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R. J. HErBOLD and R. S. VARGA (Cincinnati, Ohio, U.S.A. and Kent, Ohio, U.S.A.)

1. Introduction

In [8], quadrature schemes were prescribed for the numerical solution of a class of
one-dimensional boundary value problems by variational technique described in [4].
This paper is the analogue of [8] for the real two-dimensional nonlinear boundary
value problem

Pu(x,y)  Pulx,

u(x,y)=0, (x,y)edG,

where G is a rectangle in the (x, y)-plane. We point out that the results we present here
extend easily to higher dimensions and to a larger class of nonlinear differential
operators ([5, §3]), but, for ease of presentation, we will restrict ourselves to the
problem (1.1). With certain assumptions on f (x, y, u), the unique solution of (1.1)
can be approximated by applying the classical Ritz-Galerkin procedure to the varia-
tional formulation of the problem by minimizing over finite-dimensional subspaces
([51, [13, p. 188]). For sequences of piecewise-polynomial Hermite and spline sub-
spaces, upper bounds for the rates of convergence of these approximations can be
theoretically deduced from [1], [2], and [5]. These approximate solutions are, how-
ever, not precisely obtained in practical computation on a digital computer since
certain integrals arising in the Ritz-Galerkin formulation are replaced by quadrature
formulas.

The object of this paper is to investigate the errors introduced in the approximate
solutions by such quadrature formulas. In particular, we shall obtain bounds for the
errors introduced by such quadrature schemes, as they apply to finite-dimensional
piecewise-polynomial Hermite and spline subspaces, and we shall determine when
these quadrature errors are consistent with (i.e., the same order as) the approximation
errors of the Ritz-Galerkin method. Numerical results based on such consistent qua-
drature schemes are also presented.
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2. Formulation of the Problem

Let us assume that G is the open rectangle (a,b)x (¢, d) in the (x, y)-plane;
a<x<b, c<y<d, and let 6G denote its boundary. We define S to be the set of all
continuous functions w(x, y) defined on G, the closure of G, such that w(x, y) is
piecewise continuously differentiable over G, and w(x, y)=0 when (x, y)edG. The
first eigenvalue, A;, associated with the Helmholtz equation du+Au=0, over G is

o 1) (o

Ay = inf £ . 2.1)
wio ff (w)? dx dy
G

The problem which we wish to consider is approximating the function ¢(x, y)e
C(G)n C*(G), where ¢ (x, y) satisfies (1.1). We assume that f (x, y, u)e C°(G x R),
and moreover that there exists a constant y such that

f(x3 Y ul)—f(xa Y, u2) >
=
Uy = Uy

>—Ay, (x,9)eCG, —0<uy, u, <400, u; #uy.
(2.2)

If ¢(x,y) is a solution of (1.1) when condition (2.2) holds, then it is shown in
[3, p. 86] that ¢ (x, y) (which is certainly in ) strictly minimizes the functional

=[5 (3] [ renmafes e

over S, i.e.,

Fl[¢] = inf F[w].
weS
A consequence of this fact is that if a solution exists, it is unique. We will make
the hypothesis that a solution of (1.1) exists; see [5] and [10] for further details.
As in the one-dimensional problem, we now consider a finite-dimensional sub-
space Sy of S, of dimension M, and minimize the functional (2.3) over S,,. If the
functions {w,(x, y)};~ form a basis for Sy, then any element in S,, can be written as

w50 = Xy (59).

We know from [5, Theorem 3.3] that, given any finite-dimensional subspace .S, of
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S, there exists in S, one and only one # (x, y) such that
F[Ww] = inf F[w].
weSp
In order to minimize the functional F[w] over Sy spanned by {w;(x, y)},,
following system of equations must be solved:

Au+k(u) =0, (:

4

where u=(uy, u,, ..., uy)7, and where A= (a;,;) is an M x M real, symmetric mas
and k(w)=(k; (u), ..., kp(w))" is a column vector, which we now define: letting

. ) = ow v N ow 0Ov dx d S (,.
W, 0) = (a; 5; é; 5; xay, w,ved, p:
G

then
a,;=w,w;>, 1<i,j<M, (2
and
M
k,«(ll)=‘”f(x,y, > ujwj)widxdy, I<igM. 2
j=1
(63

Denoting the solution of (2.4) by @=(dy, dy, ..., )7, the approximation to f
solution ¢ (x, y) of (1.1) is then

M
w(x, y) = '21 aw;(x, y).
=

The inner product (2.5) defined on set S induces the norm

Il = (G, )2 = ( H [(zl:)z ; (%”)2] dx dy)m e

on §. This norm is easily seen to be equivalent to the Sobolev norm [15, p. 55]

e[ (3 s
() ) o)

for y>—A,, is also a norm on S ([3, p. 97]) and is associated with the inner produ

ow dv  ow 0
{w, v>ysjf{ v Wl—l—ywv}dxdy, w,veSs.
G

The quantity

____¥+__.
0x 0x 0dydy
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This norm is equivalent to |||, in (2.8) and is the norm basically used in the sections
to follow. Note that |- [ ,= || - |-

Let {Sy,}i2, be a sequence of finite-dimensional subspace of S and denote by
Wy, the unique element which minimizes F[w] over Sy;,. From [5, Corollary 3.1] we
know that if lim,.,,, {inf,.s,, [W—glo}=0 for all gesS, of (x,y, u)/due C°(GxR)
and if there exist two constants y and K such that

—A1<y<W<K, (x,y)eG, —w<u<+ow0, 2.9
then
Him [ = g0 = 0.

The hypothesis that df (x, y, u)/6u be bounded is rather restrictive. We can make
other requirements on the function f which enable us to omit the hypothesis that
df|0u be bounded above and to obtain the convergence of the sequence {W,};Z .
In [5, Theorems 4.1 and 4.2] it is shown that one can derive an a priori pointwise
bound for the solution ¢ (x, y) of (1.1) when one of the following conditions hold:

tim e C s 0 (e, (2.10)
lu]— o0 u
a 3 9 1 -
ih-(-xé—yi)gy>—~, (x,y)eG, —oo<u<+oo, (2.11)
u Q

where ¢ is a positive quantity determined as follows. Let ¥ (x, y) be the (unique) solu-
tion of du(x, y)=—1,(x,y)eG;u(x,y)=0, (x,y)e0G; then g =sup, ,yc 6| ¥ (x, )| >0.
Consider the problem (1.1) when either condition (2.10) or (2.11) holds. Assume
that M is the constant such that the unique solution ¢(x,y) of (1.1) satisfies
l¢ (x, »)|<M for all (x, y)eG. Then, as noted in [3, p. 96, solving (1.1) is equivalent
to solving
*u  0%u
du(x, y) = o + o

u(x,y)=0, (x,y)edqG,

=g(x,y,u), (x,¥)eq, (2.12)

where
!f(x,y,M), M<u
g(xnyau)= f(x,y,u), ,uléM,
[f(xaya‘“M), u <—M.

Therefore, suppose 9f(x, y, u)/oue C°(G x R). If f (x, y, u) does not satisfy the
condition that 9f/0u is bounded above but it does satisfy either (2.10) or (2.11), then
we can solve the corresponding problem (2.12) which satisfies (2.9) and the sequence
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{W, (>, ¥)}i2, converges in the norm |-, to ¢ (x, y), the unique solution of (I.
as well as (2.12). Hence, we will assume that df/du(x, y, u)eC°(Gx R), and th
either ¢f/0u is bounded above or either (2.10) or (2.11) holds.

For any subspace Sy, of S, it can be shown (cf. [3, p. 100], [5, Theorem 4.4]) th
there exists a positive constant C, independent of the choice of Sy, such that t
following error bound is valid:

Ww—¢l,<C inSf lw—¢lp, (21
where W is such that F[#]=inf, s, F[w]. This implies that rigorous bounds can |
deduced from the two-dimensional interpolation error estimates of [1] and [2] f
the quantities |[W— ¢||,, and [W—@ll,. Unfortunately, Sobolev’s Imbedding Theore
[15, p.174] in two dimensions for this case does not allow us to deduce error boun:
in the uniform norm, as was the case in one dimension.

Let us consider the system of equations (2.4) which must be solved. For piecewis
polynomial Hermite and spline subspaces, the matrix entries a;,; of the matrix 4 a
easily computed since this involves only the integration of polynomials, which
easily automated on a digital computer. The quantities k(u) in (2.7) are more difficu
because fis not in general a piecewise-polynomial. This prompts us to use a quadratu:
scheme to evaluate the quantities in (2.7), which then generates a new system
nonlinear equations

0 = Au + k(u), (2.1:

where k;(u) is obtained by applying quadrature scheme to k;(u). The solution ii ¢
(2.14) in turn generates a new function

M
W= Z ﬁiwi in SM‘
i=1

In the next two sections, we shall discuss the choice of quadrature schemes for
given sequence of piecewise-polynomial subspaces {Su,}i=1 of S so that the appros
imations {W, };2 ,, determined successively from (2.14), have the same general orde
of accuracy as the theoretical approximations {#,};2,, determined successivel
from (2.4).

Without loss of generality, from here on in our discussion we will assume that G |
the open unit square (0, 1) x (0, 1).

3. Linear Case

Let us suppose that the function f in (1.1) is not a function of u. In this cas
f (x, y) satisfies (2.2) with y=0, and f/du is bounded above by zero. The integrals o
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(2.7) are also independent of u, and in this case, we have

k; = J‘J.f(x, y)wi(x,y)dxdy =L[f(x,y)w;(x,»)], 1<i<M, (3.1)
G
where the integral in (3.1) is regarded as a bounded linear functional, L, on C*(G).
With the subspace S,;, we associate a linear functional L,, which is to approximate
L, and we define

ki=Ly[f(x, 7)) wi(x,p)], 1<i<M (3.2)
as the approximations of k; in (3.1). The matrix problem of (2.4) now reduces to
Au+k =0 (3.3)

and the use of the approximate linear functional L, gives the associated matrix
problem

Au+k=0. 3.4

As previously noted, 4 is a real symmetric matrix, and since we can easily verify that
M 2

wAdu=||Y uw] , (3.5)
ji=1 D

A is then also positive definite. Hence, each of the matrix problems (3.3) and (3.4)
admits a unique solution, denoted by i and @i respectively, and the associated functions
in S, are WM=Z§£1 i;w; and WM=Z§V=1 i;w;. From (3.3) and (3.4), it follows that
A (a—1i)=(k—k), and premultiplying by (i —ii)” and using (3.5) gives
(@ —0)7 40— &) = [y — Wyll) = (06— &)" (k- k).
Using the definitions of the functionals L and L,,, the last quantity above can be
expressed as
(Lye = L) [f (%, y) (hag (%, ¥) — Waa (%, )],

and thus

Wag — Wagll 5 = (L —L)[f (%, ») (WM (%, y) — Wy (x, .V))] . (3.6)
This equation will be used repeatedly in this section.

Our object now is to bound |W,, — Wyl , for certain quadrature schemes L,,, after
making further assumptions on f'and the subspace S,,. Let

4,00 =xp <Xy < <xyep =1, 4,;:0=y5<y] <-<yyy=1

be a partition of the unit square G and denote by 4 the set of points (x, ),
0<i<N,+1, 0<j<N,+1. We will always assume that 4<J,A, where §, is a fixed
positive number, and where

A= max {|x{y; — x|, [Vjr1 = Vil}

0L i€ Ny
0<j<N,
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and 4 is the corresponding minimum. We now restrict our attention to subspaces
Sy (4) of S of piecewise-polynomial functions. More precisely, for any w (x, y)€ Sy, (4),
w(x, y) is a piecewise-polynomial of degree n, in each variable and a polynomial
in each cell
[xi xie 1] x [} Vi+1l, 0<i< N, O0<j<N, of 4.
Such subspaces include the Hermite and spline subspaces as special cases (cf. [1] and
[2]). We also assume that the function fof (1.1) is such that /' (x, y)e C™ ([x}, xj4] %
X[y} ¥541]), 0<i<N,, 0<j<N,. This latter hypothesis is of course valid if
S (x,y)eC™(G), but it also holds for functions f (x, y) whose m,-th derivative is
piecewise continuous on G, with points of discontinuity on the boundaries of the cells
of 4. The important point is that since f is given, the quantity m, and the possible
points of discontinuity of the partial derivatives of f can be determined directly.
As our first choice for the bounded linear functional L,;, consider a quadrature

scheme of the form

Xm Yym

f f o(x,y)dydx = ioai, 0 (T 1), (3.7

i j=
X0 yo

where x,<7o<7; < <7, <X, Vo<Ne<N < <1,<), are selected points of
[Xo, Xn]and [y, y,,]. Givenany o (x, »)e C™ ([Xq, X,n] X [ ¥0> ¥u]) and m, determined
from f, it is always possible to select a quadrature scheme of the form (3.7) such that
the quadrature error of (3.7) satisfies

Xm Ym
> oo () — f f o(x,y)dydx
i, j=0
J "o Y (3.9
ame
< K§™"? max { L,—ZO_L }
i=0,mo iﬁx oy L2([X0, Xm]% [¥0, ym])

where 6 =max (x,,— X, ¥,,— o), and where Kis independent of (y,,— y,) and (x,,—x,).
Quadrature schemes such as (3.7)—(3.8) are very easily generated by taking in essence
the Cartesian product of one-dimensional quadrature schemes of the form

Ym
f o()dt= 3 wo(t)
i=0
with M
m dmoo.f
3 ao() - ot <KGw-yt 8
=0 Adx"™||Leopyg, ypu1
Yo
and applying it twice to —

ffrr(x, y)dy dx.

X0 Yo
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See also [11, ch. 4]. Writing k;in (3.1) as

x1+1 yk+1

w=3 Y| ff(x,y)w(xy)dydx

we apply (3.7) on each cell [x], x,+1] X[ Vk+1], and this in turn defines the
linear functional L, of (3.2) which we will denote as

Mo

My
Ly Lf (e, p) wi(x, p)] = k; = IZO kZO Biwf (xis yi) wi (X1 1) (3.9)
for simplicity of notation. This brings us to

THEOREM 1. Assuming that f in (1.1) is independent of u, let & f (x, y)[ox™o
and 0™ f (x, y)/dy™ be continuous on each cell of A. If Q is any collection of quasi-
uniform partitions of G=[0, 1]1x [0, 1], i.e., there exists a fixed positive constant do
such that 6,64 A for all AcQ, and if for each AeQ, S\ (4) is any finite-dimensional
subspace of S such that for any v(x, y)eSy(4), v(x, y) is a polynomial of degree n,
in each variable on each cell of A, then for my=>n, +2, the linear functional L, defined
in (3.9) is such that

s — Wagllp < B(A)™ ™72, (3.10)

where B is a constant independent of A.
Proof. Expressing (Ly,— L) [ f (Wy—Wy)] in (3.6) as a sum of terms and applying
(3.8) to each of these terms gives

Wy — WM“% =(Ly—L)[f (Wyr — War)]

Ne Ny 3" (yy — W) 3.11
< Z Z K(A)m0+2 max [af gWMmO_iM)] , ( )
1=0 k=0 i=0,mo | x' dy Loy,
where
H : ”Lw,, = - ”Lw([x';, X1+ 11X [3 Ve +11)

and K is independent of 4. By hypothesis, there exists a constant C,, independent of
4, such that
} S Cl s
Loy,

for 0<jy, j, <m,. Consequently, using the Leibnitz formula for differentiation of a
product, the sum of (3.11) is bounded above by

o"f (x, y)
ayjz

2

Ji
ox Loy |

f"‘f (x, )

max max max
O<k<Ny O0<ISNy

cwor§ Bl ()™

1=0 k= 1= =0 s=0

} . (3.12)
Lwl, k. &
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By the assumption that the elements of Sy (4) are piecewise-polynomials of degree
n, in each variable, the upper limits on the sums on r and s in (3.12) are at most n,.
Since Wy — Wy is a polynomial in each cell of 4 then, by a theorem of Markov [12,
p. 138], there exists a constant C,, independent of 4, such that

! 1

0" (g — W)

ox' oy

Wy — W’Ml
\

<G (Z)H—j

Ly,

, (3.13)

i L*g, x

for all 0<i, j<ng, 0<IKN,, and 0<k<N,. Using (3.13), we can deduce from (3.11)
and (3.12) that there is a constant C;, independent of 4, such that

[y = Wagll2 < Cs (N + 1) (N, + 1) (A7 [0y = Falloiy - (3-14)

Realizing that max (N, +1, N,+1)<4” 1 and since we are assuming 4 <54, we are
assured from (3.14) that there exists a constant C, such that

s = Warll b < Ca(A)"°7™ [10ar = Watllogo - (3.15)

We now wish to relate |[W—W|px, and [W—"»lp, using the fact that Wy — Wy
is a piecewise-polynomial and Wy (x, y)—w(x, y)=0 if x=0 or y=0. In [9], it is
proved if p,(x) is a polynomial of degree n over the interval [ —1, -+1] then there is
a constant A, independent of n, such that

+1 +1

d
J (X)) 1 < an? j 19, (x)] dx
dx

and hence by a change of variable
b

b
| 2
f 44,3 g ¢ 24N j 00 ()] dx

| dx | “(b—a)

a

for any polynomial g, (x) of degree n defined on [a, b]. Therefore, for ze[a, b], we
have the string of inequalities

14, (2)] = 19, (a)] <19, (2) — gu (@)
=qun(X)_ ix

d
]

a

g j idq;)(cx)

b

dx

(3.16)

a

24n*

dgq,(x) t _na)JMn()f)ldx-

dx <
dx
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Suppose we have a piecewise-polynomial ¢ (x) defined on [0,1], where 4,:0<x,<x,
<. <xy4q=11s a partition of [0,17], with 4,<8,4, 6, >0, and o (x) is a polynomial
of degree n on [x;, X;11], 0<i<N. Also, we assume ¢ (0)=0 and denote by o;(x) the

function ¢ (x) restricted to [x;, x;.{]. Using (3.16) on g4(x) with a=x,=0 and
b=x,, we see that

oo ()| Leopro, 207 < J loo (x)] dx.
~ Xo)
From this inequality, we see that
24n [
< — dx,
ol < (22 [ o o1
so using (3.16) on o4 (x) with a=x, and b= x, we obtain
03 (X) | Loopy, 227 < f log (x)] dx + J log (x)] dx.

Continuing, we see that

Xj+1

”G(x)”mo[o s z (Xro1 —-x) J o ()] dx

2
< 24n f!a(x)} dx
4o
0

Hence, using the Cauchy-Schwarz inequality,

2A4n?

4o

Ilo'(x)”LZ[o, 17

llo (3X)llzeo, 17 <
Since 4,<8;4,, we can let B, =2A4n25, and we have

Hﬂ'(x)”Lw[o 1s g lla(x)llu[o 17
0
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Applying this to w(x, ) —W(x, ), we see that

W — W”Lw(G) = Sup sup |W(xa Y) - W(x, ,V)I
0<x<1 0<ys1

1
B L2
i | —W|"dy
0
1
2
j[ sup |W—Wl] dy
osx<1
0

< sup

0<x<1

J

so that
[ — W Lo <

Hence, (3.15) becomes
I — Wl < Ca(A)™ 772 BG 1% — Wllzay»
and since || | 2 gy < I [11, 2 < Col * | p for some Co, let B= C,BeC, and we have
1% — Wwllp < B(A)™ ™72,

where B is independent of 4. Q.E.D.

If we have a sequence {Sy,(4;)}i=; of finite-dimensional subspaces of S with
A4,;<8,4, such that the elements of any Sy, (4;) are piecewise-polynomials of fixed
degree n,, and if lim,_, ,, 4;=0, then from (3.10) if m,, dependent only on f, satisfies
mo>ng + 2, we evidently have

lim || iy, — P, lp =0

Hence, the quadrature error, introduced by computing W), rather than W,,,, tends
to zero with 7. This error, however, may or may not be small, relative to ||[W;, — ¢llp.
This brings us to

DEFINITION 1. Let Q be a collection of partitions 4 of G, and for each 40,
let Sy (4) be a finite-dimensional subspace of S consisting of elements which are
polynomials of fixed degree n, in each cell defined by 4, and let W,,, the function
which minimizes F[w] of (2.3) over Sy, (x), satisfy

Wy — @lly < K(4) forall 4eQ, (3.17)
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where K and / are positive constants independent of 4, ¢ (x, ) is the solution of 1.1,
and || | y is some norm on the space S. Then, the choice of linear functionals in (3.2)
is consistent in the norm ||+ ||y with the bounds of (3.17) if there exists a constant K,,
independent of 4, such that

[War — Wully < Ko (4) forall 4eQ.

From the triangle inequality, the bounds of (3.17) for the norm || p, and the
results of Theorem 1, it follows that

W= olp <P =W + 1% — @lp <B(A)"™ ™™ * + K(4)', 4eQ.

Hence, mo—no—22>1 gives a consistent choice of functionals in (3.9) in the norm
|- | p which preserves the asymptotic accuracy of (3.17) in this norm. Note that even
if this choice is not consistent in the norm |- ||, i.e., if 1<my—ny,—2</, it follows
that when the collection Q is a sequence of partitions {4,};2, with 4;<d,4,; for some
fixed positive J;, then the associated sequence {W,,}i~, converges in the norm || ||,
to ¢ (x, y)asi— oo when lim,_, , 4,=0.

Another way to approximate the quantities k;, 1 <i<M, in (3.1) is by replacing
f (x,y) by an interpolate, calling it f (x, ), and evaluating [{c, f (x, ») w; (x,y)dx dy
exactly. We assume that we have a partition 4 determined by the partitions 4,
O=xo<x; < <Xy 41=land 4,: 0=y, <y <-- <¥n,+1=1of the xand y axis. Note
that if {w;(x, »)}{Z; and f (x, y) are polynomials on each cell [x;, x;, ;] x [ Vi Visil
of 4, then the integral [fg f (x, y) w;(x, y) dx dy is simply the sum of integrals of
polynomials over the cells of 4, and is therefore easy to calculate on a digital computer.
We now determine how accurate an approximation f (x, y) must be to f (x, y) in order
for this type of quadrature scheme to be useful in our variational technique.

The interpolation of /' (x, y) in (3.1) by f (x, y) would generate a system of equa-
tions (3.4) where

b= Lulrw] =L(Twd = [ [ F ) ) dxdy, 1<i<m. G
G

This in turn again serves to define Wy (x, y)=> 1=, i;w,(x, y) from the solution of
(3.4).

THEOREM 2. Assuming that f in (1.1) is independent of u, let A be any partition
of G=[0,11x[0,1] such that f is continuous on each cell of A and let Sy (4) be any
Jinite-dimensional subspace of S such that for every v(x, y)e Sy (4), v(x, y) is a poly-
nomial of degree n, in each variable on each cell of A. If fy (x,y; 4) is a continuous
piecewise-polynomial interpolate of f (x, y) such that f (x, y; 4) is a polynomial on
each cell defined by 4, let Ly be the associated linear functional of (3.18). Then, there
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exists a constant K, independent of A, such that
1P3 = Warllp < K 1 fae = fllzegey - (3.19)
Proof. From (3.6), we have

[War — WM”?) = ff [fM (x, y54) = f (%, ¥)] DPar (x5 ¥) = War (x, y)] dx dy,

and using the Cauchy-Schwarz inequality gives

s — Waell s < Iae = fllacoy 19 = Wl 12y - (3.20)
Now ||Wy— Wil 26y < W =Wy, 2, and |- [p is equivalent to |- ||, ,, so there exists
a constant K such that
War = Warllzey < K D0y — Waellp
Hence from (3.20),
s — Warllp < K | fur = f ey - Q.E.D.

From inequality (3.19), it is now clear how the piecewise-polynomial interpolate
is to be chosen so as to have a consistent quadrature scheme in some norm. For
example, if f (x,y)eC*(G), then the piecewise cubic Hermite interpolate F(x, ),
relative to a partition 4 on G, satisfies (cf. [1])

If = F e < Ko (4)*

4. Nonlinear Case

We now define what we mean by a consistent quadrature scheme for the general
problem (1.1), where f'is a function of u, as well as x and y.
If we approximate the integrals k; (u), i<i<M, in (2.7) by a quadrature scheme and
denote these approximations by k; (u), we have the following new system to solve:

Au+k(u)=0. 4.1
Naturally, since f is dependent on u, we are not assured that the system (4.1) has a
unique solution. As in the previous section, we will denote by Wy, (x, y) the approx-
imation generated by the system (2.4) using subspace S),.

Let 4,:0 = x5 < xj < <Xy 41=1, 4,:0 =y, < yo<-+<Yy,+1=1beapar-
tition of the unit square G and, as in §3, denote by 4 the set of points (xi, y}),
0<i<N,+1,0<j<N,+1. Again we assume 4<d,4, where J, is a fixed positive
constant, and we restrict our attention to subspaces S, (4) of § of piecewise-poly-
nomial functions. Writing k;(u) in (2.7) as the sum

X141 Pkt

Nx Ny M
ki(w)y =3 f ff(x,y,jglujwj>widydx

I=0k=0
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and applying the quadrature scheme (3.7) to the (N,+1) (N,+1) integrals in this
sum, we obtain an approximation which we will denote, in simplified notation, as

. Mo M; M

ki(u) = Z z Biwf (xla Vs Z ujo) w; (X, Vi) - (4.2)
=0 k=0 Jj=1

Substituting these k;(u) for k;(u) in (2.4) generates system (4.1). The following

theorem gives sufficient conditions for the system of equations (4.1) to have a unique

solution.

THEOREM 3. Suppose that Sy is a finite-dimensional subspace of S spanned by
the linearly independent set {w;(x, y)}iL, and let the quadrature scheme (3.7), used as
described above to obtain the approximations k; (u) in (4.1), satisfy the following con-
ditions:

m om
ai;f>0’ Osl’]<ms 'ZO 'Zoai,jz(xm_XO)(ym_yO);
i=0 j=

and, in the notation of (4.2)
Mo My 1 1
lZO kZ Briwi (%1, vi) w; (x5 1) = f f ww; dy dx,
=0k=0
0 0

Jor 1<1i, j<m. Then the system (4.1) has a unique solution .
Proof. We define the following functional on S, :

P w(x1, yi)

1T /ow\? ow\? Mo M,
H = il N id ow dvd emd
[w] ff2[<ax> +<6y):] y x+l;0k;o,3:,k J' f (x5 yi,n) dny
00 )

where w(x, y)=3"71, uw;(x, ). Note that the system 0=0H[w]/ou, 1<i<M, is
exactly system (4.1) where the k; (u), 1 <i< M, are described in (4.2). Hence, in order
to prove that (4.1) has a unique solution, it suffices to show that H[w] has a unique
stationary value over Sy, The remainder of the proof is simply the two-dimensional
analogue of the proof of Theorem 4 in [8]. See [7, p. 157] for complete details.

THEOREM 4. Let Q be any collection of quasi-uniform partitions A of G, i.e.,
there exists a constant 6,>0 such that §,A=2 for all AeQ, and for each AeQ,
let Sy (4) be a finite-dimensional subspace of S consisting of piecewise-polynomial
Hermite or spline functions of degree n,. Assume that d"f (%, ¥, w(x, p))jox™ and
"f (x, y, w(x, ))/6y™ are continuous for all w(x, y)eSy (4) for all AcQ and that
¢ (x,y)eC™*(G). If the quadrature scheme (3.7), used to approximate the k,(a) in
(2.7), satisfies the hypotheses of Theorem 3 for each subspace Sy (4), and my=n,, then
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there exists a positive constant K such that
|%—w], < K(4) forall 4eQ,

where s=min (mo—no—2, fo)-

Proof. For any partition 4€C, let {w;(x, y)}M | be a basis for Sy (4). Denote by
w(x, y)=Y 1=, il;w; the interpolate in Sy of ¢ (x, ), the unique solution of (1.1). We
define

g = (4d); + k; (@), 1<is<M,

where A and k;(-) are defined in (2.6) and (2.7) respectively. Thus,
Al =—- k(@) + e+ k(@) - k(@). (4.3)

Recalling that ii satisfies
Aii =—k (), 44

subtracting (4.4) from (4.3) and premultiplying by (i— )", we obtain
(i — )7 4@ —0) =@ -0 (k@ -k@)+@- )7 (s + k(@) —-k@). (@49
Letting W:Z?ﬁl #;w;, it is easy to show from the hypotheses of Theorem 3 and 2.2),

that
1
|
0

Therefore, from (4.5) and (3.5), it follows from the definition of | - || ,, that
% — w2 < (@ — )7 e + (@ — )" (k@) - k@). (4.6)

The term (a—#)" (k(@)—k(@) in (4.6) is just the error in applying the quadrature
scheme (3.7) on the cells of partition 4, to the function f (x, y, w) (W—W). From (3.8)
we see that this error is bounded above by

(9 — W)* dy dx < (& — )" (k (@) — k().

OL———yH

Nx Ny _ lamc X, ,W W”‘VT’ 1
5 ¥ ks me [TLE2D0ZD)
1=0 k=0 i=0,mo ! ox' oy™ Loy,
where :
n ‘ anx,k =" l[Lw([x’x, X1+11%X [V % Y+ *

Then, using using the Markov theorem as in the proof of Theorem 1, the assumed con-
tinuity properties of the function f and the fact that derivatives of the Hermite
or spline interplate W are bounded ([2] and [1]) since we are assuming that
¢ (x, y)eC™*1(G), we see that there exist constants Kj 4, such that

Nx Ny V
@ -0 (k@ -k@)< T T K@= Pl
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Therefore, by the same argument as in §3, there is a constant K 1 such that
(1 — ﬁ)T(k (@) — k(@) < K (N, + 1) (N, + 1) (A)™7 " |w — W2 -
Now, since 4 max (N, +1, N, +1)<1 and 4<8,4, then
Ky (N + 1) (N, + 1) (4)"77 1% = Wl < Ky 85 (4)™ 772 1% — W]l 26, -

As noted in the previous section, ||| .<|| | , and |- | 1,2 is equivalent to |- |,, so
there is a constant K, such that

(@~ @)" (k (&) — k(@)] < K, (A)™ ™2 | — ], 4.7)
Combining (4.6) and (4.7), we have

1 =017 < (i = W) ] + K, (A2 | — . @.8)

As in one dimension ([8, §4] and [7, pp. 62-66]), it can be verified that there exists a
constant K5 such that

(8 — )" & < K3 % — ], |~ W,
Therefore, (4.8) becomes

W —Wl, < K3 [% = W], + K, (d)™ ™2,
and hence
o —wll, < [ — wll, + % — w],
< (14 K3) | = wll, + K, (A)m 2
S+ K) {IW = oll, + 1 — W]} + K, (D)™ "2,
However, |W— [, <Cll¢ —w|, from (2.13), so that
I —wl, < (1 +K5) (1 + C) ¢ = 1w, + K, ()™ 2,

Then, as 1w is the interpolation of ¢ in S,,, the error bounds of [2] give us that [|¢ —w]],
<K(4)™, from which the desired conclusion of Theorem 4 follows. Q.ED.
This brings us to the analogue of Definition 1 for the nonlinear problem.

DEFINITION 2. Let Q be any collection of quasi-uniform partitions of G, and
for each 4eQ, let Sy, (4) be a finite-dimensional Hermite or spline subspace of S. Let
Wy, the function which minimizes F[w] of (2.3) over S, (4), satisfy

Wy — @lly < K(4) forall 4eQ, (4.9)

where K and / are positive constants independent of 4, ¢ is the solution of (1.1), and
|| Ily is some norm on . Then, the choice of quadrature schemes in (3.7) is consistent
in the norm ||y with the bounds of (4.9) if there exists a positive constant K,
independent of 4, such that

Wy — Wylly < Ko (4) forall deQ.
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COROLLARY. If the hypotheses of Theorem 4 hold, then the quadrature scheme
(3.7) is consistent in the norm |-, with the bounds | Wy — I, <Ky (A)* deduced from
[21and [1), if mo>2n0 +2.

When fin (1.1) is a function of u as well as x and y, approximating the integrals
k;(u) in (2.7) by interpolating f (x, , S M, uyw;) by some F(x, 3, Y3 uw;) and

then evaluating
M
Jf f(x, DY ujwj> w; dy dx
i=1
G

exactly, is not advantageous. The reason, as shown in [8,§4], is that the system of
equations which is generated cannot be shown to be the gradient of some functional
set to zero and hence, we cannot be sure that the attractive techniques available for
minimizing functionals are applicable.

We should mention here that if we restrict ourselves to piecewise Hermite inter-
polation subspaces, then these results may be generalized from rectangles to rectangular
polygons, as in [2].

5, Numerical Examples

We now discuss some examples of problems of the form (1.1) whose solutions have
been approximated by the techniques discussed in the previous sections.
Consider the problem

Au(x,y)=6xyexey(xy+x+y~3), (x,y)€G, 5.1)
u(x, y) =0, (x, y)edG, '

where G is the open unit square (0, 1) X (0,1). The quantity A4 of (2.1) in this case is
272, as noted in [6, p. 249]. For this problem, y in (2.2) can be chosen to be zero.
Since 6xye’e’ (xy+x+y—3) is independent of u, then (2.9) holds with K=0. The
unique solution to (5.1) is
u(x, y) =3¢ (x = x*) (v = ¥*)-
The first way that the solution of (5.1) was approximated was by minimizing the
functional

Fw] =” {% [@—Z)z + (%%)2] 6xye e’ (xy +x+y — 3)‘w(x, y)} dydy (5.2)

over the piecewise linear Hermite subspace Hy (my) of S, described in [2,§4], where
ny is the uniform mesh on G with mesh size hy=1/(N+1). The dimension of
H{ (ny) is N?. Denoting the basis functions of H'(my) as {w(x, WHZL, et
TN dwi(x, p)=Wx (%, y) be the unique minimum of F[w] in (5.2) over Hg (my).



Vol. 7, 1972 The Effect of Quadrature Errors 53

By [2, Theorem 16] and the fact that || - ||, is equivalent to || - || , we know that
¢ — wyllp < Khy, N>=1, (5.3)

where K is a constant independent of N. The two-dimensional four-point Gaussian
quadrature scheme generated as in (3.7) from the one-dimensional two-point Gauss-
ian quadrature scheme with weight function unity, was used to approximate the
integrals of the form (3.1). If we denote by Wy (x, ») the approximation resulting from
the minimization of F[w] using the above mentioned quadrature scheme, then by
Theorem 1, with m,=4 and ny,=1, we can easily verify that there is a constant K’,
independent of NV, such that
Wy — Wyllp < K'hy.

Therefore, by Definition 1, the two-dimensional four-point Gaussian quadrature
scheme is consistent in the norm |- |, with the bounds of (5.3). Consequently, we
have

”¢ - WN“D < KhN: N=1,

where K is a constant independent of N. The numerical results are given in Table 1.
The quantity « in this table is

_ ”d) - Wnl “L°°(G)>/ <hm>
=] _ 2] —, 5.4
H=loe (nqs Y e VN G4

which is an estimate of the rate of convergence of our approximations, defined in
terms of successive values of the mesh spacing 4. Equation (5.4) is derived from the
fact that as i1y, — 0, we have

”¢ - W’N”Lw(c) ~ K(hzv)‘z

for some constants o and K which are independent of /4. Then, for two successive
values of A, h,, > h,,, we have asymptotically

9 = W lie) (’E_) (5.5)

[ — W, IL‘”(G) h

na,

and (5.4) follows from (5.5). We see from Table 1 that the accuracy seems to be
O (h%)in the norm |- ||z )

Table 1
Subspace Hol(mn)
hn dimension lé —wallzeo a
of Hol(ny)
1/7 36 3.10-10-2 -
1/8 49 2.43-102 1.84
1/9 64 1.96:10-2 1.85
1/10 81 1.60-10-2 1.94

1/11 100 1.33.10-2 1.97
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The solution of problem (5.1) was also approximated by minimizing F[w] in (5.2)
over the piecewise cubic Hermite subspace Hg (my) of S ([2, 4]), where 7y is the same
as above. The dimension of HZ (my) is 4N? +8N +4, and if we denote by Wy (%, )
the element of Hg (my) which uniquely minimizes F [w] over HZ (my), then, again
using [2, Theorem 16], we can deduce that

I — wyllp < Khy, N=1, (5.6)

for some constant K, independent of N. For the piecewise cubic polynomial subspace
H( (my), the two-dimensional sixteen-point Gaussian quadrature scheme derived
from the one-dimensional fourpoint Gaussian quadrature scheme with weight func-
tion unity, was used to approximate the integrals in the system generated by mini-
mizing F[w]. For this quadrature scheme, o= 8 and by Theorem 1, with 7= 3, we
can verify that

oy — Wyllp < Khy, N=1,

where Wy is the minimum of F [w] over HZ (ry) using the quadrature scheme. Hence,
by Definition 1, this Gaussian quadrature scheme is consistent in the norm ||+l p with
(5.6) and we have

) — Wylp < Khy, N=1,

where K is a constant independént of N. The numerical results are given in Table 2.

Table 2
Subspace Ho?(zx)

hy dimension Il =iz @ bt

of Ho?(nw)
1/3 36 9.11:107% -
1/4 64 3.15-1074 3.70
1/5 100 1.32-107% 3.92
1/6 144 7.06-1075 3.93

The o values in this table indicate that for the subspace HZ (my) the accuracy in the
norm || || .= (g, is probably O (h)-

The final subspace over which we minimized F[w] in (5.2) was the piecewise-
cubic-polynomial spline ([1]) subspace Spé(my) of S, where 7y is once again the
uniform mesh on the unit square. From [6], we can easily deduce that if Wy (x, ») is
the minimum of F[w] over Spg (my), then

I — wylp < Khy, N=1. (5.7)

The dimension of Spj(my) is N 2 44N +4 and the two-dimensional, sixteen-point
Gaussian quadrature scheme was used to approximate the integrals involved in
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minimizing F[w]. Letting Wy denote the approximations resulting from minimizing
F[w] over Spj (ny) using the quadrature scheme, by Theorem 1 we see that

Wy — Wyllp <Khy, N>1,

and hence by Definition 1, the quadrature scheme is consistent in |||/, with (5.7).
Consequently
¢ —Wylp <Khy, N>=1,

where K is a constant independent of N. The numerical results are given in Table 3.
They indicate that the accuracy in the norm ||+ || o (g, is O (hf\‘,).

Table 3
Subspace Spo?(nx)
hy dimension ¢ —wn e a
of Spo?(nw)
1/3 16 1.08-10-3 -
1/4 25 3.57-104 3.84
1/5 36 1.53-104 3.84
1/6 49 7.66-10-5 3.82
1/7 64 4.19-10-5 3.94

As our second and final example, we consider

Au(x, y) =) + (= 2+ (1 =2x)*) (™ =1 +u)
+(=2+ (1 =2y)") (" =1 +u) (5.8)
— (@) @IS 1), (5, y)e6,

u(x,y)=0, (x,y)edG, (5.9

where G is the open unit square. As in problem (5.1), A, in (2.1) is 272 and y in (2.2)
can be set equal to —4. Denoting the right side of (5.8) by f (x, ¥, u), of/ou is in
C°(G x R), but it is unbounded as |u|— + 0. We now show that (2.11) is satisfied.
We first estimate the quantity —g ™', where o is defined as follows. Let ¥(x,y) be
the (unique) solution of
du(x,y)=1, (x,y)eG,
u(x,y)=0, (x,y)edG, } (5.10)

where G is the open unit unit square. Then

o= sup |¥(x, y)[ >0.

(x,y)e@

To estimate g, we use the following maximum principle [14, p. 56]. If G’ is a domain
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m the (x, y) plane with boundary G’ and ¢ (x, y) is a solution to the problem

du(x,y)=—F(x,y), (x,y)eG
u(x,y)=f(x,y), (x,y)eaG',

where F(x, y)<0for (x, y)eG, then
max |¢(x, y)| < max |f| + ;R? max |F|
(x,y)eG’ oG’ G’
where R is the radius of a circle containing G'. For our problem (5.10), /=0, F= —1,
and we may let R=/2/2. Therefore,
weni<t(Z) -
= su X, =] ==,
¢ (x,y):z G PS4z 8
so that —o '< —8. Since y=—4 and —¢ '< -8, then (2.11) is satisfied for the
problem (5.8)—(5.9). The unique solution to (5.8)—(5.9) is

u(x ) = (€470 = 1) (€U~ 1),

In approximating the solution of (5.8)-(5.9) by the variational method, the
function which we minimize is

w

o= ([ [(?gf) " (%;)] #[rsmafaa, e

where f (x, y, u) represents the right side of (5.8).

The first subspace over which we minimized F[w] in (5.11) was the piecewise
linear Hermite subspace Hy (my), where my is again the uniform mesh on the unit
square with mesh size iy=1/(N +1). If we denote by Wy (x, y) the minimum of F[w]
over Hg (my), then we can deduce from [2, Theorem 16] that there is a constant K
such that

fu—wyl, <Khy, N=1. (5.12)

By Theorem 3 and Theorem 4 we see that when the two-dimensional, four-point
Gaussian quadrature scheme is used to approximate the integrals arising in the
minimization of F[w], the resulting approximation Wy (x, y) satisfies

”wN—WN”y<KhN, N}l.

Hence, by Definition 2, this quadrature scheme is consistent in the norm |- ||, with
bounds (5.12). The numerical results are given in Table 4. '

The subspaces H¢ (ny) of piecewise cubic Hermite polynomials and Spg(my) of
piecewise cubic spline polynomials were also used to approximate the solution of
(5.8)—(5.9). By [2, Theorem 16] and [1], these subspaces yield, through the minimiza-
tion of F[w], approximations which are O (/) in the norm ||+ |,. Next, by Theorems
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Table 4
Subspace Ho' (nn)
hn dimension Ju —wwfe (@
of Hol(nw)
1/4 9 7.22.1073
1/5 16 5.22.10-3
1/6 25 3.46-10-2
1/7 36 2.69-10-2
1/8 49 2.01-10-3

3and 4, we can verify that the two-dimensional, sixteen-point Gaussian quadrature
scheme is consistent by Definition 2 in the norm [+, with these O (hy) bounds.
Letting Wy (x, y) denote the approximations generated by minimizing F[w] over the
Hermite and spline subspaces and using the above-mentioned quadrature scheme,
the numerical results are given in Tables 5 and 6.

Table 5
Subspace Ho*(nx)
hn dimension la —wxlze (@
of Hoz(mv)
12 16 4.55-10-
1/3 36 1.05-104
1/4 64 4.06-10-%
1/5 100 8.67-10-6
1/6 144 5.28-10-6
Table 6
Subspace Spo®(ny)
I dimension lu —wrllLe (@
of Spe?(ny)
12 9 4.44-1072
1/3 16 2.13-104
1/4 25 4.92-1073
1/5 36 1.96-10-5
1/6 49 9.76:10-8
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