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HIGHER ORDER CONVERGENCE RESULTS FOR THE

RAYLEIGH-RITZ METHOD APPLIED TO EIGENVALUE

PROBLEMS. I: ESTIMATES RELATING RAYLEIGH-RITZ
AND GALERKIN APPROXIMATIONS TO EIGENFUNCTIONS*

J. G. PIERCET anD R. S. VARGA}

Abstract, The application of the Rayleigh-Ritz method for approximating the solutions of linear
eigenvalue problems in several dimensions is investigated. The object is to improve upon known error
estimates for the approximate eigenfunctions. The Z? and uniform norm error estimates for the
approximate eigenfunctions are related to the corresponding error estimates for the Galerkin approxi-
mation of the eigenfunctions. A basic result, independent of dimension, is obtained, which shows that
these two approximations are quite close in the relevant energy norm. Then, known results for Galerkin
approximation can be directly applied to obtain error estimates for Rayleigh-Ritz approximation.

1. Imtroduction. The Rayleigh-Ritz method for approximating the eigen-
values and eigenfunctions of the linear eigenvalue problem (cf. (2.1))

(L.1) Ru(x) = A Mu(x), xeQ < RY,
subject to the homogeneous boundary conditions (cf. (2.2))
(1.2) Bu(x) =0, xe 0,

has been described extensively in the literature (cf. Collatz[5], Courant and
Hilbert [6], Gould [7], Kamke [10], [11] and Mikhlin [12]). Attention has recently
been focused on applications of this method to subspaces of piecewise-polynomial
functions, such as spline functions. Such techniques provide numerical schemes
which are easily adapted for use on high-speed digital computers. Moreover,
known error estimates for the approximation of smooth functions in such sub-
spaces can then be directly applied to obtain error estimates for the approximate
eigenvalues and eigenfunctions.

The one-dimensional problem has been considered by several authors. In
1965, Wendroff [17] considered the approximation of the eigenvalues and eigen-
functions of Sturm-Liouville problems using subspaces of piecewise linear func-
tions. Birkhoff, de Boor, Swartz and Wendroff [2] were able to improve these
results using subspaces of cubic splines, and once-differentiable piecewise cubic
polynomials. For computational aspects, see also Johnson [9]. These techniques
were then extended to higher order one-dimensional problems and quite general
finite-dimensional subspaces by Ciarlet, Schultz and Varga [4]. Specializing to
L-spline subspaces, they were then able to obtain high order error estimates for the
approximate eigenvalues and eigenfunctions. The results of Birkhoffand de Boor [1]
demonstrated that the error bounds of [4] for the approximate eigenvalues are
best possible in a certain sense. However, as we shall show, the corresponding
results for the approximate eigenfunctions in the uniform norm are not best possible.
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Moreover, the assumption made in [2] and [4] that the eigenvalues are simple will
be shown to be unnecessary.

More recently, eigenvalue problems in more than one dimension have been
considered by Schultz [15], Strang and Fix [16], and Hald and Widlund [8].

The object of this paper is to relate the L? and uniform norm error estimates
for the approximate eigenfunctions to the corresponding error estimates for the
Galerkin approximation of the eigenfunctions. In § 2, we discuss the relevant theory
for the problem (1.1)+(1.2), and in § 3, we briefly describe the Rayleigh-Ritz method.
Section 4 contains the proof of a basic result (Theorem 4.2), independent of
dimension, demonstrating that the Rayleigh-Ritz approximate eigenfunction and
the Galerkin approximation to the eigenfunction are quite close when the cor-
responding eigenvalue is simple. In the case of multiple eigenvalues, we give a
(necessarily) somewhat weakened result in Theorem 4.3. As a direct application of
these results, we then obtain a generalization of the basic convergence theorems of
Birkhoff, de Boor, Swartz and Wendroff[2], Ciarlet, Schultz and Varga [4] and
Schultz [15]. This generalization eliminates the assumption of simple eigenvalues,
and indicates how one can obtain improved L? and uniform norm error estimates
for the approximate eigenfunctions. We shall consider the application of the
Rayleigh-Ritz method to subspaces of spline functions, and develop the corre-
sponding error estimates in a subsequent paper (cf. Pierce and Varga [14]).

Throughout this paper, we shall use K to denote a positive generic constant.
The parameters which determine K will be made clear in each case.

2. Thebasic problem. Let Qbe an open subset of RV, N > 1, with boundary Q.
We consider the eigenvalue problem (1.1)-(1.2), where 9t and 91 are the formally
self-adjoint elliptic differential operators

Nuix) = Y (= DFDT[p,(x)Du(x)], xeQ,
la} =n
2.1
&1 Mu(x) = Y (=D g,(x)D*u(x)], xeQ,
laf=r

where 0 < r < n, and where we use the usual multi-index notation. We assume
that the coefficient functions p,(x) and ¢g,(x) are real-valued functions of class
Cl(Q). The homogeneous boundary conditions of (1.2) will consist of n linearly
independent conditions of the form

2.2) Bu(x)= Y m()Dux)=0, 1=j<n xedQ.

lajs2n—1

In the case N = 1 with Q@ = (a, b), we shall also allow the more general (possibly
coupled) boundary conditions of the form

2n

(2.2) Bu(x) =Y, {m;D*"'u(a) + n; D lub)y =0, 1<j<2n.
k=1

In addition, we may assume in this case that

(2.3) p.(x) and ¢.(x) do not vanish on [a, b].
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Next, let W*2(Q) denote, for s = 0, the space L*(€), and, for s = 1, the Sobolev
space of all real-valued functions u(x), defined on €, such that D*u(x) e L*(Q),
for all jo] < s, where we consider equivalence classes of functions which are equal
almost everywhere in Q. It is well known that W**(Q) is a Hilbert space with inner
product

(u,v), = f { > D“u(x)D“v(x)} dx forallu,ve Wo3(Q),
Q

la] <5
and we take ||- |, to denote the corresponding norm. Finally, we shall take
[ull 4, = SUp,eq [u(x)| for all u(x) defined on Q.

Let D be the linear space of all real-valued functions u(x) e Cz"(Q) satisfying
the boundary conditions of (2.2). We assume that

(2.4 Ny, v)y = (u, Rv)y, forallu,ve®D,
and that
(2.5) (Witu, v)g = (w, M), forallu,veD.

In addition, we assume that there exist positive constants K such that
(2.6) (Mu, u)g = K(Mu,u), and (Wiu,u)y = K(u,u), forallue®.
We remark that if

(2.6") (M, u)g = K(u,u), and (Mu,u)y = K(u,u), forallue®D,

then condition (2.6) is valid (cf. Brauer [3], or [4]) after a slight modification of the
problem (1.1)-(1.2).
Following Ciarlet, Schultz and Varga [4], we define the inner products

2.7 (u,v)p = (Mu,v), forallu,veD,
and
(2.8 (u,v)y = Ru,v), forallu,ve®D.
1/2 1/2

As a consequence of assumption (2.6), |ulp = (u,w)y ", and {ully = (u, u)y~ are
norms on D, and we denote the Hilbert space completions of D with respect to
| -|l, and || - | 5, respectively, as Hj, and Hy. It follows from (2.6) that

(2.9) Hy < Hp.

An eigenvalue of {1.1)—(1.2) is a value of A for which there exists a nontrivial
solution, or eigenfunction u(x), of (1.1)~(1.2). We now state some basic results
guaranteeing the existence of eigenvalues and eigenfunctions of (1.1)-(1.2).

TueoreMm 2.1 (Gould [7)). With the assumptions of (2.4)H2.6), assume that
bounded sets in Hy are precompact in H,,. Then, the eigenvalue problem (1.1}+1.2)
has countably many real eigenvalues 0 < Ay S A, S - S A4 S A1 S0,
having no finite limit point, and a corresponding sequence of eigenfunctions { f{x)} ,,
such that

(2.10) Rfx) = A MY (), iz 1
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The eigenfunctions can be chosen to be orthonormal in Hp, i.e.,
(2.11) (fo:fp = 0i; Joradlli,jz1,

and { ;5= is complete in Hp,.

We remark that the conclusions of Theorem 2.1 are always valid in the case
N = 1 and Q = (a, b) for the more general boundary conditions of (2.2') provided
only that theassumptions(2.3)~(2.6)are satisfied. Moreover, in thiscase, f; € C?*"[a, b]
for all j = 1 (cf. F. Brauer [3] and Kamke [10], [11]).

We shall assume throughout this paper that bounded setsin Hy are precompact
in Hp, and hence, that the existence of discrete eigenvalues and the corresponding
eigenfunctions is guaranteed. It is then well known (cf. Collatz [5], Gould [7],
Mikhlin [12]) that the eigenvalues and eigenfunctions of (1.1)}+1.2) can be character-
ized as the extreme values and critical points, respectively, of the Rayleigh quotient
R[w], where

(2.12) Rlw] = [w|#/Iwl3 forweHy, w#0.

More precisely, for each k = 1, we have the following characterizations:

(i) 4 = min {Rw]:weHy,w # 0,(w, f)p =0,

112 k—1} =R[A]
k
(i) A, = max {R[Z cifl]},
et A ek i=1

(i) A= max [min {R{w]:we Hy,w # 0,(w,v)p =0,
1111531(3)’“{&&(:‘&111

(2.13)

1ik-1}],

(iv) Ay = min ( max R[}k: civ,]).

ul(x}yn,vstN €170 Che =
linearly independent \not all zero

Moreover, it follows from Theorem 2.1 and (2.9) that w = Y, (f, w)p f, for all
we Hy, and hence that

(2.14) (f Wy = 4{f;wp,  jz 1, forallweHy.
We remark that, by continuity, the inequalities of (2.6) hold for all we Hy, ie.,
(2.15) [wl? = K||w|7 forallwe Hy,
(2.16) lwl3 = K|w|3 forallweHy.

3. The Rayleigh-Ritz method. We now let Sy, be a finite-dimensional subspace
of dimension M in Hy. The Rayleigh-Ritz method for computing approximate

eigenvalues and eigenfunctions consists of finding the extreme values and critical
points, respectively, of the Rayleigh quotient (cf. (2.12)) over §);.
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Let {w;(x)} be a basis for S,,. Then any function w(x) in S,, can be written as

w(x) = f":  ;wi(x). Hence,

Rlw] = R[% MiWi(X):l = Zu]
i=1
E

; | o/ (u
: JJZV:E@(H))’ uz(“la“Za'“a“M)~
Z WX [

i D
The stationary values of R[w] are then found from the equations
oo/(w) 0%

A - 1
Su; Su; .

(3.1)

T

AZ{, u;wix)
=1

M

\ u )

(3.2)

A
A
=

which yield the matrix eigenvalue problem,

(3.3) Ay = AByu.

The M x M matrices 4, = (/%) and By, = (B}") have entries given by

(3.4) 05?,41' = (W;, Win, .B?/[J = (w;, Wj)Da Il=si,jsM.

From assumptions (2.4)—(2.6) it follows that A,; and B, are real, symmetric, and
positive definite. The matrix cigenvalue problem of (3.3) can thus be written as

(3.5) Cyv = Av,

where Cy, = By '?Ay By, V/? and v = Bi/*u. The matrix C,, is also real, symmetric
and positive definite, and hence, (3.5) has M positive eigenvalues 0 < s
< 1., and M corresponding eigenvectors ¥, - - -, ¥,,, which can be chosen to be
orthonormal, 1.e., so that Qin =0, 1 £i,j =M. We call Jun 1 £k < M, the
approximate eigenvalues, and fi(x) = > M @, wix),1 < k < M, the corresponding
approximate eigenfunctions, where i, ; is the ith component of @, = B™'?¥,.
Since (f;,f)p = & Byfi; = 9%, = ¢, ;, the functions {fj(x)}‘}’ are therefore ortho-
normal in Hj; i.e,

(3.6) (fo [ = 64, 1<i,jsM.

For each 1 < k < M, we then have the following analogue of (2.13) as charac-
terizations of 4, and fi(x);

k
() 4 =R[A]= max R|: Z Cifi:!a
not all zero i=1
(3.7) (i) A, = min {R[w]:weSy,w # 0,(w,f)p =0,foralll <i<k—1},

k
i) A, = min max R v |-
k ivi
uX),u(X)ES )y i=1
lincarly independent

CpotiCy
notall zero

It is clear from (2.13(iv)) and (3.7(ii1)) that, for any subspace S,
(3.8) A< A, foralll k< M.
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Finally, since A6, = 1,By0,, 1 < k < M, it follows that

M M
Z (Wi, Wj)Nak,j = /y Z (Wiawj)Dak,js
j=1 j=1
1Z2isM, 1k M
Thus, since f,(x) = ?{:1 fy w J(x)
(3.9) (Foo Wy = Ml fowdp, 1Sis=M, 1=k M.

Because (3.9) is valid for the basis elements of Sy, it is therefore valid for all ele-
ments of Sy, L.e.,

(3.10) (fos Wiy — A fi, w)p =0 forallweS, andalll =k=M.

4. Convergence results, With the assumptions of (2.4)-(2.6), let j be a fixed
positive integer, and {S,,};2, be a given (not necessarily nested) sequence of
finite-dimensional subspaces of Hy, with dim Sy, = M, = j for all ¢ = 1. The
Rayleigh-Ritz method applied to Sy, ylelds M, approximate eigenvalues
(A2t and M, approximate eigenfunctions {Frdoope e which are chosen to be
orthonormal in the D-norm, ie., (f, " fJ,)D =0, 1 £i,j = M, Let4;be the jth
eigenvalue, and fj(x) a corresponding elgcnfunctlon of (1.1)~(1.2). We are then
interested in demonstrating convergence of /1“ to 4;, and fj,(x) to f; (x) under
suitable assumptions on the asymptotic properties of the sequence {Sa bz

We state the result of [2] relating to eigenvalue convergence.

TreoreMm 4.1, If lim, ., me esar W — fillw V=0 foreach 1 < k < j, then the
sequence {/lj,;, | converges to Ay from above). In fact, for all t suffuently large
(say t = t;), there exist j functions {jk =1 in Sy, for which Zk . [ e = Sllp < 1,
and

> S — AR
LS+ K=l

T (] T

k=1

4.0 A forallt =z t;.

The above result is believed to be best possible, in a sense which will be clari-
fied in the subsequent work [14]. The corresponding results developed in [4] for
the approximate eigenfunctions, however, can be significantly improved.

We note that the approximate cigenfunction fj [(x) is not uniquely defined,
1e., both + fJ Ax) and fJ, x) are approximate cigenfunctions, as defined above.
To expect convergence of the 1fj . x)}t 1 » therefore, we assume that (flm,fj Jp = 0
for all m,n = 1. This assumption is easily satisfied by multiplying f; (x) by +1,
accordingly. We assume initially that 1; is a simple eigenvalue of (1.1)+1.2), ie,,
that A;_, < 4; < Ajep if j> 1, and 4; < 4y if j= L If, in fact, 4; i1s a multiple
eigenvalue of (1.1)-(1.2), a (necessarily) somewhat weaker result will be obtained.

For each ¢ = 1, let f; (x) be the N-norm projection of fj(x) on the subspace
Sy, 1€,

4.2) (f; = fiowiy =0 forallwe Sy,
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Since Sy, is a finite-dimensional subspace of the Hilbert space Hy, such an element
fi. always exists, and is in fact unique. Equivalently, we have that

(4.3) 1 f5e = filly = nf fw = illy-

We remark that f;, can be alternatively viewed as the Galerkin approximation
on Sy, to the solution of the boundary value problem %tu = 9if; with the boundary
conditions of (1.2). The main result of this section is the following theorem.

TuEOREM 4.2. With the assumptions of (2.4)+2.6), let A; and f(x) be the j-th
eigenvalue and eigenfunction, respectively, of (1.1)«1.2). Let {Sy,};2, be any (not
necessarily nested) sequence of finite-dimensional subspaces of Hy, such that dim S,
= M, = j forallt = 1, and such that

(4.4) lim {inf [w— filly} =0 foralll Sk < j.

t— o0 weSr,
Foreacht z 1, let fj,,(x) be the j-th approximate eigenfunction of (1.1)<1.2), obtained
by an application of the Rayleigh—Ritz method to Sy, and let f; (x) be the N-norm
projection of f{x) onto S, . Suppose A; is a simple eigenvalue. Then, there exists a
positive integer t; and a positive constant K, depending only on j, such that

4.5) 1 Fre = Fidly S KISfy = Fillp foralle z ¢;.

Since 4; is assumed to be a simple eigenvalue, as a consequence of Theorem
4.1,(2.15) and the assumption of (4.4), there exists a positive integer ¢;, depending
only on j, such that forallt = ¢},

4.6) b=z = A0 ifj>1,
(4.7) Ajer — A > 0,
and
(4.8) 1 fie = fillp <1/2 and |1 f;, — fily < L.
Making use of the fact that the {f,( (x)};7 are orthonormal in the D-norm

(and, from (3.10), also orthogonal in the N-norm), we expand f;, in the following
manner:

49  fi.0 Z (Fiis Fednfes) + (Fies Fronfidx) + Jidx) ifj > 1,
and

(410) fl,z(x) = (fl,l?fl,t)Dfl,t(x) + flﬂ,t(x)'
In order to prove Theorem 4.2, we first obtain estimates of

1

Y. (GyosFeso ol

1

LEMMA 4.1. Suppose {Sy, |/~ satisfies assumption (4.4) and that A; < A4, .
Write f; (x) as in (4.9)+4.10). Then, there exists a positive constant K, depending
only on j, such that

(4.11) 175% = Kl f; = fiullp forallt z 1.

J

- |
1fjlly, j2 1, and H forj > 1.

Hk
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Proof. We consider the quantity 1 Ff1& — A0 55 From (4.9)+4.10) and
(3.6), we have that (f%,, fidp = 0,1 £ k = j. Moreover, by (3.10), (f}’.,,fk’,)N
= Jud s fudp = 0,1 = k < j. Thus,

(4.12) T35 = 41 7505 f,f,f = 2{fias [

Since [, € Hy, it follows from (2.14) that (fi fion — A{f;» fiJp = 0. Subtracting
this from the right-hand side of (4.12), we obtam

(4.13) W53 = 2075605 = G = s Fidw = 25 = £ .-
But since [, € Sy,, from (4.2) and the Cauchy-Schwarz inequality,
(4.14) 155 = 41505 = 45 = Falloll f5db
If | fi.llp # 0, then by (3.7(11)),

153 2 2 U503 2 A o150,
and (4.14) becomes

(/1] N7 = 1 ol Tl

)V.i'*'l I ]+1
Since 4,4, > 4; by assumption, then either l]fj’,tHN =0 or
» As 2 ~
4.15 U0 TR P S 7
( ) ”j],tliN = ()bj+1 _ }J }le;zlitfj f],t(iD)

and (4.11) follows. If || /.l = O, then | /7 lly = 0 from (4.14), and again (4.11)
is valid. This completes the proof.

We now obtain an estimate of || e l,fk, ka Ay forj> L

LEMMA 4.2. Suppose that {Sy, 1724 Satzsﬁcs assumption (4.4) and that j > 1 and
A; > Aj_q. Write f; (x) as in (4.9), and define

j-1 R
(4.16) f_;r(x) = kgl (fj,nfk,z)ka,t(x)-

Then, there exists a positive constant K, depending only on j, such that
(4.17) 1 F5dy < KIUSf; = Filp forallt = 1)

with t; as in (4.6)(4.8).
Proof. We consider the quantity — | f5,I% + 4;1 /55 From (4.9), (3.6)
and (3.10), it follows that

oo i = % hlFas o = Ty T = 17503
and that .
oo Tido = . sdidh = Tsan 300 = 15l
Therefore,

(4.18) 503+ Al T5as = = Fro Fin + AlF5e )
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From (2.14), (f;, [5.0n — A{J; [5.0p = O since [, € Hy. Adding this to the right-
hand side of (4.18) we obtain

(4.19) =508 + AU F5dd = =G = £ Fidw + Ao = f5 -
Since [, € Sy, from (4.2) and the Cauchy-Schwarz inequality,
(4.20) — T332 F5alld < A0 e = Sillol Fldllo-
If | fi.lp # 0, then from (3.7(1)),
(4.21) 17503 = 2l
and using (2.15), equation (4.20) becomes
(” 7 lj ) 1Tl < 21 e = Sl Tl

Since from (4.6), 4; — )J L = (A;— A;-1)/2 > Oforall ¢ = ¢}, then

2/ - ~
1754l < (A, e i)k-—l—,;]f Tlol el
from which (4.17) easily follows. If | f,|p = 0, then (4.19) implies that [ fidly =0
and (4.17) again is valid. This completes the proof.

The jth eigenfunction of (1.1)~(1.2) is not uniquely defined, i.e., both +f{(x)
and — fi(x)are elgenfunctlons corresponding to the eigenvalue 2;. Wlth the previous
assumptions on the { f }i% 1, therefore, we assume that the ]th eigenfunction fi(x)
is selected so that (f}, fl )p > 0 for all ¢ sufficiently large. To show this normaliza-
tion can be affected, it suffices to show that

lim |1f; = (f;> fudoSiello = Hm | =f; = (= fj fidn iello = O-

But this fact is a rather easy consequence of the results of Lemmas 4.1 and 4.2
and the assumption of (4.4) (cf. Pierce [13]). It then follows that (f}, fhj,,)D — 1 as
t — o0, and we redefine the positive ¢;’s such that (4.6)~4.8) are satisfied, and that

(4.22) (fiofidp > 1/2 forallt = ¢;.

We now proceed with the proof of Theorem 4.2.
Proof of Theorem 4.2. By the triangle inequality,

. 7 R |- 7
(4.23 N e I e
) Wi = Jualy = = o 4 Wi =
We write
(4.24) l;-j’tip: (H]{J:HD f”) Jiu+e, forallt2t,
Jst J

where, from (4.9) and (4.10),

k=1

(425) ej,t = Hf HD[Z (fit?ﬁcl)kat + f} z] 1f] > 1:
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and
(4.26) €1, = f;t/“flt”D
From (3.10) and (4.24), (f;., ¢;)x = A;(f;1» €;.0p = 0 and therefore,
H 7 R 2 L . R
it 7 2
il Mo ”ﬁN 1( fia f flt) Jia = i N * e
4.27) i
I: (“fj,t“D’f;’t)D} + “e_],t“N'
Now, by (4.24),
(428) f _j‘t ‘2 =1= (—Li_’f't)z + He'zHlZ)’
Hf;,:“p I 1 fidlo " ”

and therefore,

(4.29) ( S f,,) = +[1 — [e; 152
| felln™ o

It is easily shown that (fj,,/l\ﬁ’,l\p,ﬁ,)D > Oforall t = t; as a consequence of
(4.22). Hence, (4.27) becomes

(4.30) ’

2
07 —fj,t L [1—[1 = lle 5] 21245, + llej lly forallt = ¢;.
]t
However[l — /1 — x]* < xfor0 < x < 1,and since from (4.28),0 < le; llp < 1,
then
2

| f R .
{ ““““ fj,t = )“j,:Hej,tH%) + ”ej,tﬂlz\"
1 fielp N
By (2.15) and (4.7), therefore,
£ A |7 A;
431 \»w~»~.lL — [l [ﬂ + 1} lejl3-
@30 s~ = Lk Iy

it follows from (4.9),(4.10) (3.6) and (3.10) that

[ _
Hej,zHIZV = i: f]t:fkt)katlJ + ”f;lt]ll’/\llil lf] > 1a
Hf,;l[u v
and that
|
”el,t\[ HfltHDIfltl

From Lemmas 4.1 and 4.2, therefore,

lle T If; = fillp forallr =t

jallt = ]sz



HIGHER ORDER CONVERGENCE RESULTS 147

Equation (4.31) then becomes

il R 1 /1'+ 1/2 _
] . f,t < —— | K{Z2+ 1) | 1= Fulo
| f t gt ”D K ’
(4.32) ‘ <
= ; forallt = ¢;.
Hf,thHf Siallp
Now,
~ | 7 S W o = 1, 5
433 I P ——_ = R Ay
439 o = Tl = 10
From the triangle inequality, (4.8) and the fact that || fjH,% = Aj,
[y S Ufln + 15 = fally £ 472 + 1 forallt z 15
Moreover,

W idp = W =11Flp = 15Ipl = 1f; = fillo
Equation (4.33) then becomes

fi Ay
@3 e 7l = g, | M e foraltez
J» Jst
But
1 1
(4.35) = < <2 forallt =z t;.

1 fidlo = Wflo = 15 = fidllol =
Finally, using (4.32), (4.34), and (4.35) in (4.23), we obtain

(4.36) I fie — fNHN<Z(K+)“2+leJ fidlp forallt =t

which proves the result of Theorem 4.2.

If 4, is a multiple eigenvalue of (1.1)~(1. 2), the result of Theorem 4.2 must be
wedkened somewhat. For fixed j 2 1, let 4, be an eigenvalue of multiplicity p + 1,
p=1of (LI)H(12),ie, ;- < 4; = ),JH = -+ = Ajyp < 4j4p+1, Where we set
/o = 0. The associated eigenfuncticns fix), s fj+p(x) can again be chosen to be
orthonormal in the D-norm, and span a linear (p + 1)-dimensional subspace
CDPH of D. Let f(x) be any element of D, ;. The f(x) = ”P (fs fpfiulx), and
f(x) is an eigenfunction of (1.1)~(1.2) associated with 4;. Let { fkt}f“’ be the cor-
responding approximate elgenfunctlons in Sy, chosen to be orthonormal in the
D-norm, and let fi(x) = YI22(f, Frd)pfri(x) be the D-norm projection of f(x) onto
the (p + 1)-dimensional subspace of Sy, spanned by the {f, }{*?. Finally, let
f(x) be the N-norm projection of f(x) onto S),,. Then the following reqult 1s valid.

THEOREM 4.3. With the assumptions of (24)-(2.6), let 4; be an eigenvalue of
multiplicity p + 1 of (1.1)-(1.2), and f(x) be any associated eigenfunction. Let
{Su.} 2| be any sequence of finite-dimensional subspaces of Hy such that dim Sy,
=M, = j+ pforallt =1, and such that
4.37) lim {inf |w— filly} =0 foralll Sk =j+p.

t—>ow weSar,
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Let f(x) and f(x) be as defined above. Then there exists a positive integer t;and a
positive constant K, depending only on j and p, such that

(4.38) Ifi = LIRS KIf = fllp forallt < t;.
Proof. Write fi(x) in the form

_ ji-1 jtp

@39 J = L Uofedofud) + ¥ (o Judpfual) + Fix) ij> 1,

k

andif j = 1,

p+1

(4.40) Jix) = k; (fos Jeddpfieax) + Fi(x).

< Aj1p+1 and since f(x) is an eigenfunction of (1.1)~1.2) corresponding
it follows as in Lemma 4.1 that

Since A4 itp
to the eigenvalue 4, ,

(4.41) If7I% < KIf = A3 foralle = 1.

Similarly, since 4;_; < 4; for j > 1, and f(x) is an eigenfunction of (1.1)-(1.2)
corresponding to the eigenvalue 4;, it follows as in Lemma 4.2 that

‘ 2

E.ﬁﬁmm

(4.42) <mu—ﬁ% forallt = i,

with ¢; as defined in (4.6)-(4.8).
We now compute from (4.39), (3.10), and the definition of f, that

2

?
MR

443) Ifi— Al =
N

ji—1 | l
Jg S G- f-funli] +

N ”k=1

(Aﬁ%ﬂ%

k=1

ifj > 1, with the obvious analogue if j = 1. In either case, from (4.41) and (4.42),
we have that

~ i+p R
Gd) If, = FIZ S KIS = A5+ | X (F = Fofudofis) - Torallez o,
k= N
But

Jjtp
% = 3 Al = £ Jiodn)?
K=j
S+ Vi llf = £l3
Since Aji 41 > Aji,, then from (4.7), A4 0y > ZﬁpJ forall ¢t z ¢;,,. Therefore,
I17i = FlI% S K+ (0 + Ddjepe IS = £IB
= K|lf — £l forallt = max(t;,1;, ).

f f;:fkr)kat

This completes the proof.
The results of Ciarlet, Schultz and Varga [4, Theorems 4 and 5] regarding
the convergence of the sequence of approximate eigenfunctions {f;,};2, to f; in
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the uniform norm require the assumption that i, < 4, < --- < 4;. That this
assumption is unnecessary is an immediate consequence of Theorems 4.2 and 4.3.
We may assume in the following that there exists a positive constant K such that

(4.45) Ilwl, < K|w|y forallwe Hy.

THEOREM 4.4. With the assumptions of (2.4)~(2.6), let A;, the j-th eigenvalue of
(1.1)~(1.2), be of multiplicity p + 1, p = 0. Let { f,}11% be a set of D-orthonormal
ezgenfunctmm corresponding to the eigenvalues Ay, -+, A;. Let {8y };2, be any
sequence of (not necessarily nested) subspaces of Hy, with dim Sy, = M, 2 j+ p
for all t =2 1, and such that
(4.46) lim {mf lw— fillv} =0, 1<k<j+p.

t— oo weS My

For each t = 1, let {fk HLE be a set of D-orthonormal approximate eigenfunctions
corresponding to the elgenvalue 4;. Then the following statements are valid.

(@ If p=0,ie,if A;is simple, then there exists a positive integer t;, and a
positive constant K, depending only on j, such that

(4.47) ILf; = fidlly S KISy = fully Sforallt 2 1,

where f;, is the N-norm projection of f; onto Sy, for each t = 1. Thus, if (4.45) is
satisfied, then { f, }i%, converges uniformly to f;.

(b) If p> 0, ler f(x) be any element of the { p + 1)-dimensional subspace of
Hy spanned by the { fi}]Z2. Let f, = ’”’ (f> Je)p fis be the D-norm projection of f
onto the subspace spanned by the { . ,}’“’for eacht = 1. Then there exists a positive
integer t; and a positive constant K, depending only on j and p, such that

(449 I = Al S KIS Y 1= s

Thus, if (4.45) is satisfied, then { fiv | converges uniformly to f.
Proof. We shall prove only the result of (4.48). The result of (4.47) follows in
the same fashion. From Theorem 4.3 and (2.15), we have that

I = flly < KILf = £llp = KIS = Fills
where f, is the N-norm projection of f onto S,,,. But, by the triangle inequality,
If = flw S I = Flly + 17— fillvs
and hence,
If = Ay (1 + KIS = filin-
But f = Y 7*2(f, fi)p /i, and it follows casily that f; = Y122 (f, fp fe.- Thus

jtp

ZUﬂMﬂ—RMM

k=j

If = fliy =

and (4.48) follows with an application of Hélder’s inequality. This completes the
proof.

The results of this section have been stated for sequences {S,}/2, of sub-
spaces of Hy for which lim, , || /i — fiully = 0,1 < k < j. It is easily seen that
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these results are valid for a fixed finite-dimensional subspace S, = S, , provided
that || f — fily, 1 < k < j, are all sufficiently small. In particular, then, given a
finite-dimensional subspace S, of Hy whose degree of approximation in Hy
depends essentially on a single parameter (e.g., A, in the case of polynomial splines
on a mesh of maximum size A), these results are valid whenever this parameter is
sufficiently small.

The asymptotic error estimates developed in Ciarlet, Schultz and Varga [4,
Theorems 7 and 9] for polynomial subspaces and subspaces of L-splines can thus be
immediately extended by the results of this section to eliminate the assumption
that 4; < A, < --- < 4;. Moreover, when /; is a multiple eigenvalue, it is clear
from (4.48) that the “‘eigensubspace’ error estimates are of the same order.

It is clear from approximation-theoretic results that these estimates are best
possible in the N-norm with respect to exponents. But, the uniform norm estimates
are not best possible. If, however, one knew estimates of f; — f;, and its derivatives
in the L?- and L*®-norms, it is clear that the corresponding estimates for fi— fj’,
could be significantly improved. We shall be concerned with this in our subsequent
paper [14]. As a particular example, however, consider the one-dimensional
Sturm-Liouville eigenvalue problem. If we assume that the eigenfunctions are
in class C*[a, b], and use a subspace of cubic polynomial spline functions, we shall
show that

1f; = fidllw = O,
and hence, that, if 4; is a simple eigenvalue,
HL - f},!”oo = 0(5?)9

provided that A,, the maximum mesh spacing, is sufficiently small. This result is
best possible with respect to the exponent of A,. From Theorem 4.3, it follows that
the “eigensubspace” accuracy is also of fourth order. Thus, we can answer in the
affirmative the conjecture to this effect in [2].

The same techniques carry over to multidimensional problems; ie., known
estimates for Galerkin approximation as, for example, in Schultz [15] and Strang
and Fix [16] can be used to obtain improved error estimates for the Rayleigh-Ritz
method. We shall consider several such examples in [14]. In general, however, if
r = 01in (2.1), it follows from (2.15) and Theorems 4.2 and 4.3 that

1 = Fidllie < KISy = Fl e

That is, whatever L’-estimates are available or can be proved for Galerkin
approximation are then directly valid for the Rayleigh—Ritz method. The case of
uniform norm estimates is, of necessity, more complicated.
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