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ABSTRACT

This paper presents and examines in detail
extensions to the Galerkin method of solution that
make it numerically superior to conventional
methods used to solve a certain class of time-
dependent, nonlinear boundary value problems. This
class of problems includes the equation that
describes the flow of a fully compressible fluid in
a porous medium.

The Galerkin method with several different
piecewise polynomial subspaces and a non-Galerkin
method specifically employing cubic spline functions
are used to approximate the solution of a nonlinear
parabolic equation with one spatial variable. With a
known analytic solution of the problem, the
accuracies of these approximations are determined
and compared with conventional finite-difference
approximations. Specifically, the various methods
are compared on the basis of the amount of computer
time necessary to achieve a given accurdcy, ds
well as with respect to the order of convergence
and computer core storage required. These tests
indicate that the bigher-order Galerkin methods
require the least amount of computer time for a
given range of accuracy.

INTRODUCTION

The purpose of this paper is to outline in detail
the application of the Galerkin method, employing
piecewise polynomials, to solve nonlinear-boundary-
value problems and compare the computational
efficiency of the Galerkin method with more
conventional numerical methods. Numerical methods
compared with the Galerkin technique include a
non-Galerkin method that utilizes cubic spline
interpolation and the conventional finite-difference
methods. Four conventional time approximations
were also studied in conjunction with the above
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mentioned space discretization methods.

In an earlier paper, Price and Varga? showed
theoretically that higher-order approximations to
certain semilinear convection-diffusion equations
were possible by means of Galerkin techniques, but
complete numerical results for such approximations
were not given. Also, in a paper that introduced the
Galerkin method to the petroleum industry, Price et
al.l demonstrated that higher-order approximations
were far superior numerically to the conventional
methods used to solve certain linear convection-
diffusion type problems. Jennings, !4 Douglas and
Dupont13 and Douglas et al.l5 have considered the
application of Galerkin methods to various nonlinear
problems, but again complete numerical results,
including comprehensive comparisons with existing
numerical methods, were not given. Thus, in
addition to presenting some new and computationally
efficient Galerkin formulations for nonlinear
problems and numerically demonstrating their
higher-order accuracies, it was also desirable to
test these methods to determine if they also
exhibited the same superiority in regard to
computational efficiency as was demonstrated for
the Galerkin methods applied to linear problems. If
so, then the Galerkin technique could prove to be
an important advancement toward developing faster
numerical models for field application.

To test and compare each method of solution, a
problem involving the nonlinear gas-flow equation
in one spatial variable with a specific volumetric
source term was chosen, for which a closed-form or
analytic solution was known. Using this particular
problem and its analytic solution, it was possible
to determine numerically the order of convergence
of each method, to compare each method on the
basis of computer time expended to obtain a given
accuracy, and to compare each method with respect
to computer core storage required. In addition, the
experimental data were used to define ‘‘consistent
quadrature” and ‘‘consistent interpolation’’ schemes
for the Galerkin methods. Finally, it was possible to
formulate conclusions regarding the computational
efficiency of the four time approximations
investigated.
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PROCEDURE OF INVESTIGATION

BOUNDARY VALUE PROBLEM

The problem chosen to serve as a basis for
comparing the various numerical methods listed
below describes the transient flow of a real gas
through a porous medium. The differential equation
considered for this study is nonlinear and includes
a volumetric source term. The particular volumetric
source term used in this study was so constructed
that it provides local areas of the system with a
significantly stronger source potential than the
surrounding areas. The gas flow equation considered
is:

J n\, BT =50, %2
—-—(a(p) )+ - S {x,#V28(p) YRR

ax ox
O<x <L ,7>0 N 40
where
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Initial and boundary conditions used in this paper
are:

P(x,0) =8, 0SxsL - @
and
d
a—i’- :0’/>O(5)
x=0Q

p(L,t)=p, (1-a,7te "), 150 .©

The gas deviation factor and viscosity in the above
equations are treated as pressure dependent
functions and the absolute permeability is treated
as a spatially dependent variable. The actual
values employed for the gas deviation factor and
viscosity were typical of a 0.7 gravity gas at a
temperature of 233°F. The initial pressure was set
at 4,150 psi and practical field values were employed
for the other physical properties of the hypothetical
reservoir. The solution to this problem is

plx,1)=p [az(l—e"’37’)f(x)+(l-a,7/e'7’)],
(7

where
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fx) =(—Z—)2(o.25—f—) (o. -—LL)
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and the source term employed in Eq. 1 is given by
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Pressure-dependent terms in Egq. 9 are given
explicitly by the solution, Eq. 7.

Eqs. 1 through 6 with the source term defined by
Eq. 9 were solved numerically using the methods
defined in the next section.

NUMERICAL METHODS

Four Galerkin-type methods (to be identified by
the basis functions used), a non-Galerkin method
employing piecewise cubic spline interpolation, and
the standard central finite-difference approximation
were utilized to discretize the space variable of
the subject problem. Four different time
approximations were used with each of the space
discretization methods. They are (1) backward time
approximation,3 (2) Crank-Nicolson time
approximation,® (3) Lees’ three-level time ap-
proximation,11 and (4) modified backward time
approximation.

GALERKIN-TYPE METHODS

A simple, straightforward application of the
Galerkin method, employing continuous piecewise
polynomial functions as basis functions to the
boundary value problem of concern, results in a

semidiscrete approximation,3 which in matrix
ordinary-differential-equation notation is:
d¢ . (10)

5—7-+Ag=5

Additional details on this formulation can be
obtained from papers by Price and Varga,? and
Cavendish et al.1'4 The unknown vector C, in
Eq. 10, represents the time-dependent coefficients
in the following approximation to the solution of

Egs. 1 through 6:

m
ﬁ(x,/)=z c(wi(xy, -

/=1

. (11)

where m is the dimension of a particular subspace
spanned by the m basis functions wi(x), i=1,2,...m-
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The vector § in Eq. 10 involves the source term
and has elements defined by

L
S =%L-£S(x,f)m'(x)dx; s/ <m

- - (12)

and the mxm Matrices B and A have elements
defined by

L
bij =_[o B(L 1) w, w; dx 1S/, jSm

. (13)
and
x=L
ﬂzy':‘[wia(ﬁ(X,f)) %] +
X=0

L
fa(.c’:‘(x,/))w}w,' dx; 1S, 7<m
o
. (14)

A modification, the importance of which will be
demonstrated numerically later in the paper, to the
elements of the soutce vector § and coefficient
matrices of Eq. 10 will now be outlined. This
modification involves interpolation of the source
term and the pressure-dependent coefficients of the
differential equation. That is, define a, 8 and § as
the interpolates of a(p), ﬂ(zg) and S(x, t) such
that

and
A
‘5‘:kzl 9, (f)l; (x).

Employing these three equations, the defining
equations for the elements of the coefficient
matrices and the source vector become:

r L
DA
k=l

< /7,7

Vg (%) w; () w; (x) dx

In o—

mo e (15
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- A d“’j x={ 4
Gy = {”/a(p)?x-} o -:-, d, (7)e

L
j; W 0w (dx; 154,/ < m

(16)
and
- 7 L
S; = _%r_ ’Z' g,,(r)_L‘ Y (X) w. (x) dx;
1S7 < me- « « « -« . ... 31D

In contrast to the integrands in Egs. 12 through 14,
the integrands of the three integral terms above are
strictly functions of the variable of integration and
thus can be integrated exactly. Generation of the
time-dependent parameters dy, f; and gz, 1<k<r
depends on the method of interpolation employed.
Four methods, cubic and quintic spline interpolation,
cubic Hermite interpolation, and an integral
least-squares procedure, all employing continuous
piecewise basis elements, v, were studied. This
approach, where the elements of the source vector
and coefficient matrices are defined by Egs. 15
through 17, will subsequently be referred to as the
modified Galerkin method.

The choice of a particular set of basis functions
to represent the solution in the form of Eq. 11
determines the dimension m of the previously
mentioned matrices and also fixes the band widths
of these matrices. Four different sets of basis
functions were utilized in this study.

In the following description let A;0 = xy<xy<. .
< xny1 = L denote any partition of [0,L] with grid
points x; Since the defining equations for the
basis functions summarized below are readily
available elsewhere,3:6:7 they will not be presented
here.

Smooth Linear Hermite Space H(1) (A)

For a fixed partition A of [0, L] the functions of
HM (A) are continuous functions defined on lo, L1,
which are linear on each subinterval (%, x;.1) of
[0, L]. It is possible to select a basis, t;{x), i=1, 2
-+, N+1, called Chapeau functions,” such that the
support of #; is contained in the interval (x;_y,x;.1)-
Because of this, there is just one unknown per mesh
point, and the resulting Matrices A and B are
tridiagonal. V

Smooth Cubic Hermite Space H(2) (A)

The elements of the smooth cubic Hermite space
H(2) (A) are functions w(x), which are continuously
differentiable on [0, L], such that w(x) is a cubic
polynomial on each subinterval (x;, x;,,) of [0, L],
Because we can in essence assign the values of
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w(x;) and w{x;) at each x;, such functions form a
2(N+1)-dimensional subspace of C}[0,L]. Moreover,
it is possible to select a basis for H(2) (A), such
that the corresponding Matrices A and B have band
widths of seven.

Nonsmooth Cubic Hermite Space H(A, 1, 4)

The elements of the nonsmooth cubic Hermite
space are functions w(x), which are only continuous
on [0, L], such that w(x) is a cubic polynomial on
each subinterval (x;, x;,{) of [0, L]. This space
has dimension 3N+1 Agam it is possible to select
a basis for H(A, 1, 4)7 such that the corresponding
Matrices A and B have band widths of seven.

Cubic Spline Space Sp(2) (A)

The elements of the cubic spline space Sp(2) (A)
are functions w(x), which are twice commuously
differentiable on [0, L], such that w(x) is a cubic
polynomial on each subinterval (x;, x;.;) of [0, L].
This space has dimension N+3, and by choosing a
particular basis for Sp(2) (A), the Matrices A and B
have again a band width of seven.”?

Although no mention of boundary conditions was
included in the above discussion, it is necessary
to make modifications to Matrices A and B to take
these conditions into account. Flux-type boundary
conditions (e.g., Eq. 5) can be accounted for in a
natural manner by utilizing the first term in the
definition of a,; given by Eq. 14. HerboldS outlines
a procedure for treating specified potential-type
boundary conditions when cubic spline basis
functions are employed. Although the example given
by Herbold involves homogeneous boundary
conditions, his approach can be readily extended
to nonhomogeneous conditions. Modifications needed
for basis functions other than cubic spline functions
are straightforward.

The initial set of coefficients, ¢;(0),i=1, 2, ...
m is generated by requiring that

(Blxo), w0 {ptx,0), 4, ()
/ / L2, ..m,. . . (18

where

m
ﬁ(x,a)=Zc,~ (0) wy(x) . . . . .(19)

/=i

and ¢,) denotes the usual L,-inner product on
[0, L]. Thus Eq. 18 represents an integral least-
squares approximation of the initial data by the
piecewise set of functions w;(x), 1 <7 <m.

NON-GALERKIN CUBIC SPLINE
INTERPOLATION

This approach was first suggested by Albasiny and
Hoskins® for solving a linear two-point boundary
value problem involving a second-order ordinary
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differential equation. The method has been modified
to handle Eqs. 1 through 6*. Details of this
modification are presented in the Appendix.

This method? utilizes the following cubic spline
polynomial to interpolate to the pressure at time
level ¢,,4 = (n+1) At at the uniformly spaced grid

points x;, 1 <7 <N+ 1:
S = (x,~-x)3 o (x-x,‘-|)3
X = 7=} 64 f Y +
) _La_ (x;-x) l\~/72
<p/—| 6 M/-u) h (”f 6 M’)
(1) Sxsx, o .. (0

where M; = $”(x) and p; = p (x;, t,.4). The
requirement that the spline approximation satisfy
the differential equation (Eq. A-1) at the grid points
%;, 1 <i <N+1 furnishes, on using Eq. 20 and the
continuity of first derxvamves at the grid points, a
set of relations that can be used to eliminate the
unknowns M;, 1 <7 < N+1. The final result, after
invoking the boundary conditions, is a trldlagonal
set of equations for the determmauon of p(x;, n+1)
1 <7 < N+1. These discrete values of pressure in
turn can be used to explicitly determine M; and thus
generate a twice continuously differentiable solution
in the form of Eq. 29 for the entire interval [0, L].

A close examination of this method indicates that
it is simply a procedure that simultaneously
generates the solution p(xl, 1), 1 <i <N+1 and
the cubic-spline-interpolation polynomial of these
discrete values. The same results could be obtained
by interpolating independently the discrete values
of pressure generated by a fm1te d1fference equation
similar to the Numerov formula,l

CENTRAL-DIFFERENCE APPROXIMATIONS (CDA)

The CDA approximation is just the standard,
second-order correct, central finite-difference
approximation. It is rfeadily available in the
literature.3

DISCRETE APPROXIMATIONS IN TIME

As previously outlined, four common time
approximations were utilized in this study. For the
sake of convenience and to facilitate later
discussions, these methods will be outlined by
using Eq. 10.

Backward-Time Approximation (BKWD)

Employing the first-order correct backward-time
approximation to fully discretize Eq. 10 and letting
the subscript “‘n’’ denote the discrete time level
t,=nAt results in

*For this method the boundary condition at x = 0 was changed
to one involving specification of pressure rather than a flux-type
boundary condition.
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[50+|+A’Aﬂ+l] -Qm-) =4,

et Cn +Af§‘

(21)
where a subscript on a matrix implies that the

elements that constitute the matrix are to be
evaluated at that time level.

Crank-Nicolson Time Approximation (CN)

Employing the second-order correct Crank-Nicolson
time approximation to fully discretize Eq. 10
results in:

At _ At
[B.IH-".;- + 2 An+~é—]£n+! ‘[Bn-r'f "Tg—‘qln Lz]gﬂ

+AIS L. L (22)
z

Lees’ Three-Level Time
Approximation (L3L)

Use of Lees’ three-level, second-order correct
time approximation to fully discretizing Eq. 10
results in:

_24¢ -
[5 +E3T A,,}Q,,H -|:B” 3 ]

2
s

L__._J

Cot201S,,
(23)

It should be noted that this method centers the
coefficients at time level », and thus Eq. 23 is
linear and can be solved directly for the set of
coefficients at the (n+l)-st time level.

Modified Backward-Time
Approximation (MBKWD)

This scheme uses the same matrix equation
structure as the fully backward-time approximation,
but employs dependent variables at the nth time
level to evaluate the coefficient matrices. Thus Eq.
21 becomes:

(8, + 814,) Coyy 28,6401, . . 8

+1

Two of the above time approximations result in
sets of nonlinear equations that must be linearized
in some manner in order to obtain a solution. The
following iteration scheme, demonstrated by applying
it to Eq. 21, was employed

’H-l A An+| g =8

ne1 - B &yt D IS

n+ls

[(/r) (/:):] k) )

. (25)
where the superscript “‘£’’ is an iteration number.
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The elements of A and B were evaluated by using

m

A (e (nen) A7) >
iz

e ) (),
(26)

and the scheme is started by using
Bk nennar) = pix, nit).

NUMERICAL EXPERIMENTATION

Numerical experimentation was designed to
accomplish three basic tasks: (1) to define the
condition needed to insure ‘‘consistent quadrature
and interpolation schemes’’ in the Galerkin methods,
(2) to determine the numerical order of convergence
of all methods tested, and (3) to compare all methods
from the standpoint of computer time expended to
obtain a given accuracy.

Use of the term “‘consistent quadrature scheme’’
is connected with the approximation of the numerous
integrals needed to generate the coefficient matrices
in the basic Galerkin equations (i.e., Egs. 10 and
12 through 14). As originally defined by Herbold,$
a consistent quadrature scheme is a quadrature
method that when applied to the various integrals
in the Galerkin method, gives the same theoretical
rate of convergence (see Eq. 30) as if the integrals
had been calculated with infinite precision. In
essence, this means the exponent a of Eq. 30 is
left unchanged by a consistent quadrature routine,
The constant Kq(¢) in Eq. 30 can be affected by the
quadrature scheme employed in the Galerkin method.
For the purposes of this paper, ‘‘consistent
quadrature schemes’’ are defined as those schemes
which require the least amount of numerical
computation while preserving the order of
convergence of the method of solution and giving,
to machine accuracy, the least value of Kq{(#) in
Eq. 30. Thus, this definition differs from Herbold’s
in that it is concerned not only with the rate of
convergence, but also the magnitude of the
coefficient multiplying (Ax)“ in Eq. 30. In an
analogous manner, a ‘‘consistent interpolation
scheme’’, which is relevant when the modified
Galerkin formulation as outlined by Egs. 15 through
17 is used, can be defined as an interpolation
procedure that requires the least amount of humerical
computation while preserving the order of
convergence of the method of solution and giving,
to machine accuracy, the least value of Ky(#) in
Eq. 30.

To accomplish these tasks, an analytic solution
to Egs. 1 through 6 and a measure of accuracy were
required. The analytic solution to the subject
problem is presented as Eq. 7. The measure of
accuracy chosen for this study was the Lo norm.
Although other norms could certainly be used for
measuring the accuracy of the numerical solution,
the L o, or maximum norm, was chosen because it
has a meaning that can be readily interpreted.
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The Loo norm is accurately estimated by putting a
uniform mesh on [0, L] of mesh size h=L/N,, where
N, is a large positive integer, and computing

max
E(t)=0< j < Ng|p (iht) -piht|.an

whereA p(jb,t) is the analytic solution given by Eq. 7
and p(jh,t) is its numerical approximation. In the
data presented in this paper (except for that of
Table 3) N, was chosen to be 500. A few test cases
employing N,=2,000 generated values of E(2) only
slightly different from the value obtained using
N,=500. Eq. 27 can be applied to continuous-solution
methods such as the Galerkin method and the
non-Galerkin cubic spline interpolation method, but
the following version of Eq. 27 was employed for
the CDA approximations:

max A e
E(N=EI1S/<NA plx;, 1) - plah (28)

With respect to the time approximations that
generated nonlinear algebraic equations, thereby
necessitating the implementation of the previously
outlined iteration scheme, it was necessary to
carry the iteration to the point where the error
defined by Eqs. 27 or 28 did not materially change.
It was found that, for the conditions under which
the series of tests were conducted, three iterations
(or inner loops) were sufficient per time step.

For each of the methods tested, all computations
were carried out in double-precision arithmetic on
the IBM 360 Model 85 Computer.

RESULTS

To determine the conditions that insure a
consistent quadrature scheme, two sets of
experiments were carried out. These experiments
consisted of solving the boundary value problem of
concern using the Galerkin approach employing
Chapeau and smooth cubic basis functions and a time
step sufficiently small to insure that the error, given
by Eq. 27, could principally be attributed to the spatial
error. With the time step and mesh size fixed, the
boundary value problem was solved using Gaussian
quadrature formulas of various orders of accuracy
G.e., 2, 4, 8, 12 point formulas) to set up the
coefficients matrices of Eq. 10 with terms defined
by Egs. 12 through 14. Figs. 1 and 2 illustrate the
effect of changing the order or accuracy of the
quadrature scheme on the error E(£).

The tests employed to examine the consistent
interpolation concept involved solving the test
problem using the Galerkin-cubic spline and the
Galerkin-smooth cubic methods with an appropriately
small time step. With the time step and mesh size
fixed, the problem was solved by using interpolation
schemes, employing interpolation partitions ranging
from eight times finer to the same size as the
solution mesh, to generate the coefficient matrices
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and source term of Eq. 10 as defined by Eqgs. 15, 16
and 17, respectively. Figs. 3 and 4 illustrate the
effect of interpolation mesh refinement on the error
E(1) for the modified Galerkin-cubic spline method
of solution in conjunction with cubic spline
interpolation. Fig. 5 illustrates the effect of
interpolation mesh refinement on the error E(1) for
the modified Galerkin-smooth Cubic method of
solution in conjunction with cubic Hermite inter-
polation. The term “mesh refinement factor’’ used
in Figs. 3 and 5 is defined as follows. Let Ag:0=
x1<xp<...<xn4q=L denote the basic partition of (0,
L]used in the solution of the problem. This mesh
will subsequently be referred to as the solution
mesh. The interpolation mesh is defined as the
partition formed by subdividing each subinterval
(x;, xi41) of the solution mesh into RF equal
intervals. RF is then defined as the mesh refinement
factor and in this paper is a positive integer greater
than or equal to one.

The spatial order of convergence of the methods
tested was determined by plotting log E(f) vs log
Ax. The reason for employing a plot of this type is
based on the following equation,! which is used to
define the error given by Eqs. 27 or 28,

TIME = 2.0 DAYS

LOG E (1)

4 TIME=0.2 DAYS

TIME INCREMENT = 0.025 DAYS
SPACE INCREMENT = 10000 /20 = 500 FT.

o I 2 3 4 5 6 7 8 9 10 il 12

NUMBER OF QUADRATURE POINTS

FIG. 1 — EFFECT OF ORDER OF QUADRATURE ON
ERROR — BASIC GALERKIN METHOD USING
CHAPEAU-BASIS FUNCTIONS.

TIME = 2.0 DAYS
TIME = 0.2 DAYS

LOG E (1)
Gmto-nwsao

-4 TIME INCREMENT =0.025 DAYS
SPACE INCREMENT = 10000/20 = 500 FT.

0 ' 2 3 4 5 6 7 8 9 10 " 12

NUMBER OF QUADRATURE POINTS

FIG. 2 — EFFECT OF ORDER OF QUADRATURE ON
ERROR — BASIC GALERKIN METHOD USING SMOOTH
CUBIC FUNCTIONS.

379



b
EN =K, (11 +K, (AN *+elr,Ax D1,
N %))

where ¢ (¢, Ax, Af) represents higher order terms.

Now, if both Ax and At are sufficiently small and

At is much smaller than Ax so that the terms
Ko (1) (At)® and ¢ are negligible, then E(¢) is given
by

E(N=K, (f)(Ax)a, . (30)

and a log-log plot of E(z) vs Ax should result in a
straight line with slope @, the numerical order of
convergence of the method. This slope was
determined for each method of solution. The
Crank-Nicolson time approximation was used with
each of these methods. Fig. 6 presents log E(f) vs
log Ax for each method at a time level of 1.0 days.
Fig. 7 is a similar plot but at the 2.0-day time level.

In comparing the various methods from the
standpoint of computer time needed to obtain a

~
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. SPACE INCREMENT = 10000/ 20 = 500 FT.
s S S TR S SN SOU WU S N SO B
o 1 2 3 4 S5 & 7T 8 9 o Il R
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FIG. 3 — EFFECT OF INTERPOLATION MESH RE-
FINEMENT ON ERROR — MODIFIED GALERKIN —
CUBIC SPLINE METHOD EMPLOYING CUBIC SPLINE"

INTERPOLATION.
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FIG. 4 — EFFECT OF MESH SPACING AND INTER-

POLATION MESH REFINEMENT ON ERROR —

MODIFIED GALERKIN — CUBIC SPLINE METHOD
USING CUBIC SPLINE INTERPOLATION.
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given accuracy, both space and time increments
were taken large enough so that the error E(¢) was
influenced by both time and spatial truncation
errors. The comparison was carried out by
,partitioning the system into 100 mesh blocks for
methods believed to be second-order correct in

k]
o - LEGEND
7 - e MESH REFINEMENT FACTOR OF |
6 |- 0O MESH REFINEMENT FACTOR OF 2 ,
s | & MESH REFINEMENT FACTOR OF 3 f
PR MESH REFINEMENT FACTOR OF 6
3 b
2
=
w0
®
© -
o
J -2
-3
-4 -
-sE CRANK NICOLSON TIME APPROXIMATION EMPLOYED
~ 6" TIME INCREMENT :0.025 DAYS
=7 SIMULATION TIME = 2.0 DAYS
.
-3 1 1 { 1 { { | | 1 L
o I 2 3 4 5 6 7 8 9 10
L0Ge AX

FIG. 5 — EFFECT OF MESH SPACING AND INTER-

POLATION MESH REFINEMENT ON ERROR —

MODIFIED GALERKIN — SMOOTH CUBIC METHOD
USING CUBIC HERMITE INTERPOLATION.

~
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©
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0 i 2 3 4 5 6 7 8 9 10 u 12
LOG,AX
FIG. 6 — EFFECT OF MESH SPACING ON ERROR AT
1 DAY.
12
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space and into 10 mesh blocks for techniques
believed to be fourth-order correct in space. On this
basis, the spatial error of all the methods was of
the same order of magnitude (i.e., 5.0 to 12.0 psi).
After fixing the mesh spacing in this manner, an
error curve of log F(2) vs log At was prepared for
each method. An example of these curves is given
in Fig. 9. The combination of six spatial
approximations and four time approximations
necessitated the preparation of 24 error charts plus
additional graphs for each modification of the basic
methods. Total computing times were generated for
each combination of space and time approximations
by selecting a time step corresponding to a given
error and calculating the total simulation time from
accurate timing data prepared for each method.
Table 1 presents normalized computing time (i.e.,
normalized by dividing all times by the smallest
value) for all the methods at a time level of 16.0
days and for log E(#) values of 3.0, 4.0 and 5.0.
These log E(t) values represent errors of
approximately 20 psi, 55 psi and 140 psi from the
true solution or relative errors of approximately 1.0,
2.5 and 7.5 percent, respectively. Fig. 8, prepared
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from the analytic solution, illustrates the pressure
distribution at 16.0 days.

The Galerkin methods represented in Table 1
refer to the formulation defined by Egs. 12 through
14, where the integrals were evaluated using a
consistent quadrature scheme. Table 2 compares
normalized computer time (normalized by using the
smallest CDA time as the normalizing factor) for
the CDA methods with the modified Galerkin-cubic
spline and the modified Galerkin-smooth cubic
methods employing various interpolation schemes.
Table 3 presents normalized computer time for the
CDA method and the modified Galerkin-cubic spline
method employing a consistent cubic spline
interpolation routine for a log E(#) value of -2.0.
This error corresponds to a relative error of less
than 0.005 percent. To reduce the error to this
magnitude, the system was partitioned into 1,600
mesh blocks for the CDA method and 40 blocks for
the Galerkin-cubic spline method.

An additional comparison, involving computer
core storage, was prepared for most of the methods
tested. This comparison is presented in Table 5
and is a normalized comparison, with the program
requiring the least amount of storage serving as
a reference. As in the computing time comparison,
the methods thought to be second-order correct in
space were allotted more storage for the main
storage arrays than for the methods thought to be
fourth-order correct. In Table 5, second-order correct
methods were allocated storage to handle 400 mesh

TABLE 1 — NORMALIZED COMPARISON OF COMPUTER
TIME FOR SIMULATION TO 16.0 DAYS*

Accuracy
Log Log Log

Method of Solution E=3.0 E=4.0 E=35.0
CN — Chapeau (100) 30.92 55.11 91.95
L.3L — Chapeau (100) 55.00 92.00 143.44
BKWD — Chapeau (100) 3.36 4.96 7.17
MBKWD — Chapeau (100) 3.12 3.97 7.97
CN — smooth cubics (10) 16.77 33.52 61,33
L. 3L — smooth cubics (10) 14.83 30.82 54.05
BKWD — smooth cubics (10) 10.29 5.55 4.00
MBKWD — smooth cubics (10) 2.40 3.28 4.76
CN — nonsmooth cubics (10) 13.77 28.07 51.37
L.3L — nonsmooth cubics (10) 11.48 24.93 46. 46
BKWD ~nonsmooth cubics (10) 6.93 5.64 4,35
MBKWD —nonsmooth cubics (10) 1.87 2.76 3.98
CN - cubic spline (10) 14.39 30.22 53.66
L 3L — cubic spline (10) 15.85 24,82 54.02
BKWD — cubic spline (10) 6.85 4.08 3.41
MBKWD — cubic spline (10) 1.65 2.47 3.34
CN —non-Galerkin cubic spline

(100) 6.20 1.79 20.91
L3L —non-Galerkin cubic spline

(100) -~ 20.12 36.22 61.50
BKWD-non-Galerkin cubic spline

(100) 1.10 1.74 3.20
MBKWD-non-Galerkin cubic

spline (100) .1 1.95 3.17
CN — CDA (100) 3.45 6.59 12.09
L3L - CDA (100) 8.89 15.24 24.26
BKWD — CDA (100) .11 1.00 1.00
MBKWD — CDA (100) 1.00 1.36 1.81

*The CN and BKWD schemes employed three iterations per

time step.
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TABLE 2 — NORMALIZED COMPARISON OF COMPUTER
TIME FOR SMULATION TO 16.0 DAYS*

Accuracy -
Log Log Log
Method of Solution E=3.0 E=4.0 E=5.0
CN — CDA (100) 3.45 6.59 12.09
BKWD — CDA (100) .11 1.00 1.00
MBKWD — CDA (100) 1.00 1.36 1.81
CN — cubic spline (10) 14.39 30.22 53.66
BKWD — cubic spline (10) 6.85 4.08 3.41
MBKWD — cubic spline (10) 1.65 2.47 3.34
CN — cubic spline (10)! 7.33 14,36 25.24
BKWD _ cubic spline (10)’ 2.85 1.70 1.78
MBKWD — cubic spline (10)' 0.82 1.33 2.14
CN — cubic spline (10)2 3.44*%* 8.28 13.04
BKWD — cubic spline (10)2 2. 15%* 0.96 0.93
MBKWD — cubic spline (10}2 0.99** 0.77 0.96
CN - cubic spline (10)3 4.38 9.10 16.99
BKWD — cubic spline (10)3 1.94 1.16 1.04
MBKWD — cubic spline (10)3 0.68 0.86 1.29
CN — smooth cubics (10)4 5.64 10.95 15.76
BKWD — smooth cubics (10)4 - 1.83 2.25
MBKWD — smooth cubics (10)4 - 0.93 1.28
CN — smooth cubics (10)5 5.62 11.46 21.62
BKWD — smooth cubics (10)5 3.04 1.53 1.24
MBKWD — smooth cubics (10)% 0.92 1.20 1.69

WUses consistent integral least-squares interpolation by
piecewise cubic spline functions.

2Uses consistent (an interpolation mesh twice as fine as the
solution mesh) cubic spline interpolation.

3Uses cubic spline interpolation employing an interpolation
mesh three times as fine as solution mesh.

4Uses cubic Hermite interpolation employing an interpolation
mesh twice as fine as the solution mesh.

SUses cubic Hermite interpolation employing an interpolation
mesh three times as fine as the solution mesh.

*The CN and BKWD schemes employed three-iteration time
step.
** A localized refined mesh was employed at the end points for
estimating derivatives in the cubic spline interpolation schemes.

TABLE 3 — NORMALIZED COMPARISON OF COMPUTER
TIME FOR SIMULATION TO 16.0 DAYS*

Accuracy

Method of Solution Log E=—-20
CN -~ CDA (1,600) 1.00
BKWD — CDA (1,600) 19.82
MBKWD — CDA (1,600) 7.25
CN — cubic spline (40)** 0.19
BKWD — cubic spline (40)** 3.39
MBKWD — cubic spline (40)** 0.74

*The CN and BKWD schemes employed three iterations per

time step.
**Uses consistent (an interpolation mesh twice as fine as the
solution mesh) cubic spline interpolation.

TABLE 4 — COMPARISON OF EXPERIMENTAL AND
ANTICIPATED THEORETICAL ORDERS OF ACCURACY

Anticipated

Method of Solution* Experimental  Theoretical Values

CDA 2.03 2.0
Non-Galerkin cubic spline ~  2.08 2.0
Chapeau 1.93 2.0
Smooth cubic 3,58 4.0
Nonsmooth cubic 3.80 . 4.0
Cubic spline 3.83 4.0

*Tests were carried out using a Crank-Nicolson time
approximation with At sufficiently small so that the error is
dominated by the spatial truncation term.
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blocks, whereas fourth-order correct methods were
allocated only enough storage to handle 20 mesh
blocks. A comparison on this basis is believed to
be more realistic since each method will be
capable of obtaining a solution with approximately
the same magnitude of spatial error.

DISCUSSION

In this section, the numerical results that were
outlined in the previous section are discussed. The
requirements needed to insure consistent quadrature
and interpolation schemes in Galerkin-type problems
are outlined. The numerical order of accuracy
(convergence) of each of the methods studied is
presented, and all methods are compared from the
standpoint of computer time required to obtain a
given accuracy for a specific problem. Finally, all
methods are compared on a computer core storage
basis.

CONSISTENT QUADRATURE AND
INTERPOLATION SCHEMES

As defined previously, a consistent quadrature
scheme is one that preserves the spatial order of
convergence of a particular method (i.e., set of
basis elements) of solution as well as minimizing,
to machine accuracy, the coefficient of (Ax)% in
Eq. 30. Figs. 1 and 2 present data on how the error,
defined by Eq. 27, behaves when the source vector
and coefficient matrices, as defined by Egs. 12

TABLE 5 — NORMALIZED COMPARISON OF COMPUTER
CORE STORAGE REQUIREMENTS

Method of Solution Normalized Storage

CN — Chapeau (400) 2.656
L3L — Chapeau (400) 2,670
BKWD — Chapeau (400) 2.654
MBKWD — Chapeau (400) 2,593
CN — smooth cubic (20) 1.125
L3L -~ smooth cubic (20) 1. 156
BKWD — smooth cubic (20) . 1.102
MBKWD — smooth cubic (20) 1.097
CN — nonsmooth cubic (20) 1.167
L3L — nonsmooth cubic (20) 1.200
BKWD — nonsmooth cubic (20) 1.165
MBKWD — nonsmooth cubic (20) 1.155
CN — cubic spiine (20) 1.006
L3L - cubic spline (20) 1.036
BKWD — cubic spline (20) 1.004
MBKWD — cubic spline (20) 1.000
CN — non-Galerkin cubic spline (400) 1.842
L3L — non-Galerkin cubic spline (400) 2.041
BKWD — non-Galerkin cubic spline (400) 1.703
MBKWD — non-Galerkin cubic spline (400) 1.641
CN — CDA (400) 1.512
L3L — CDA (400) 1.549
BKWD — CDA (400) . L5711
MBKWD — CDA (400) 1.449
CN — cubic spline (20)* 1.335
BKWD — cubic spline (20)* 1.333
MBKWD — cubic spline (20)* 1.329
CN - cubic spline (20)** 1.399
BKWD — cubic spline (20)** 1.398
MBKWD — cubic spline (20)** 1.394

*Uses consistent integral least-square interpolation by piece-
wise cubic spline function,
**Uses consistent cubic spline interpolation.
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through 14, are generated using Gaussian quadrature
formulas of various orders of accuracy. Fig. 1
presents data for methods using Chapeau-basis
functions and Fig. 2 data for methods using smooth
cubic-basis functions. Examination of Fig. 1
indicates that the error remains essentially the
same for all orders of quadratures employed, the
order of the quadratures varying from two-point to
twelve-point formulas. Thus, it can be concluded

that if a method uses Chapeau-basis elements, a

two-point Gaussian quadrature can be considered a
consistent quadrature. Analogously, Fig. 2 indicates
that a four-point quadrature scheme is necessary in
order to prevent the error originating in the
quadratures from affecting the accuracy of the
method of solution.

Examination of the definition of the elements of
the coefficient matrices given in Eqs. 13 and 14
indicates that, in the case of Chapeau functions,
the integrals involve polynomials of Degree Two
multiplied by a positive weight function. In the case
of smooth cubics, the integrals involve polynomials
of Degree Six multiplied by the same weight
function, i.e., Blp(x,4)]. Since an n-point Gaussian
quadrature scheme exactly integrates polynomials of
degree 2n—1 or less, the results of this study
indicate that a quadrature routine that integrates
polynomials one degree higher than the degree
obtained from the product of the basis functions can
be classified as consistent.

Consistent interpolation, as related to the
modified Galerkin approach, defined by Egs. 15
through 17, has been previously defined. The data
presented in Fig. 3 discloses that if cubic spline
interpolation is employed a mesh refinement factor
of two is required in order to prevent the error
originating in the interpolation portion of the
calculations from affecting the accuracy of the
modified Galerkin-cubic spline method of solution.
Consistency tests carried out using integral least-
squares interpolation of the coefficients by
continuous piecewise cubic splines coupled with
the Galerkin-cubic spline method of solution resulted
in data similar to that presented in Fig. 2. This
method of interpolation requires the approximation
of integrals, and these tests confirmed the results
of the consistent quadrature tests in that a four-point
Gaussian quadrature scheme is necessary for
consistent interpolation.

Figs. 4 and 5 present additional data that can be
used to illustrate the meaning of consistent
interpolation. The data in these two figures clearly
indicates the reduction in the magnitude of the
coefficient K(?) of Eq. 30 as the mesh refinement
factor increases (i.e., as the interpolation mesh
becomes finer). Fig. 4, which presents data on the
modified Galerkin-cubic spline method employing
cubic spline interpolation, demonstrates that no
measurable reduction in error can be accomplished
by employing a mesh refinement factor greater than
two. Similarly, Fig. 5, which presents data on the
modified Galerkin-smooth cubic method employing
smooth cubic Hermite interpolation, illustrates that
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a mesh refinement factor between two and three is
sufficient to insure a consistent interpolation
scheme for this method of solution. It should also
be noted that in both figures a mesh refinement
factor of one results in local changes in the order
of convergence (the general trend of these curves is
approximately the same as the curves generated
using a larger-mesh refinement factor) even though
both interpolation schemes are fourth-order correct—
the same order as the method of solution.

In summary, although no theoretical proof exists
at the present time, it is logical to conclude that
any interpolation scheme that has the same (or a
higher) order of convergence as the over-all method
of solution should preserve the value of the
exponent a in Eq. 30 (i.e., be consistent in the
sense of Herbold’s® definition). In addition, as the
data just presented and discussed indicate, it is
possible, by using interpolation schemes with the
same order of accuracy as the method of solution
coupled with the concept of a refined interpolation
mesh, not only to maintain the order of convergence
of the over-all method of solution (i.e., preserve
exponent a) but also to minimize, to machine
accuracy, the coefficient K{(#) of Eq. 30. Thus,
since the modified Galerkin method, employing
interpolation methods based on a partition finer than
the solution partition, is economically attractive
(to be demonstrated later) and since it requires
little additional programming effort, it can be
concluded that the concept of consistent
interpolation as defined in this paper is an efficient
procedure for keeping the errors associated with
the Galerkin technique to a minimum.

ORDER OF THE APPROXIMATIONS

As outlined previously, the numerical order of
convergence of each method was determined by
plotting log E(#) vs log Ax. This type of data is
used to distinguish the higher-order methods from
lower-order methods. Figs. 6 and 7 present these
data for time levels of 1.0 and 2.0 days, respectively.
Departure from straight lines for large value of Ax
can be attributed to the term ez, Ax, A#)in Eq. 29.
For the large values of Ax, its contributions to the
total error term is not negligible. Deviation from
the straight line for small values of Ax can be
attributed to time truncation error. In this portion of
the curve, the term K,()(A2)? is not small compared
to K (#)(Ax)2. Also note that the curves exhibiting
the highest values for the slope a approach a
constant for small Ax; this is the time truncation
error.

Table 4 compares @, the numerical order of conver-
gence of each method, with anticipated theoretical
values. Anticipated or expected values are used here
since no theoretical rate of convergence data exists
for nonlinear parabolic problems of the type studied
here. One exception to this is a recent publication13
that presents theoretical convergence data for
Galerkin methods as applied to nonlinear parabolic
equations. However, these results indicate a
lower-order convergence rate than can be obtained
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experimentally. The three methods, Chapeau, CDA,
and the non-Galerkin cubic spline interpolation
method, have slopes that agree very well with
expected theoretical values. Of the three second-
order methods, Figs. 6 and 7 indicate that the
non-Galerkin cubic spline interpolation method is
slightly better than CDA and that both are superior
to the Chapeau approximation. Although all three
have approximately the same order of convergence,
the factor Ky(f) in Eq. 30 is smallest for the
non-Galerkin cubic spline interpolation method.
Comparison of the three higher-order methods
indicates that the experimentally determined order
of convergence does not agree as closely with the
anticipated theoretical value as the second-order
methods. Additional computational results using an
error defined by the L, norm improved the agreement
between the numerical and the anticipated rate of
convergence for the Galerkin-cubic spline method.
The data in Figs. 6 and 7 indicate that the nonsmooth
cubic method is slightly superior to the other two
methods since the coefficient of (Ax)# is smallest
for this method.

In summary, the most important information
conveyed by the data in Table 4 is not the closeness
of agreement between numerical order of convergence
data and expected theoretical values, but simply
the distinction between high- and lower-order
accuracy methods. The ability to distinguish the
order of convergence is important because the
higher-order methods require a partition with
substantially fewer mesh blocks than lower-order
methods for numerical solutions of a specified
accuracy.

COMPUTING TIME AND STORAGE COMPARISON

Although knowledge of the order of convergence
is important in selecting methods, the most important
point when comparing different methods is how
much computing time is expended to obtain a given
accuracy. A second consideration is how much core
storage is required for each method. Answers to
both of these questions can be obtained by
examining Tables 1 through 3 and 5.

Examination of Table 1 data indicates that the
standard central finite-difference space approxima-
tion coupled with a modified backward-time
approximation is the fastest for a relative error less
than 1.0 percent (roughly an error of 20 psi), and
that for larger errors, approximately 2.5 and 7.0
percent (or 55 psi and 150 psi), the CDA method
using a backward-time approximation is superior.
Comparing just the Galerkin methods, which refer to
the basic formulation represented by Egs. 12 through
14, the one employing cubic splines with a modified
backward-time approximation is the fastest. These
results are in direct contrast to results reported for
a linear problem.! In linear problems, the Galerkin-
type methods were far superior to the finite-difference
methods. The primary reason for the increase in
computing time associated with the Galerkin-type
methods can be attributed to the many quadrature
operations that must be carried out to generate the
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coefficient matrices in Eq. 10. In linear problems,
these matrices remain unchanged, and the associated
quadrature need be performed just once. For
nonlinear problems, these matrices necessarily vary
with each time step.

The necessity of utilizing the modified Galerkin
method, as defined by Egs. 15 through 17, if the
Galerkin approach is to compete with standard
numerical techniques is demonstrated by the data
of Tables 2 and 3. In these tables, which utilize
the CDA time as a normalizing factor, the Galerkin
(modified form) is superior. For a maximum error
less than 1.0 percent the modified Galerkin-cubic
spline method using a modified backward-time
approximation and cubic spline interpolation with a
mesh refinement factor of three is the fastest. For
the other two accuracy values, the modified
Galerkin-cubic spline method using a backward-time
approximation and cubic spline interpolation with a
mesh refinement factor of two is superior. Table 2
indicates that the computing time associated with
the basic Galerkin method is reduced by
approximately a factor of two when integral
least-squares interpolation is used and by a factor
slightly less than three when the cubic spline
interpolation technique is utilized. A similar
reduction also resulted for the basic Galerkin-smooth
cubic method when the modified Galerkin-smooth
cubic technique using cubic Hermite interpolation
was employed. This can be substantiated by
comparing the time given for- these methods in
Tables 1 and 2. It should also be pointed out that
it was not possible to obtain numerical solutions
with errors log E = 3.0 and log E = 4.0 using the
modified Galerkin method employing cubic and
quintic spline interpolation and a mesh refinement
factor of one; also for an accuracy of log E =5.0
this approach was not competitive with the Galerkin
methods represented in Table 2. In addition, it was
also found that runs utilizing a finer solution mesh
(i.e., 20 mesh blocks) and a mesh refinement factor
of one were not competitive with Table 2 Galerkin
methods. The integral least-squares interpolation
with two-point quadrature approximation resulted in
similar problems. The reason for the uncompetitive
status of these approaches was attributed to the
use of inconsistent interpolation and quadrature
routines. That is, the error introduced by inconsistent
interpolation was large enough to result in an
unattractive technique.

Additional points of interest illustrated in Tables
1 and 2 concern the different time approximations
employed with each space approximation. For each
type of space approximation, the MBKWD and BKWD
time approximations were superior to the Crank-
Nicolson and Lees three-level methods. It was
hoped that the Lees three-level time approximation
with the coefficients centered at the middle time
level would be an efficient scheme since the
approximation has a O[(Af)?] local truncation error
and requires no iterations on the nonlinear
coefficients to proceed from one time level to the
next. However, even though log E(2) vs log Az did
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indicate a second-order scheme, the magnitude of
the error was very large compared with the other
time approximations. In addition, oscillations in
error vs time plots were noticed. Under these
conditions, relatively small time steps were required
to reduce the errors to the values used in Tables 1
and 2. The surprising point, however, concerning
the different time approximations is the superiority
of first-order approximations over higher-order time
approximations. As pointed out previously, the
backward and modified backward time approximations
were superior.

The apparently inconsistent results of generating
a smaller error by utilizing a first-order correct time
approximation instead of a second-order correct
scheme for a given time-step size can be explained
by examining Fig. 9, which presents log E(¢) vs log
At for the CDA space approximation at a simulation
time of 16.0 days. Inspection of this figure indicates
that to obtain a solution with an error of log E=4.0
using the CN approximation requires a time step
approximately six times smaller than the time step
required for the BKWD technique. This point
illustrates, for example, why the CN technique,
which is second-order correct, requires approximately
six times as much work as the BKWD method, which
is first-order correct, even though both methods
involve approximately the same amount of algebraic
manipulations (see Table 1 log E =4.0 data).

Further examination of Fig. 9 indicates that, if a
smaller mesh size had been used, the curves
representing first- and second-order correct methods
would have crossed (i.e., extend the linear portion
of each curve in the direction of smaller A¢) and
for a sufficiently small At second-order methods
would indeed provide a smaller error than first-order
methods. This point can be verified by examining
Table 3, which presents normalized timing data for
the modified Galerkin-cubic spline and CDA methods
for a log E(2) value of —2.0 (i.e., a relative error in
the numerical solution of less than 0.005 percent).
In this table the second-order CN method is superior
to both the BKWD and MBKWD approximation. The
CN approximation is superior because the portion of
the log E(#) vs log At plot, which is used to
determine the time step needed to generate numerical
solutions with a log F = ~2.0 error, is in the region
where second-order methods exhibit smaller errors
than first-order methods for the same size of time
step. In this particular range of accuracy, the L3L
time approximation would likely be competitive with
the CN method. However, since the spatial error is
of the order of 6.0 psi (i.e., a relative error less
than 0.5 percent) in the data presented in Tables 1
and 2, the practical area of interest of the test
problem lies in the region where first-order correct
time approximations are superior to second-order
methods.

On an over-all basis, the data indicate that the

MBKWD and BKWD-modified Galerkin-cubic spline
methods are superior to the others for a practical
range of accuracy and the particular problem chosen.
The data of Table 3 also indicate that, as the
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accuracy requirements become more stringent, the
Galerkin methods become more attractive. In
addition, when highly accurate numerical solutions
are needed, the second-order time approximations
would be definitely superior to first-order methods.

In comparing the two spatial approximations, CDA
and non-Galerkin cubic spline interpolation, the
latter approach has the same advantage as the
Galerkin method, namely it generates a continuous
solution vs the discrete values obtained by the
conventional finite - difference  techniques. In
addition, the solution provided by the non-Galerkin
method is twice continuously differentiable.
However, it has recently been proved by Swartz and
Vargal? that it is possible to interpolate second-
order correct discrete values, such as those
generated by the CDA space approximation at a
fixed time level, with continuous, piecewise cubic
spline functions and obtain an approximation that
is globally second-order correct. Thus, a method
employing cubic spline interpolation of discrete
CDA solution values would be superior to the
non-Galerkin approach of Albasiny because the
interpolation portion of the problem would only be
carried out at simultation times of interest to the
engineer. In Albasiny’s approach, the formulation is
such that the discrete solution and the interpolation
are carried out simultaneously at every time step.
Thus, in conclusion, it appears that the CDA
approximation coupled with cubic spline interpolation
of the discrete solution values generated by this
method is a more flexible and efficient approach to
solving the subject problem than the modified
approach of Albasiny.

The core-storage requirement comparison,
presented in Table 5 on the basis of having spatial
truncation errors of the same order of magnitude for
all methods, indicates that the basic Galerkin-type
method -employing cubic spline basis elements in
conjunction with the MBKWD time approximation
requires the least amount of storage. This data also
shows that the modified-Galerkin approach also
requires less core storage than the standard CDA
method.

SUMMARY AND CONCLUSIONS

Use of Galerkin-type methods employing continuous
piecewise polynomial functions as basis elements
to solve nonlinear, time-dependent two-point
boundary value problems has been demonstrated. A
modification to the basic Galerkin technique for
nonlinear problems was developed and is examined
in detail. The necessity of using this modification
in order to obtain an efficient solution method is
also established.

In addition to the Galerkin methods, a method
which uses a non-Galerkin cubic spline interpolation
procedure was introduced. These methods were
tested extensively and compared with results
obtained from the more conventional finite-difference
approach to solving nonlinear problems. Four
different time approximations were evaluated. The
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tests were carried out on the equation describing
the transient flow of a real gas in a porous medium.
Results of these tests, which are restricted to
equations of the type studied, indicated that:

1. Criteria for consistent interpolation and
quadrature operations were determined. Numerical
experimentation indicates that a quadrature routine
that integrates polynomials one degree higher than
the degree obtained from the product of two basis
functions used to represent the solution of a problem
can be classified as consistent. Numerical work
also defined the conditions needed to insure
consistent interpolation methods. Consistent cubic
spline interpolation, in connection with the modified
Galerkin-cubic spline method of solution, requires
an interpolation mesh twice as fine as the solution
mesh (i.e., a mesh refinement factor of two).
Consistent cubic Hermite interpolation, in connection
with the modified-Galerkin smooth cubic method of
solution, requires an interpolation mesh three times
as fine as the solution mesh (i.e., a mesh refinement
factor of three).

2. The numerical order of accuracy of each of
the methods tested in this study was determined.
These are presented in Table 4.

3. The degree of accuracy required in the
numerical /solution determines which time approxi-
mation is superior on the basis of computer time
expended to obtain a given accuracy. For numerical
solutions  with relative errors varying from
approximately 1.0 to 7.5 percent, the first-order
correct time approximations were superjor. The
second-order CN method was superior for numerical
solutions with relative errors less than 0.005 percent.

4. The modified-Galerkin-cubic spline method
employing consistent cubic spline interpolation
coupled the MBKWD and BKWD time approximations
were superior in regard to computer time expended
for a given accuracy.

5. Use of consistent interpolation and quadrature
schemes, as opposed to inconsistent schemes,
provided the most economical approach to solving
the test problem with the Galerkin method.

6. On the basis of generating a solution with
approximately the same magnitude of spatial
truncation error, the Galerkin-cubic spline method
using the modified backward-time approximation
requires the least amount of computer core storage.

7. Of the four types of basis functions used in
the Galerkin approach, the cubic spline in
conjunction with a modified backward-time approxi-
mation was the most efficient in regard to both
storage required and computational effort to obtain
a given accuracy.

8. The CDA spatial approximation coupled with
cubic spline interpolation of the discrete solution
values generated by this method would be a more
efficient procedure than the modified Albasiny
approach.

Although no mention of problems involving more
than one dimension was made in the previous
material, it has already been pointed out! that the
savings in computer time for one-dimensional
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problems would be essentially squared when going
to two dimensions. Galerkin two-dimensional
formulations for certain problems have been
outlined by others.4,13,14

As was stated in the introductory statements of
this section, the previously stated conclusions are
restricted to equations of the type studied. However,
it is believed the following more general points can
be deduced from the results of this study.

1. The data presented on the various time
approximations indicates that just because a time
approximation is second-order correct it does not
necessarily follow that it is superior to a first-order
method. Asymptotically (i.e., as Az-»0) second-order
methods are superior to first-order methods, but as
this work demonstrates, conditions exist where
first-order methods are superior to second-order
methods. However, when comparing second- and
first-order methods, it must also be pointed out that
the second-order method will result in a correspond-
ingly larger reduction in the error for a given
time-step size reduction. This is, of course,
independent of the accuracy range considered.

2. If the Galerkin method is to be utilized in an
economic manner (i.e., from the standpoint of
computer time expended to obtain a given accuracy),
then the modified version as defined by Egs. 15
through 17 should be utilized.

3. As this paper demonstrates, the concept of
consistent quadrature and interpolation schemes as
used in the Galerkin formulation are important
considerations. It appears the most efficient use of
the Galerkin methods involves defining and using
consistent schemes in the solution of nonlinear
problems.

Finally, the following material presents some
general observations concerning the Galerkin
methods. First, as the results of this study point
out, a consistent interpolation scheme can be
obtained by choosing an interpolation technique
with the same (or higher) order of convergence as
the method of solution and employing a sufficiently
fine interpolation mesh to minimize the errors
introduced by the interpolation procedure. Since the
appropriate mesh refinement factor will probably
vary from problem to problem and with the choice of
basis functions (see, for example, the smooth cubic
and cubic spline methods reported previously), it
will be necessary to determine it for each particular
case. The mesh refinement factor ‘needed for
consistent interpolation can be easily determined
by making a few test runs (each test using a different
interpolation mesh) and comparing successive
solution values. Second, in regard to the
computational superiority exhibited by the method
employing cubic spline functions, the following
precautionary comments should be noted. In
problems involving a single phase, such as the gas
flow problem studied here, it appears likely that the
cubic spline basis elements would be the optimum
choice. However, for multiphase flow problems or
miscible flow problems, both of which can involve
sharp changes in a dependent variable, other basis
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elements may provide a better approximation to the

solution.
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NOMENCLATURE*
order of convergence of spatial
approximations
conversion constant, A = 158.07
order  of  convergence  of time

approximations
conversion constant, B = 1,696.41

time-dependent  coefficients in  the

Galerkin formulation

maximum error defined by absolute value
of the difference between the numerical
solution and analytic solution, psi

absolute permeability, md
total system length, ft

= molecular weight, 1b,,/lb-mole

pressure, psi

pressure  determined by numerical

methods, psi
initial pressure, psi
volumetric source term, 1b,,/cu ft-day

denotes cubic spline polynomial in non-
Galerkin cubic spline method

time, days

temperature, °R

ith basis element in Galerkin formulation
rectangular coordinate, ft

gas deviation factor, dimensionless
differential equation coefficient, Eq. 1
solution constant, ¢; = 0.20

140.0

40.0

differential equation coefficient, Eq. 1

solution constant, ay =

solution constant, az =

constant |y = —————

porosity, dimensionless

viscosity, cp

MATHEMATICAL SYMBOLS

cllo,L] =

A=

ot
Q
Q
I

5

4
w’ =

continuously differentiable functions on
lo,L]

represents an incremental unit of space
or time; also used to represent a
partition of a finite interval

denotes natural logarithm
L, inner product defined on [0,L] as

(1) =y )85 dx

denotes derivative operation w’ =

.o dPw
and w’''= —=
dx?

dw
dx

*Symbols underlined in this paper represent vectors.
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APPENDIX

NON-GALERKIN CUBIC SPLINE
INTERPOLATION METHOD

Albasiny and Hoskins® show that the cubic spline
approximation to a two-point boundary value problem
for the ordinary differential equation

dx®

reduces to the solution of a three-term recurrence
relationship. The actual mechanics of this method
will be illustrated by employing a simple example
furnished by Albasiny.

Using Eq. 20, the cubic spline interpolation to
y(x) at the grid points x;, i = 0, 1, ..., N, where x;
= %, + ih, and continuity of the first derivative at
the grid point results in the following relationship
between M; and y(x;). (See Ref. 9.)

YTty
h h i+ / /I‘
?M‘-I"’%M’*’%M‘H'—"_/f_’
F=1,2,...M-1,
(A-2)

For the simplified case where the first derivative
is absent in Eq. A-1, it follows that

M,“",‘*Q,’)’,‘; /':011)21-"/V|' S (A3)

and substitution into Eq. A-2 yields

2 2
<l+‘£)é— g/’—})yf—‘ "(Z-g—g_g/)y/‘

2 2
+ <|+"%" g/‘+l) Ve :'/'76"(’/'4 +47; +’/+I>
JE 12, e Nml o e (A

Thus, Eq. A-4, with the necessary modifications for
boundary conditions, represents a tridiagonal set of
equations that can be solved for y,, yq, ..., yn- The
complete cubic spline solution is that given by Eq.
A-3 and Eq. 20.
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2
——dy+f(x)%—+g(x)y=r(x)- - (A

Albasiny derives similar equations for problems
where the first derivative is present, and this is the
case of interest in this paper. Since the equations
for this class of problems are quite lengthy and are
readily available elsewhere,® they will not be
presented here. Instead, Eq. 1 will be modified and
the necessary correlation between Eq. A-1 and the
modified version of Eq. 1 will be outlined.

Modify Eq. 1 by expanding the space-derivative

_ term and discretizing the time derivative using a

backward-time approximation. The result is:
oy feg) 2
pel ap)y dp dx |, dx
1 _B_(p_)> --.__L_(BW) -
r<a(p) Pret =" A7 \a (o) el Pr

7 {1}
£Zr / B €5
(Q(p) S(x’ )>n+|

dzp
2

-

n+\

A direct comparison of Eqs. A-5 and A-1 provides
the following relations:

(1 da dr ... . (A6)
Fixd = <a(p) dp dx ),m

e _@_L?L) (A
glx) = A’( a (p)/n+
ri = gle) g,- 2L (a:p)su,r))m

(A-8)

Using the above equations and the relations
presented by Albasiny, it is possible to arrive at a
set of equations for the pressure at the grid points.
This pressure is in turn used to compute M; values,
and then both of these are used to generate the
complete cubic spline solution. In cases where the
resulting algebraic equations are nonlinear, an
iteration scheme similar to the one previously
outlined is used.

* kK
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