operator norm (or
spectral norm) relative to the £2—vector norm. But as
thy 2 0 for all 1< 1 <N, it follows from the defini-
tion of Am,n in (2.3) that

le(t) - o W (1],

(2.8) < Jlexp(-ta) - 7 (M, « IIE - A7l
Mo H'&'- A_]gllz ¥t >0 .

In general, the error of the spatial discretization leading
to (2.1) must also be bounded to give the total error (i.e.,
space and time) of the Chebyshev semi-discrete approxima-
tions. This is discussed, for example, in [3] in a partic-
ular case.
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Unlike usual methods of time-discretization, such as
Crank-Nicolson, which depended upon repeatedly taking small
time steps At = T/M to achieve precision at a time T,
the Chebyshev semi-discrete approximation directly (in one
step) gives an approximation at time T by simply setting
t =T in (2.5). The accuracy of this method is clearly
dependent from (2.8) on how the Chebyshev constants A

m,n
behave as n -«. First, from (2.3), it is evident that

(2.9) 0< o € Mol S S Ao ¥n >0 .

In [3], it was shown in particular that

0= N
(2.10) Ao,n < (2e7) ¥n > 0 ,

where o = 0.13923--- s the real solution of 2ae2a+] =

Thus, (2.10) shows us that the Chebyshev constants Aoon
converge geometrically to zero as n - . In [3], it was

also shown that this convergence is not faster than geo-
metric, in that

Tim (Ao,n) > g

n-'}'OO
Because of (2.9) and (2.10), we can state these results in
the following form.
Theorem 1. Let {m(n)} be any sequence of nonnegative

n)

integers with 0 < m(n) < n for each n > 0. Then,
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T n e
(2.11) ;;2 (Xm(n),n) € 5 T 0.43501 s
and
(2.12) l!l (Ao,n) 2 £ -

3. Theoretical Extensions.

It is natural to ask if the geometric convergence
to zero of the Chebyshev constants km for -%— in

5

(2.11) and (2.12) hold for a wider class of entire functions

than just f(x) = eX. A generalization of these results

has recently been given by Meinardus and Varga [8], and can
be described as follows.

Let f(z) = )
k=0
Mf(r) = sup |f(z)| as its maximum modulus function. Then,
lz|<r
f is said to be of perfectly regular growth (p,B) (cf.
Boas [2, p. 8], Valiron [13, p. 45]) if and only if there

exist two (finite) positive numbers p and B such that

akzk be an entire function with

Tan(r)
(3.1) 1im ————— = B .
rooo P
We then state (cf. [4])
Theorem 2. Let f(z) = ) akzk be an entire function of
k=0

perfectly regular growth (p,B) with a, 3 0 ¥k >0, and
for any pair (m,n) of nonnegative integers with
0<m«gn, let
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(3.2) Mmn :Tmc H?&T " a0 L [0, %]
m,n

be its associated Chebyshev constants. Then, for any

sequence {m(n)}izo of nonnegative integers with

0 <min) <n for each n > 0,

SR 1/n -1/p
(33) lg(km(n),n) < 2 < 1.
Moreover,
(3.4) T (0, BEAIT S
n-reo i

Thus, Theorem 2 establishes the geometric convergence
to zero of the Chebyshev constants for 1/f(x) on [0,+=)
for all entire functions of perfectly regular growth with
nonnegative Taylor coefficients. As special cases of
Theorem 2, we have of course f(z) = e?, f(z) = sinh(z"),
and f(z) = J (iz), where J = denotes the nth Bessel
function of the first kind. Note that for f(z) = e?, for
which p =B =1 from (3.1), the results of (3.3)-(3.4) of
Theorem 2, are slightly weaker than those of (2.11)-(2.12)
of Theorem 1.

It should be mentioned that the proofs of Theorems

1 and 2 depend upon estimating

1 1
sn(x5 T f(x)
n .
where sn(z) = 7 akzk is the nth partial sum of f(z).
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It is shown in fact in [8] that, under the hyputheses of
Theorem 2,

1/n i 2_1/0

n-<o n L [0,+e=] ,
so that the upper bound of (3.3) cannot be improved using
this specific technique.

Upon examining the conclusions of Theorem 2, we see
that the bounds of (3.3)-(3.4) depend upon p, but not
upon B, and this would suggest the possibility of exten-
sions of Theorem 1 to entire functions which are not of
perfectly regular growth. Such extensions have recently
been considered in Meinardus, Taylor, Reddy and Varga [7],
and we state below a representative result.

Theorem 3. Let f(z) = akzk be an entire function of

k=0
. _*__ZnKan(r)
order p, ‘i.e., 1lim i p, and assume that
]"—)OO
L Kan(r) Ean(P)
(3.5) 1im ——— = B, lim =b
oo P roeo P
satisfy 0 < b <« B <=, and that a > 0 Yk >0 with
4
(3.6)
e+

nondecreasing and unbounded for all n sufficiently large.
Then, for any sequence {m(n)}(:=0 of nonnegative integers
with 0 < m(n) ¢ n for each n > 0,
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1/p
(3.7) T Oumyn) "¢ [ 55 ]
n->
where the A are the Chebyshev constants of 1/f,

b

m,n
defined in (3.2). Moreover,

(3.8) Tim (A

n—«

)l/n 5 1 (JE_)]/Q_
0,Nn 4 (28

The results of Theorems 2 and 3 give then sufficient
conditions on f(z) so that its associated Chebyshev
constants Xm(n),n’ 0 < m(n) < n, converge geometrically
to zero as n - «. In the spirit of Bernstein's classical
inverse-type theorems for polynomial and trigonometric
polynomial approximation on finite intervals, the follow-
ing result of [7] which we sketch, gives necessary condi-
tions for this geometric convergence.

Theorem 4. Let f(x) > 0 be a real continuous function
on [0, +=), such that there exist a sequence of real

polynomials {pn(x)}oo with P €, Yn 2 0 and a real

n=o0
number g > 1 such that

= <1.

J]/n ) l
q

w9 18 k-l

n-—»e

Then, there exists a function F(z) with F(x) = f(x)
¥x > 0 such that F s analytic in the whole complex
p]ane,‘i.e., Fis entire. Moreover, F 1is of finite
order, i.e.,

“___ﬁnKnMF(r)

]1m~———[m;——=p<0°.
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Proof. For any Gy with g > 9y > 1, it follows from
(3.9) that there exists a positive integer n](q]) such
that

1 1 1
Ii?;—' h ?“L [0,4°] S . Unz ﬂ](QW) ,
n © a5
or equivalently,
(3.10) S N S L R (gq)
’ : qn *pri fix) © qn ’ N ) R
1 1 ¥x 2 0
Next, define
(3.11) : mf(r) = ”f“Lw[O,r] , where 0 < r < +w

Fixing r > 0 , the fact that a exceeds unity implies
that there exists a positive integer nz(r) such that

(3.12) q{‘ > q{]- mf(r) > - ¥n > nz(r).

With ny = max(n](q]), nz(r)) , a simple manipulation of
(3.10) gives
2(x)

<p () - ) ¢ =)
a0 T

From these inequalities and the inequalities of (3.12), it
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follows that

(3.13) | I il il
13 b - f < — , ¥ o:on,.
n Lw[O,r] q{]—mf(r) qp 3

We now make the change of variables
SO+ t)=x;5 0Ogxgr, -lgtgHl,
and define
(3.14) h(t;r) = f(gu +t))
1f Efh(-,r)} = Ougﬁ lo, - h(-,r)HLw[,]’+]] denotes the
n
error in the best Chebyshev polynomial approximation in

™ to h(x,r) on [-1,+#1] , the inequality of (3.13)

immediately gives us that

Zm%(r)
(3.15) E {h(-,r)} < K > ¥n
1

\%
=

Since r > 0 1is fixed and a is an arbitrary number with
9 >qy > 1, weevidently have from (3.15) that

(3.16) Tim (En{h(.,r)})”” s%— . ¥rs0.

nN-oo

Using Bernstein's Theorem (cf. [6,p. 86]), it %o]]ows that
h(t;r) can, for each r > 0 , be extended to a function
analytic in the open ellipse Eq with foci at #£1 and
semi-major and semi-minor axes a and b such that
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a+b=qg>1. Interms of f , this means that f can
be extended to a function F(z) analytic in the region
Q. = {z:2z = %—(1 +t) where t e é&} . But, r is an
arbitrary positive real number, and it is easily seen that
for any complex number w , wWe Qr for r - sufficiently
large. Hence, F(z) s analytic in the whole complex
plane, i.e., F s an entire function, which proves the
first assertion of Theorem 4. The proof that F has fi-
nite order, which depends on comparing sup |[F(z)| with
mf(r) as r - o , 1is only slightly more "difficult, and
can be found in [7].

Not all entire functions f which are real and posi-
tive on [0,+») satisfy the geometric convergence of (3.9).
As shown in [7], the particular entire function

f(z) = (z + 1){2 + cos z}

which is real and positive on [0,+=), fails to satisfy
(3.9).

4. Numerical Results

Dr. W. E. Culham of the Gulf Research and Develop-
ment Co. (Pittsburgh) has been numerically testing the
Chebyshev semi-discrete method of Sections 2-3 for solving
linear parabolic problems with one spatial variable.

Though the results are not yet complete, some interesting
conclusions can already be made.

First, for very small T >0 , it is generally pre-
ferable to use the Crank-Nicolson method rather than the
Chebyshev semi-discrete method. The reason for this is
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almost obvious. The Crank-Nicolson method for one spatial
variable problems can be viewed as giving a matrix Padé
approximation M(t) of exp (-tA) for which (cf. [14, p.
266])

exp (-tA) = M(t) + 0(t%) , t+o0.
In other words, M(t) is a third-order approximation for
exp (-tA) for t close to zero. The Chebyshev semi-
discrete method, on the other hand, gives a matrix approxi-
mation of exp (-tA) for which the maximum error occurs
at t =0 . This is a consequence of the Chebyshev equi-
oscillation of the error curve. More precisely, we neces-
sarily have (cf. (2.5)) that

>
i
()

X =le” - 7F  (X)] for

and consequently,

I
(e}

lexp (-tA) - ?m,n(tA)HZ = Ay for t

This short-coming of the Chebyshev semi-discrete method to
small t can be partially off-set by using the following
suggestion of Professor R. B. Kellogg. From the error
curve e X - Fm’n(x) , which necessarily has m + n + 1
distinct positive zeroes, let %m.n > 0 be the smallest
such positive zero. Then, with x = ¢ n +t , it follows

from e - F (x)] €2 , ¥x = 0 that
m,

m,n
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and the rational approximation eOm,n ;m n(om nt t) of

et has zero error at t =0 . This is’equi5a1ent with
solving the Chebyshev minimization problem over T for
e~t on [0,+o) with the Tinear constraint of zero,error

at t =0 . The numbers On,n have been computed by W. J.
Cody, Jr., and they decrease very rapidly to zero as n -+« .

Because of the above-mentioned error behavior at
t =0, the numerical experiments comparing the Crank-
Nicolson method with the Chebyshev semi-discrete method
have centered about comparing total work on a computer for
T large. Physically speaking, T 1in these experiments
is selected to be about the half-life of the transient
term. As previously mentioned, though the results are not
complete, several typical cases have arisen where the
Chebyshev semi-discrete method with m = n =3 1is about
100 times faster than the Crank-Nicolson method. More will
be reported on this at a later time.

It should be stated that these Chebyshev semi-dis-
crete methods as described are rather severely limited to
linear problems for which the natural semi-group property
for such parabolic problems holds. This is the essence of
approximating e™ on [0,+=) by rational functionals in
the uniform norm. It is not known if such techniques can
be extended to the numerical solution of strongly nonlinear
parabolic partial differential equations. .

Finally, we wish to comment on the practical solu-

tion of the matrix equation of (2.7). Because a (x) s

m,n

positive on [0,+~) , it can be factored in the férm
kl k2
G (x) = T j,(x) - I hy(x), 2kytky =n,
m,n p=1 4 = L 2™
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where each jz(x) is real and linear in x , and each
hg(x) is real and quadratic in x . Thus, solving the
matrix problem (2.7) amounts to solving a succession of
simpler matrix problems of the form

jﬂ(tA)-v =k -, h,(tA)sv = k ,

o
for given vectors k . For example, if A is a tridiag-
onal positive definite Hermitian N x N matrix, then
solving (2.7) reduces to solving a succession of matrix
problems for which the matrix involved is either a tri-
diagonal or five-diagonal positive definite Hermitian

N x N matrix. For problems arising from a two-dimensional
(spatial) parabolic partial differential equation, this
factorizatioh allows one to use either a direct inversion
procedure, or a multi-line successive overrelaxation iter-
ative method.

5. Improved Error Bounds for Spline and L-Spline

Interpolation

We now switch to another topic, concerned with ap-
proximation by spline and L-spline interpolation. The
results of this section are from Swartz and Varga [12].
Fuller details can be found in [12].

We now introduce some standard notation. For
-o < g < b < +o , for each integer m and for each ex-
tended real number with 1< q < , W'[a,b] denotes the
Sobolev space of all real-valued functions w(x) defined
on the interval [a,b] such that w e Cm—][a,b] , Dm'1w

637



RICHARD S. VARGA

d

is absolutely continuous with ™ e L [a,b], where D= —.

dx
It is well known that wg[a,b] is a Banach space, with

its norm defined by

m .
(5.1) = D
HWng[a’b] jgoﬂ W“Lq[a,b]

Next, for N a positive integer, let A: a = Xy <X <
e <Xy E b denote a partition A of [a,b] . The col-
lection of all such partitions A of [a,b] is denoted

x.) and

by P(a,b) . We further define = = max (x., ,-
i i+1 7

m = min (x;,,-x;) for each partition 4 €®(a,b) . For
i

any real number B with B x> 1, fPB(a,b) then denotes
the subset of all partitions A in P(a,b) for which
m < Bn . In particular, ?](a,b) is the collection of
all uniform partitions of [a,b] , and its elements are
denoted by Au .

Since we shall make extensive use of L-splines,
we now briefly describe them. Given the differential op-
erator L of order m ,

m .
(5.2) Lu(x) = } c.0ODu(x) , m=1,
3=0

where c.€ C[a,b] , 0< j<m, with ¢ (x) >8>0
for all x in [a,b] , and given the partition

taE Xy <X < wee < x,=b , for N>1 let

N
s «-- s Zy_7) » the incidence vector, be an

N-1

< i

<

A

z = (z]
(N-1)-triple of positive integers with "1 <z, <m,

1 < N-1 . Then, Sp(L,A,z) , the L-spline space,
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is the collection of all real-valued functions on [a,b]
such that (cf. Ahlberg, Nilson, and Walsh [1, ch. 6] and
Schultz and Varga [11])

L*Lw(x) = 0, xe [a,b] - {x.}w-1 ,
(5.3) . . ti=l
D W(Xi_) =D W(Xi+) for all 0 < k ¢ 2m—1-zi ,
0<i<N,
where L* s the formal adjoint of L . From (5.3), we
see that Sp(L,A,z) € sz‘on][a,b] where o = max z,
T<igN-1

In the special case L = bl , the elements of

Sp(L,A,z) are, from (5.3), polynomials of degree 2m-1

on each subinterval of A , and, as such, are called

m

polynomial splines. More specifically, when L =D and

z; =m, 0 < i< N, the associated L-spline space is

called the Hermite space, and is denoted by H(m)(A)

M and z; = 1, 0<i<N, the
associated L-spline space is called the spline space, and
is denoted by Sp(m)(A)

Finally, if f s any bounded function defined on

fa,b] , then

Similarly, when L =D

w(f,8) = sup{|f(x+t) - f(x)|: x, x+t are in [a,b]
and |t| < &}

denotes the usual modulus of continuity of f . In general,
K will denote below any generic constant which is inde-
pendent of the functions considered, and is independent

of m .
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The following interpolation error bounds are typical
(cf. Hedstrom and Varga [4]), and follow from results of
Jerome and Varga [5], Schultz and Varga [11], and Perrin

[9].

Theorem 5. Given f ¢ ng[a,b] and given A€ ?B(a,b) s
let s be the unique element in Sp(L,A,z) which inter-
polates f 1in the sense that

(5.4) DJ(f-s)(xi) =0, 0<j<z;-1, Ogi<N

Tien, for 2 < q <,

11
j 2m-J-5+g .
(5.5)  |Ipd(f-s)] < K 279 |f| , 0<j<am-1 .
Lq[a,b] wgm a,b
For polynomial splines (i.e., L =0"), |f] 5 can
wz[a,b]
2m .
be replaced by |D f“Lz[a,b] in (5.5).

The above result, based on the second intregal rela-

tion (cf. [1, p. 205]), is for rather smooth functions.
While the exponent of 7 in (5.5) is sharp in that it
cannot in general be increased for the function spaces
considered, our goal is to obtain sharp interpolation
errors for less smooth functions f . We next state a
result of [12, Lemma 3.2] based on the Peavo Kernel Theo-

rem, which is useful in achieving this goal.
Theorem 6. Given f e—Ck[a,b} with 0 < k < 2m and given
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A efpg(a,b) , let g be the unique element in H(2m+])(A)
such that

DI(fg)(x,) =0, O<jck, Ogisgh,
(5.6) . 1
DJg(xi) =0, k<js<om, 0<ic<N
Then,
: 103 (£-q)] L 0cick,
(5.7) Kﬂk'Jw(Dkf,ﬂ) > j L [a,b]
“DQHL [a,b] , k< jg2m.

With Theorem 6, we now prove an analogue of Theorem
5 for less smooth functions.

Theorem 7. Given f € Ck[a,b] with 0 < k < 2m and given
= ?B(a,b) , let s be the unique element in Sp(L,A,z)

such that for zg=zy=m,

pI(F-s)(x,) = 0, 0§ <min(k,z;-1), 0<i <N,
(5:8) ls(x;) =0, if min (kyzg=1) <3 € 7401,
0cicN.
Then, for 2 < g ¢ = ,
2m-j -1+

1,0 1
(5.9) K{WK'J‘?‘*E o ,m) + 02 A f]

wz[a,b]}

HDj(f~S)HL [ap] > 03 <k,
q 3

Io%s)), fap] » if k<3<
q 9
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For polynomial splines (L = D™) , the term involving

Il can be deleted in (5.9).

Wz[a,b]
Proof. Given f e Ck[a,b] , let g be its interpolant
in H(2m+1)(A) , in the sense of (5.6) of Theorem 6. For

any 2 <q <« , the triange inequality gives us that
J J
(5.10) ”D (f-S)” Lq[a,b] < ”D (f'g)“[_q[a,bj

+ ”Dj(g‘s)”Lq[a,b] , O<jc<k,

where s is the interpolant of f is Sp(L,A,z) in the
sense of (5.8). Note from (5.8) that s 1is also the
interpolant of g in Sp(L,A,z) 1in the sense of (5.4).
Hence, applying Theorem 5 yields

2m—j-%+%

llgl , 0<jcam-1.
W3 ,b]

(5.11) 03 (g-9)l [4.p7 € &7
q

We now bound ||g] . For any £ with k < £ < 2m,
: wgﬁh,b]
(5.7) of Theorem 6 gives

k-£

(5.12) o], Cap] € KT w(O¥F,m) L, k<& om .
2 3

For any £ with 0 < £ < k , we evidently have

£ £ £
0764 ra,by < IOTCE0M by * 107l oy
0O<L<k,
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and, using the first inequality of (5.7) of Theorem 6,
this can be bounded above by

k

k=L ok ,m) + ot

£
(5.13) D QHLZ[a,b] < K L,la,b] >

0 < <k.

Summing the inequalities of (5.12) and (5.13) and using

the norm definition of (5.1) gives

< K{ﬂk"zm w(Dke,m) + €] " }

lal »
m

W5 [a,b]2 Wola,b]

This bound, when substituted in (5.11), gives
o1
: k-j-5+

2°q k
HDJ(Q—S)HLq[a’b] < K{ﬂ w (D f,m)
o L
Wz[a,b]

for 0 < j < 2m-1 , thus suitably bounding the last term
of (5.10). If polynomial splines are used, the term in-

volving [If] can be deleted (cf. Theorem 5).
Wz[a,b]

Finally, the first term of the right side of (5.10) can be
bounded above from (5.7) of Theorem 6, and the combined
upper bounds, when inserted in (5.10), give the desired
result of the first inequality of (5.9) for 0 < j < k .

If k<j< 2m-1, the same technique can be used to bound
the terms on the right-hand side of

HDjSHL [a,b] © HDj(g‘S)”L [a,b] * ”ng”L [a,b]
q g q k < j < 2m-1,
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which then establishes the second inequality of (5.9) for
k<jg2m-1. Q.E.D.

As an easy extension of Theorem 7, we include (cf. [12])

Corollary 1. With the hypotheses of Theorem 7, if

fe W' a,b] with Tcrce and 0<k<2n, then for
max(r,2) € q € @ , : D

k+1 —j+—+m1'n(——r— ,-—2—)

(5.14) Ko 9

f
.
03 (£-5), [apy > O€3 <k,
> q

IDJs] i k< o< 2ml

L la,b] ?
ola:b]

One difficulty with the result of Theorem 7 is that
one needs to know the explicit continuity class of f to
define its interpolant s 1in Sp(L,A,z) 1in the sense of
(5.8). Often, this continuity class is difficult to deter-
mine from raw data in a routine setting in, say, a computer
center. However, this can be avoided through the use of
Lagrange interpolation. We now state (cf. [12])

Theorem 8. Given f € Ck[a,b] with 0 € k < 2m and given
A é‘PB(a,b) with at least 2m knots, let s be the
unique element in Sp(L,A,z) such that for Zo=Zy " m ,

(5.15) DIs(x.) = DI

! om1,if ) (xg) 5 0siszg-T, O<ish,

where )fan_] 1f is any Lagrange polynomial (of degree
2m-1 ) interpolation of f in 2m consecutive knots

xj,x with x, &€ [Xj’xj+2m—1] . Then, for

j12 N geam-1 i
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2 <q<«, the bounds of (5.9) are valid, where again,
for polynomial splines, the term in (5.9) involving

[l K can be deleted.
wz[a,b]

We remark that the inequalities of (5.14) of Corollary
1 also apply to the interpolant s 1in Sp(L,A,z) , de-
fined by (5.15).

Although the result of Theorem 8 1ifts the objection
raised concerning the application of Theorem 7, we note
that, for polynomial splines and q = « , the inequalities
of (5.9) become

] |03 (f-5)] 0<jck,

L la,b] ’
HDJSHL [a,p] » 1T k<id<aml,

and one naturally expects that the exponent of = in the
above expression is too small by a factor % . To improve
the inequalities above, we next state another result of

[12].

Theorem 9. Given f € Ck[a,b] with 0 < k < 2m and given
A, € ?](a,b) with at least 2m knots, let s be the
unique element in Sp(m)(Au) (i.e., z4
such that

(5.16) 4 pI(f-s)(a) = DI(F=s)(b) = 0 , O<g<min(k,m-1),

pds(a) = DIs(b) = 0, if min(k,m-1)< jem-1 ,

or
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(f-s)(x.) =0, 0<i<N,
(5.17) !

Dj(f‘s)(a) = DJ(me_] ,Of)(a) ) O glj < m"] s
where Liém_] Of is, as in Theorem 8, the Lagrange poly-
nomial interpolation of f 1in the knots

X gXq 5 e sX s
0°"1 2m-1
with a similar definition at x = b . Then,

Jrel .
AP 07 CF=s)l a7 » O3 <k
(5.18) K= w(D"f,m) »

[ods), (ap] » if k<dsaml.

Corollary 2. With the hypotheses of Theorem 9, if

fe wt+][a,b] with 0ck<2m and 1 <r <o, then
for max(r,2) < g <. *,
1]
kt+1-j-tz
(5.19) Kn T okt )

Lr[a,b]

I3 (F-) [ppy > O3k,
> a’

103s] if k<< oml
L [a,b] °
q[a ]

To give an explicit example of Theorem 9, consider
the particular case m = 2 of cubic splines. The cubic

spline s e Sp(z)(Au) of (5.17) is defined then by

(F-s)(x;) =0, O <i<N,

Ds(a) = é%»{J]f(a) + 18f(at+h) - 9f(a+2h) + 2f(a+3h)} .
Ds(b) = é%—{ﬂf(b) - 18f(b-h) + 9f(b-2h) - 2f(b~3h)} s

646



NUMERICAL SOLUTION OF PDE —1II

where h = 7 measures the uniform mesh of Au . In this
special case, (5.19) becomes, for f & Ck[a,b] with
0<k<id,

J .
ks K “D (f-s)”Lm[a,b] s 0 <J < k s
Kn“™d w(D®f,h) >

[o?s], [ap] » if k<i<3.

More complete results can be found in [12] for
Hermite L-splines. In addition, certain stability theorems
are established in [12] concerning the use of Lagrange
interpolation of f to define interpolants s in
Sp(L,A,z) .

6. Application to Two-Point Boundary Value Problems

The interpolation error bounds of Section 5 can be
applied to the numerical solution of two-point nonlinear

boundary value problems in the following way. Consider,
as a very special case, the Galerkin approximation of the
solution of

(_1)m+] p2m u(x) = f(x,u(x)) , a<x<b,
(6.1) -
Dlu(a) = DJu(b) =0, 0<j<mT,

where it is assumed that f(x,u) is a real-valued function

defined on [a,b] x R such that f(x,u) and fu(x,u) are
in C°([a,b] x R) , and there exists a constant <y such
that

(6.2) fu(x,u) >y > -A for all xel[a,b], and all real u,
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b

b
where A = inf{J(me(x))zdx/ J(w(x))zdx: Woe &g[a,b]} .
a

a

and where wg[a,b] denotes the subspace of functions of
wg[a,b] which satisfy the boundary conditions of (6.1).
Given a finite dimensional subspace S,, of W?[a,b] with

M

{wi(x)}?:] a basis for Sy , the Galerkin approximation
W(x) e Sy of the solution of (6.1) is characterized (cf.
[10]) by

b
(6.3) HDm\ﬁ(t)-mei(t)Jrf(t,@(t))-wi(t)}dt S0, T<ich.
a

tions in Sp(m)(Au) which satisfy the boundary conditions

Next, let Sﬁ(m)(Au) denote the subspace of func-

of (6.1). Then, based on results of Perrin, Price, and

Varga [10, Theorem 3] and Theorem 9 of Section 5, we have

Theorem 10. If u(x) , the generalized solution of (6.1)
is in sz[a,b] , and w(x) 1is its unique Galerkin ap-
proximation in Sp m)(Au) , then

L6.8) 103wl g,y < e ||p? M) (ap] » 0€d€m]
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