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ABSTRACT. Recent interest in rational approximations to e™* jq [0, + o),
arising naturally in numerical methods for approximating solutions of heat-cop-
duction-type parabolic differential equations, has generated results showing that
the best Chebyshev rational approximations to e™, and to reciprocals of certain
entire functions, have errors for the interval [O, + o0} which converge geometri-
cally to zero. We present here some related converse results in the spirit of the
work of S. N, Bernstein.

1. Introduction. In numerical methods for approximating solutions of heat-

conduction-type equations, one necessarily considers matrix approximations of

—tA
1.1) e
where A is an 7 x n Hermitian and positive definite matrix, and where ¢, the
time parameter, belongs to [0, + ). Though rational Padé matrix approximations

of e~t4

are familiar (cf. [7, Chapter 8]), rational Chebyshev matrix approximations
of e=** have only recently been considered ([2], [8]), and are associated with'
rational approximations of e=* in [0, + =). Specifically, if for any nonnegative
integer m, 7 denotes the collection of real polynomials of degree at most m,
and if 7. fOr any nonnegative integers m and n similarly denotes the collec-
tion of all real rational functions rm‘n(x) = pm(x)/qn(x), b, €7, 4, €7, then

let

(1.2) Apn= inf [le™* = el [0, 0Sm<n,

”m,ﬂ
denote the Chebyshev constants for e=* on [0, + ).

In [2], the following was established.

Theorem 1. Let im(n)frzo be any sequence of nonnegative integers with

0< mn) < n for each n > 0. Then the Chebyshev constants )\m(n) o for e in
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{0, + =) converge geometrically to zero, i.c.

T 1/n - 1__“ _ __1 <
(1.3) nli{nm ()\m(n),n) = 2% 2.298... >
where a = 0.1392. .. is the real solution of 2ae?**1 = 1. Moreover,
— 1
(1.4) lim (A I/ns 2,
n—-lap:o O,n) -6

In [4], the geometric convergence of the Chebyshev constants to zero was
k=0 %1%
function with M,(r) = Sup|, |, |/(z)] its maximum modulus function. Then, [ is

said to be of perfectly regular growth (p, B) (cf. Boas [1, p- 8l and Valiron [6, p. 45])

iff there exist two (finite) positive numbers p and B such that

extended to a wider class of entire functions. Let f(z) =X k be an entire

In Mf(r)
(1.5) lim ——— - B,

T OO rp

In [4], the following was established.

Theorem 2. Let f(z) = 2:=0 akzk be any entire function of perfectly regular
growth (p, B) with a, >0 forall k>0, and for any nonnegative integers m and
n with 0< m<n let

1 e

(1.6) A = inf /(x)v'_

m,n
w
m,n

Lm[o,oo]

denote the Chebyshev constants for 1/ in [0, + ). Then, for any sequence
{m(n)}:;o with 0< mln) < n for each n > 0,

—_ 1/n 1
(1.7) ngrr;(Am<n),n) < S1/P <1
Moreover,
' — 1
1.8 lim (A, )V/7>_ 2|
( ) nv:l-?:c( O’n) - 22"‘1//0

The results of Theorem 2 give then sufficient conditions on f(2z) so that its

associated Chebyshev constants A of (1.6), 0< mn) < n, converge geomet-

mAn},n
rically to zero as n — ~. In the spi(rii'of Bernstein’s classical inverse-type theo-
rems for polynomial and trigonometric polynomial approximation on finite intervals,
the first aim of this paper is to give necessary conditions on f(x) for this geomet-
ric convergence on the infinite interval [0, + o). This will be discussed in $2.
In addition, similar necessary conditions for geometric convergence on the infinite
interval (- o, + =) will also be given.

Upon examining the results of Theorem 2, we see that the bounds of (1.7)—

(1.8) depend upon p, but do not depend upon B. This suggests that the results
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of Theorem 2, giving sufficient conditions on the entire function f(z) to ensure
geometric CONVErgence to Zero of the Chebyshev constants, can be generalized to
a wider class of entire functions. The second aim of this paper is to consider
just such generalizations of Theorem 2. This will be discussed in $3. Finally,

in $4 quasi-analytic extensions in the sense of S. N. Bernstein will be given.

2. A converse theorem. To establish a converse result to Theorems 1-2
which gives necessary conditions of [ such that the Chebyshev constants An
of 1/f -converge geometrically to zero, we first introduce some notation. For given
+>0 and s > 1, let &(7, s) denote the unique open ellipse in the complex plane
with foci at x = 0 and x = r and semimajor and semiminor axes @ and b such

that b/a = (s = 1)/(s? + 1). Ta more familiar notation,

(x~7/2)2 yz

ff + < 1.
(/4 (s + 1/91%  [(+/4) (s - 1/9)1?

.1 z=x+1y € &7, 5) i

Tf F(z) is any entire function, we denote by MF(r, s) the maximum modulus of F

in &(r, s), i.e.
2.2) MF(r, s) = sup {|F(2)|: z € &(r, s)b
We now state one of our main results.

Theorem 3. Let f(x) be a real continuous function (not £0) on [0, + ),
and assume that there exist a sequence of real polynomials {pn(x)}:;;o, with p, €

a, for each n> 0, and a real number g > 1 such that

11

@ 3) — 1/n 1
' n w0 p (0 [ Lfo,0] gt

Then, there exists an entire function F(z) with F(x) = [(x) for all x>0, and F
is of finite order p, i.e. :

___lnln MF(r)
2.4) lim = p <00,

00 Inr

In addition, for every s > 1, there exist constants K=K(s, g)>0, 0= 0(s, q) > 1,
and 1, = ro(s, q) > 0 such that

2.5) Wln 9 <KW o) foratl 1270
I, for each s> 1, 5(5) is defined by
In %F(r, s)

T
(2.6) S nlfllL_fo.n

- 0(s)
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when ”f“L.,o[O,r] is unbounded as 1 — oo, and 0(s) =1 otherwise, then the order

p of F satisfies

2.7 e In 6(s)
7 P> UV % s 4Gt 1/

and this upper bound for the order p is in general best possible. :

Proof. For any 9, with ¢ > g, > 1, it follows from (2.3) that there exists a
positive integer 7 (g,) such that
(2.8) W1/p, - 1/7] Lo[0,e] S 1/8] forall 2> n (g)).
Next, define

2.9) m[(r) =71 Lo [0.7] for each 0< 7 < o,

Fixing r > 0, the fact that g, exceeds unity implies that there exists a least inte-
ger nz(r) such that

(2.10) 97> 497 -m (r) > q']"/z forall n>n (r).

Vith 7, = max{n g, m ,{N}, a simple manipulation of the mequahty of (2.8),
coupled with the second mequahty of (2.10), gives us that

12,3 =[] < m}(A/g} - mfo) < 2m2n) /g7

forany #n>n, and all x with 0< x <7 and f(x) £ 0. But from the continuity of
{/, this implies that

(2.11) o, -1, [0,]§2m[2(r)/q’f for all n > n,.

In order to apply results of S. N. Bernstein, we now make the change of variables
1+18)/2=x, 0<x<r -1<t<1, and define

(2.12) h(z; 0= fir(1+ 2)/2}
Because [ is real and continuous on [0, + =), h(t; r) is a real continuous function
“on [-1, +1] for each parameter r > 0. If

EJbCs D= inf o, = bGs Al Ly

Op€M,

denotes the error in the best Chebyshev polynomial approximation in 7, to

b(-;7) on [~1, +1], then the inequality of (2.11) immediately implies that

E 1h(s; Ni< ZmZ(r)/q'lZ for all n2> n,.

But, as 7> 0 is fixed and g, is an arbitrary number with g > 9, > 1, this implies
that
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lim {En%b(ﬁ r)ﬂ”"f 1/ for each r> 0,

71— OO

Hence, using a result of S. N. Bernstein (cf. {3, p- 86]), this means that Bt r)

can, for each 7> 0, be extended to an analytic function in the open ellipse Sq j
with foci 1 and semimajor and semiminor axes a and & such that a + b = g>1. ‘
Because

52 )/2

+ <1
Mg+ 1/9)1%  [%4(q - 1/9]?

z=x+iy€gq iff

this means, using (2.1) and (2.12), that [/ can be extended to a function F(z)
which is analytic in the ellipse &(, g). Butas r is an arbitrary positive real
number, and any complex number w is, as is readily verified, in &(r, g) for all 7
sufficiently large, then F(z) is evidently analytic in the whole complex plane, i.e.
F is an entire function, which proves the first part of the theorem.

Continuing, let o (;7) = p,4r(1 +8)/2}. Then, the inequality of (2.11) can be

rewritten as

Hon(.Q r - b('; T)H Loo[—l'+1] < 27)2/2(7')/9712 for all .nZ 753

With the triangle inequality, and the definitions of (2.9) and (2.12), we deduce from

the above inequality that

“Un(‘? N L [-1,+1] < m/(r) + 2m/2(r)/q§l for all n> ;13’

and

”0774'1(.; 7‘) —on(‘; r)” L [—1'4.1] < 2(1 + ql) m/z(r)/qurfl for all » > n3.
Making use of another result of S. N. Bernstein (cf. (3, p. 92]), the above inequali-

ties can, for any s with 1 < s< q,, be extended to any z egs by

(2.13) Ion(z; I < (mf(r) + 2m/2(r)/q’11) s™ for all n> n,, Z € gs,

and

(2.14) }crnﬂ(z; - oz N <2(1+ q,) nz/z(r)(s/ql)’“rl forall n>n,, z € 55.

From these inequalities, the series

0,13(2; 7+ Z {onﬂ(z; 7 ~an(z; 7}

n= n3

necessarily converges uniformly on k%s to an analytic function which, as is easily
seen, is b{z; 7). With the bounds of (2.13) and (2.14) applied to the above sum,
it follows that
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2m/2(r) . AR
|h(z; 7| < m {1) el B 2014 ql)mfz(r)

7,

ql—'s ql

for all =z egs. Noting from (2.10) that 2m/(r)/qr;3 < 1, the above inequality

becomes

[b(z; 7)| < m D12+ (1+g)s/(g, - Hs™® forall z e &_.
However, from the definitions of (2.1) and (2.12), this means that

|F(2)| < m{) {2+ (1 + 7.)s/(q, = 95" forall z € &(r, s),

which in turn, from (2.2), implies that

(2.15) MF(" s) < m(r)§2+(1 + ql)S/(ql -~ 5)}s"? for all r>0,all 1<s<gq,.

Consider now the nondecreasing function of r, m (r) We first assume that
(r) is unbounded as 7 —s . Then, for any o suff1c1ently large with m/(ro) >1,

defme

(2.16) P 1y = [lns 2 .
In ql II'I m/(fo)

It can be verified, using the nondecreasing nature of m (r) and the fact from (2.10)
that ny=n (r) < ((In (Zq Y+ lnm (r))/ln ‘11)’ that s 3 < (m (r))r forall 7> 7. In
other words from (2.15),

MF(r, s)<f2+(1+ g)s/(q, - s)}[m/(r)]HT forall r>7,, all 1<s<gq,.

Because m/(r) by assumption, is nondecreasing and unbounded as r — oo, it is
clear from (2.16) that, for any s chosen with 1< s < q,, there is an r0 > 0 such
that r(r ) <1, and hence with K = Klq v s)={2+(+gq )s/(ql - )%, we have
that

(2.17) MF(r, s) < {Km (r)}z for all r> rg, all 1<s<q,.

For the remaining case when m/(r) is bounded, i.e. m (r) o< forall r>0, we
see from (2.10) that » (r) and hence 7y, is mdependent of 7. In this case, (2.15)

becomes

(2.18) ﬁp(r, s) <oK?s™3 forall >0, all 1<s < g,
As is readily verified, if for s > 1, p = uls) is defined by

(2.19) =B+ Yls+ 1/ > 1

then the open disk {z: |z] < (4~ 1)r} is contained in &(r, s). Consequently, by

the maximum modulus principle,
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(2.20) Mpllp = 17 < Mplr, ) forall 7> 0,

Combining the inequalities of (2.18) and (2.20), we see that MF(r) is bounded for
all 7> 0, so that F(z) = ¢ for all z. Because F(x) agrees with f(x) on [0, + ),
the assumption that /(x) is not identically zero on [0, + =) gives us that F(z) =
c £ 0 for all z, and in this case, the inequality of (2.17) is trivially satistied.

We now show that the entire function F is of finite order p, where p is de-
fined by (2.4). It is geometrically evident from the definition of y in (2.19) that
the ellipse @(r/u, s), for 1<s< 94 contains all points of the mterval (0, r) for
any r > 0. Hence, by the maximum modulus principle again, m (r) < M (r/u, s),
and thus from (2.17), M (r, s) < (KM (7/#, s)? forall 7> pr,. From induction on
the above inequality and the inequality of (2.20), it follows that

(2.21) M ((u -1 r)SM (. S)<{K2jﬁ (/™ sN2™ forall r>p™r,.
F F > F\NTIH (LA

In a similar way, we have that
(2.22) m/(r) < isz/(r/y’")Pm for all 7> p™r.

For each 7> r,, choose the nonnegative integer m such that gt /1y 2 p"
A short calculation based on the inequalities of (2.21) gives us that

In lﬂ M (T) In 2

(2.23) p= Tim ———-—--——--———<»—~»,
700 Inr In p

proving that F(z) is an entire function of finite order p < (In 2)/(In p). But as
this inequality is valid for all s with 1<s<gq, <gq, it holds also for s = g, i.e
from (2.19),
In 2

P+ g+ Ul

Continuing the proof of Theorem 3, we now establish the mequahty of (2.5).
We already know from (2.17) that for any s with 1 <s<gq,, M (r, s) < {Km (n}?
for all 7> r,. Next, it is easy to verify geometrically that 6(r, s)C g(r , s') for

(2.24)

" >r, where s’ and s are connected by (cf. (2.19))
(2.25) (p(sY = 17" =(uls) - r

Given any s > 1, choose a = /r > 1 such that s‘, determined from (2.25), satis-
fies 1 <s' < q,; this is always possible for a sufficiently large Then fixing

a and s’, it follows from &(r, ) C &, s =&lar, s ) that M (r, s) < M Flarn s’).
But as 1 <s'<g,, we can apply (2.17), i.e. m (r)< M grs) < M glan s )<
(Km/(ar))2 for all 7> r /a, the first mequahty followmg from the fact that [0, 7]
C &(r, s). Making use of the inequality of (2.22), we deduce from the above ine-
quality that
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Mp(r, ) < {K2m (ar/m(s DT for all ar > (s r .

Now, choose m sufficiently large so that a < p™(s’). For this choice of m, we
have ’AXF(r, s) < {sz/(r)lzmﬂ for all r> o> the desired result of (2.5).

To establish the inequality of (2.7), it is sufficient to assume that n/”Lm[O,r]
is unbounded as r — . In this case, if follows from (2.5) that

k ~ o In % (r, s)
(2.26) 6(s) = lim ¢ —

is finite for each s > 1. For s > 1 fixed, if follows from (2.26) that for any € > 0,

there is an 7 (e, s) > 0 such that
it ) <7101 forall r2 7o o)
from which it follows, as in (2.21), that
XZF(L s) < {Xip(r/um(s), S)i{b’(s)“)m for all r> p™(s) - ro(e, s).

The above inequality, as in the proof of (2.23), gives us that
Inln M (r) In ’5(5)

p= lim < ~ for each s> 1,
7 00 ln r In p(s)

p < inf ;1“ 6($)£

from which we conclude that

s>1 {ln p(s)

the desired result of (2.7).

Finally, to show that the inequality of (2.7) is in general best possible, con-
sider any entire function f(z) = 22:0 akzk of perfectly regular growth (p, B) (cf.
(1.5)) with a; >0, a, > 0 for all k> 0. By Theorem 2, the assumptions of
Theorem 3 are fulfilled. Because [ is of perfectly regular growth (p, B), it fol-
lows from (1.5) that for any & > 0,

In M (87)

lim — 1 _§P.
(2.27) y oo In M 0 =9

But, because the coefficients @, of [ are all nonnegative, then .’M (r, s) =
M (;1(5) r) and W”L Wlo1= M (r) for all r> 0 all s > 1. Thus, from (2.27) and
the definition of a'(s) in (2.6), 1t follows that 0(5) = (u(s))?, so that

B {ln 9(5)
in p(s)
i.e. equality holds in (2.7). Q.E.D.

The following are consequences of Theorem 3 and its proof. The first is

} for each s > 1,

merely a sharpened restatement of the inequality of (2.24).
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Corollary 1. If f(x) satisfies the hypotheses of Theorem 3, and p >0 is the

order of the entire function F(z), then
(2.28) 72T (/P 2 gy,
with strict inequality holding if F js of type B =+ o (cf. (3.8)).

We remark that the bound of (2.28) simultaneously improves the upper bound
q < 6 of (1.4) of Theorem 1 for the case p =1, as well as the upper bound g <
22*1/# of (1.8) of Theorem 2 for the more general case p>0.

Corollary 2. 1f f(x) satisfies the bhypotheses of Theorem 3 and I/ HL [0, 0]
is bounded, then f(x) = ¢ £ 0.

The point of Corollary 2 is that it is easy to give examples of entire functions
which are real on [0, + =) which cannot possess the property of (2.3). For ex-
ample F(z) = cos z + 2 s such a function. A less obvious example which makes
use of the inequality of (2.5) is F(z) = (z + 1X2 + cos z), which is an entire func-
tion of order p = 1, for which 7+ | < m/(r) <3(r+1) forall » 2 0. But since
|F(2)| grows exponentially along the imaginary axis, it is clear that the necessary
condition of (2.5) of Theorem 3 cannot hold for all 7 sufficiently large.

It is of interest to know that there js an analogue of Theorem 3 which deals with
approximations on the infinjte interval (- o, + o). In fact, this extension to
(= o0, + o0) directly follows the steps of the proof of Theorem 3, with the interval
[0, r] being replaced by [-7, + 7. 1f &G, s), for 7> 0 and s > 1, denotes the
open ellipse in the complex plane with foci at 7 and semimajor arid semiminor
axes @ and b such that b/a = (s2 - 1)/(s2 4 1), then, in analogy with (2.2),
define

(2.29) &F(r, s) = sup {fF(z){ z € é(r, sH.
We then have

Theorem 4. Ler (%) be a real continuous function (not £0) on (- o, 4 00),
and assume that there exist @ sequence of real polynomials fpn(x)}:‘;o, with ¢,

€n_ for each n 20, and a real number 4> 1 such that

— {1 !
. _ 1 =-<1
(2.30) R [ XN - !

Then, there exists an entire function F(z) with F(x) = 1) for all x with — oo <
x<+o0, gnd F is of finite order p (cf. (2.24)). In addition, for every s> 1,
there exist constants K — K(s, g) > 0, 0=0(, ¢)> 1, and Ty = ro(s, q) > 0 such
that
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(2.31) Mpt, s) <1KI/ 1, (er e’ forall rzrg
If, for each s > 1, 6(s) is defined by

L In &F(r, s) N
(2.32) lim o} = 6(s)

r—oo §In “/HLOO[__,‘ +7]

when ||fl. [~7, 4] s unbounded as r — o, and 0(s) = 1 otherwise, then the

order p of F satisfies

In é(s)
| < ing 0 0s)
(2.33) P Ymls/2 5 1/25]

and this upper bound for the order p is in general best possible.

0 k
k=097
fectly regular growth (p = 2, B = 1) and a, > 0 forall k> 0, necessarily satisfies

We conclude this section with the remark that f(z) = R > of per-
(by virtue of Theorem 2) the hypotheses of Theorem 4, and gives the case of
equality in (2.32).

3. Some sufficient conditions for geometric convergence. In this section, we
make use of the property of (2.5) of Theorem 3 to establish new sufficient condi-
tions on { for the geometric convergence to zero of its Chebyshev constants, as

in (2.3).

k=0%%
>0 forall k> 1. If there exist real numbers A>0,s>1, >0, and o > 0
such that

Theorem 5. Let f(2) = =% z* be an entire function with ay >0 and a,

3.1) MG, $) <A (n/n,dm[o‘r])ﬁ forall 131,

then there exist a sequence of real polynomials {pn(x)};l”:O with p €m_ for each
n > 0, and a real number g > sV 51 such that

1 1/n

.
16

(3.2) lim

7 — 00

Lo
q

Lol 0. o]

Consequently, if A_ ,, denote the Chebyshev constants for 1/ in [0, + ) (cf.
(1.6)), then for any sequence of positive integers {m(ﬂ)}f=0 with 0< m(n) < n,
then

(3.3) Iim {A

77 — 00

1;
1/n
m(n)'ﬂ} S_é< 1.

Proof. For each r> 0, let qn(x; r) € w denote the best Chebyshev approxi-

mation to / in [0, 7], i.e.
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3.4 —q () = inf |/~ i =5 (7).

(3.4) If q,, HLm[o,,] ontn I/ Un“[_wm,,] o)

It is well known that qn(x; r) can be regarded as a polynomial interpolation of
/(x) on [0, r], i.e. there exist 0< xl(r) < xz(r) <o < xnﬂ(r) <'r such that
qn(x].(r); r) = f(x},(r\)), 1<j<=n+1. Express qn(x; r) in Newton interpolation

series form, i.e.

7,055 1) =[G () + [l (), 2,(D](x — %, ()

e [l G L O] - x (),

i=1
where /[xl(r), ey xiﬂ(r)] are divided differences of / in the points xl(r),- .
xjﬂ(r). As is well known, /[xl(r), cee, x].H(r)] = [UAEY/j1 where xl(r) <<
x’.H(r), and because of. the assumption, that the Taylor coefficients are all nonneg-
ative, these divided differences are evidently all nonnegative. Thus, qn(x; r) is
monotonically increasing as a function of x for all x > r. Next, let pn(x; ) =

qn(x; )+ 5n(r) for each n> 0. From (3.4), it is clear that

(3.5) Pn(x; >fx)>f0)>0 forall x ¢ [o, 1.

Similarly, from the monotonic nature of pn(x; r) as a function of x for all x > 7,

we also have that pn(x; r) > [(7) for all x > r. But as f(x), by hypothesis, is

nondecreasing on [0, + o), we also have that f(x) > f(r) > 0 for all x > r. Hence,

from the above two inequalities,

(3.6) [1/f(x) - l/pn(x; N <2/f(*) forall x>r

For the interval [0, 7] on the other hand, it follows from (3.5) that

) lp, (x5 1) = [(x)] . 23n(r)
AORNMC N E )

Next, since [ is by hypothesis an entire function, another result of S. N. Bern-

L
(&) p (x5 1)

y x € [0, rl.

stein (cf. [3, p. 91]) gives us that
6.1 =1f- 7,05 ML [0,] S ﬁ/(r; s)/(s - 1) s

~ for any s > 1 and any n > 0. Now choose the s > 1 for which (3.1) is valid.
Then, using the hypothesis of (3.1) and noting that |/, [0,7] = f(r), it follows

from the last two inequalitites that

3.7 /&) - Vp (x5 Dl [0,7] < B/%)/s™ forall n>0, all 7> Tor

where B = 24/i(s — 1)/ 2(0){. Now, the assumption that f(r) is unbounded as r —

o gives us that there exist a positive integer n, and an r(n) > 7, such that

4
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[((m)) = s/ 0D g0 al) p 2 n,. Consequently, if we set pn(x) = p,(x; r(n)), we
see from (3.6) and (3.7) that ||1/f(x) - l/l’n(")“Lw[O#’"] < C/s"/(He) for all n >

7, where C = max{2, B}, from which it follows that

1/n
Lim LT S__i._é_<1,
71— 00 /(x) pn(x) LW[O,OO] 51/(1+ )

the desired result of (3.2). Finally, from (1.6), it is obvious that the Chebyshev
constants for 1/f satisfy 0< )\n‘n < )\n_ 1.m << )\O,n’ and the result of (3.3)
follows immediately from (3.2). Q.E.D.

We remark that the assumption in Theorem 4 that /(z) = E::.-o akzk have only
nonnegative Taylor coefficients a, is probably stronger than is needed in general.
For example, for [(z) = e + 2¢~%, which has every other Taylor coefficient nega-
tive, the conclusion of (3.2) can be shown to be valid. On the other hand, if we
consider f(z) = e?% sin z, then f(z) does satisfy the growth condition of (3.1),
and has Taylor coefficients a, which are not all nonnegative. But as f(ﬂk) =0
for all nonnegative integers k, it is clear that (3.2) could not hold for any sequence
ipn(x)}:‘;o with p €n  for each n> 0.

To show that the result of Theorem 5 contains the results of Theorems 1 and

2 as special cases, we prove

Theorem 6. Let [(z) = EZ;O akzk be an entire function with a;> 0 and a,
>0 forall k>0, and assume that there exist finite numbers' p > 0 and 0< b < B
such that

___laM /(r)
(3.8) lim — = B, lim

7 —s00 rp r—00 rP

In M7
f ~b

Then, there exist real numbers A >0, s> 1, and 7o > 0 such that

(3.9) Mfr, s) < A LM[M)@ forall r>r,.
Thus, the conclusions of Theorem 5 are valid.

Proof. For any 0< €< b, choose any 6 > 1 such that 0(b - ¢)/(B +¢) > 1. It

follows from (3.8) that there exists an ro(e) such that
(3.10) elo=€rP o M/(r) < eBrer? o all r> ro(e).

Because the Taylor cosfficients a, of [ are all nonnegative, we see that for any
s>1, and any 7> 0, Mf(r, s)= f(pr) = M/(#r), where > 1 is given by (2.19).
Thus, to prove the inequality of (3.9) it suffices to show that there is a p > 1 for
which M /(W) < (M /(r))a for all 7> r,(¢). But from the inequalities of (3.10), this
is true for p = [0(b - €)/(B + &1'/P> 1. Q.E.D.

We remark that as the assumption for perfectly regular growth of / in (1.5),




‘0 < ¢ fre 0§ @/ = (1)/zu pue (nf)/w = () = (s '1)/W ‘a1053q se uapy ‘0' <y e
105 9 < ¥p °sneoag ‘s[qedridde st ¢ waoayy Jqu’\Aoqs A0u am ‘ang -pardde
3q Jbuuea 9 WaIlodyy ‘yYons sy "((ST°E) *19) oo + =¢/((¢)/W)u; o ‘mn o1 ‘adfa

SITUry o jou ST A1 3q ‘1 = d 13pI0 JO 8T / 3eya parjizaa aq ues AN -eanrsod qre are

—

[P 3 ! ey E4
0<y ;;21(1 ul)z_ame= 17
4q uaard ‘s3U9121§y500 Jo14e] st uayy ‘yze’voz‘zz = (2)/ J1 ‘payyrran A[rpear st sy .
'zpl_zx,-a;f = (2)/ 19

4q paurjop (%)/ voriouny smus SY3 I3prsuod ‘Ayjeur g
‘aF'0 (2r¢) jo ynsar P3JIS9p 5 ST yorym ‘oo = b Joj pryea Apuapias st (z°¢)
‘¢ watoayy, woi ‘snyp (2 “S) <4 T 107 9((1)jw) > (s '1)/’;,1{ IBYI YINS () < (3 ‘)
U® ST 31943 1eya (¢1°¢) woy SMOT[0J 3T ‘T < s jo ad10yd Auw 103 ‘mg (61°7) 4q
uaard st 1 s1aym ‘g < 4 Aue ‘I < s 4ue 109 (171)/;/\1 =@y =(s u)/w 1eyl sn aard
/ 3o swua1d133500 1014e ], sa13edsuuou Y3 ‘g waloayy, jo jooid 91.?5 ur se ‘urefy

(QRESI LR Y Dioargy? > W >, ¢ “Dis-19)° (€1°8)
eyl yons (9)01 U® ST 21943 13 ([1°¢) woy SMOT[0}

I "IT<E+ Ig)/(a - Iq)g 'Y Yons | < g asooys ‘g 55 >0 4ue 10 ‘jooiy
o =b gnm (¢¢) Afs1ivs [/1 10) sjuvisuos nagshgagqry aq1 ‘snqJ

[oo0]%q

‘0= & 6| "o e
u/1 I Ly —

g1 qons g Ju gova
sof “us g qnm O‘:g(x)ud} s]piuouljod vas fo aousnbas p SiS1x2 243q7 ‘uaq|

1y ¢ T dg oD “wrp (1r'e)
(‘)/W uy (J)/W ur, T

w47 gons 1g Slq 5o pup

i e

@worur T
Sidqunu a71u1f 1s1x2 24341 1pgq7 qons ‘g < ¥ 1qv sof o < 1y pur o < Op

gnm g =d wpio jo uorrounf aujus up aq 2[zeiv 0=2['K =(2)/ 1277 *, wasooyy,

‘0 = d 13p10

j0 suonouny a1m1ua rersads 01 9 W03y, spuaIXa pue ‘¢ wWaIoaY], JO SUOTITPUOD
3USI2THNS 3Y3 jo asn d>1yroads sayew ‘9 waroayJ, jo 3eya a1 ‘Insas 1X5U ayy,

T Wwa103Y ] jo synsar aya azrjerausd g pue ¢ SwaI03Y ] Uyl ‘9 wal

0941 Jo (8°¢) yo vondwnsse aya uey 1aduons A1snoraqo st ‘z waoayy ur pasn se

£81 NOLLYWIXO¥ddV TVNOILVY ATHSAGIHD [eLet




Teyl saeg 34 ((11°7) *J9) ¢ wal10ay], jo jooid aya ur se ‘snyy,

— - 1 1
@' 2y ey 7/, 2 wfu - e T (€p)
IBY yons I1aFs1ur 3s®3] Sy aq (A)Ia/ 131 ‘0 < 4 Surxiyg
— — ‘0] 9
03y eaoy oy s letolTy “4,1]| @
QI yons ...y Iy o 0y Yrm O:Z“x)%d§ ~9duanbasqns

B SISIX2 215y3 183 (]°}) woiy Smof[oy It ‘1 < b £ b yra b Lue 109 *joou g
et 01v0 3 [ wagg

b [eo0 )™

00— U

wit (r'y)

)/ <x>“d“
/1 |.' [ I i

w41 gons 1 < b saqunu ]P2L » pup
‘0 <u gova i/ ¥y 5 %4 gnm 0=£{(x)“d} syvruoulyod jvau Jo sousnbss v 1S1%3 24047
gy sunssy - = (lx)/ goi1qm o0/ (0 + ‘o] uz I"uig'zx} s7uzod Jo 42qunu an1uif v

1sou v grm (o0 + 0] wo uorgoun| snonuijuos jvas v 29 (x)/ 1571 ‘g wasoayy,

"UIaIsuIag *N °g jo asuas sy

U1 ‘suorniduny onf[eue-rsenb J0 3135 343 01 ¢ waroay ], jo uoTsUAIXS Ases ue ST 3[nsaz

Sb_rmono; 2y1 ‘uayy, ‘(o + 0] 2 ¥ I7® 103 (x)zj = (x)‘/ Ua1 ‘oo + 59 > 2 5 qirm

{9 ‘7] Tearsiur aarury swos wo (x)z/ = (x)I/ Pra oo + 401y 3 Z/ ’l,/ 1 1Byl yons

(oo + ‘o] U0 suoriduny SNONUTIUOD pan[ea-[eas ITe Jo 135 ampa al0uap [oo + ‘O]Vﬁ 397
“[eLe d <¢) 7o) uraisurag *N 'S furamo[joJ ‘suoisuaixa auz([eue-gsenﬁ b

"31qedrdde ‘raasmory ‘st ¢ waloayyJ

‘a1dwexs snorasid 93 UI s® Ing ‘g waosy] jo sasayiod4y ays 4ysties o3 ey

((8°€) “12) ‘oo + = g pUe 0 =g ““dsar adf1jo nq ¢ < d I3pIo jo suoriduny sius

wuyuyl=u
‘i/u( I )

I=u
‘0<d < <u—%?>uzZ+I=(Z)S —-~Z-——Z+I=(Z)/
dyu o0 “

SuonSuny 3yl yeys yrewar Aprefiwrs oy ‘1 < s Aue
103 31qedridde st ¢ waoayy, ‘2ousy -a81e AQ3uaroTyNS 4 1e 103 9((1)/;4/) S (m)/w
= (s 4 ‘w ‘(syl< g due pue | ¢ s Pax1y Lue oy 1eyd parjrraa A[rpear ST 11 ‘uayy
I, . ‘
TR Y o, 250> () >y 4, 00 <19
veqd yons ¢ pue ' siueisuos aanirsod om3 218 219y3 1BY) 295 SM (4),] @rew
-1$3 03 '[nuwoy s Jurpmg Jursp 1 <4 qre 105 DI > @ >@)g+ (=2 + 1 - Ey
0 0 0
v {__477,3( f —WI=w [_111_31f - zlv[-lz]-amf = (’l)/

WOIy SMOT[OF 31 ‘T 4 104 *(61°7) £q uaatd st [ < 1 s1aym

Isndny] YOUVA S "M NOTAVL A 'O ‘XAday 'y v ‘SNAMVNIAW D ¥81




909¢¥ OT4Q ‘opajoj,
‘oparog, jo £rsIaatun) ayy ‘soniewrayiepy jo waunreda( :(4ppay 'y 'V) ssauppo ruaumy

IyZyy OTHO “INAY ‘ALISYIAINA TLVLS IN3N ‘SOLLVWIHIVHW 10 ININLYV43a

0¥9=¢79 *dd ‘1767 ‘qi0g
MaN ‘ssarg STWapedy ‘7 *[oa ‘suorienby [enuaIayI(q [erteq jo uonnjog restrswny ‘sisi
“1PUD Jootiaunu 03 suoyvoyddo yjam K102y uoryourxosddy Uz synsas suwog ¢ 8
STLIH 8T U 7961
“[*N ‘s poomsr3uy ‘ITeH-991IUa1g ‘s1sApoup 2a1DIa11 X190 ‘efiep g pieysry -z
‘GYGT “rox
M3N ‘®as[ay) ‘suomounf joifazur Jo Aiosys joiausg Y1 U0 $9.in70377 ‘uoiifEp ) ‘9
. TSovH
£E MW "€96T “pog maN ‘uerpirusep ‘p¢ -joa “qae +1ddy pue amy ur sydessouopy o sa1Iag
IBUINUL ‘979 D1400 DAL D Jo suozounf fo uonpuixorddo Jo Koy ‘uewry -« g V¢
"60€=00€ “(0L6T) € 4102y, uorremIxX0Iddy [ * (00 4 ‘0] uz suonounf au3us urmy
189 07 uoyvuxosdd JDUo1yDY asyshqayy ‘eSrep -g PIeYSry pue snpieutsy ssjung -y
TTLGH
9€ YW "L96T ‘Y30 & maN ‘3‘3113A‘193U?Jd8 ‘€1 "10a ‘fydosorryg jemiepy ur sery 1afundg
‘spoyraw jvo1i0uwny puv Lioayy isuoyounf fo uonpwixosdd y ‘supreursyy Lung ¢
9ESOH GE YN €906 “(696T)
Z L1024y vonewrxoxddy [ ‘swajqoid uonINPU0S-103Y 01 Su011D217dd D punp (o + ‘0] U2 x-2
01 suonvuwixoiddo jouoivs asyshqayy ‘efiep *g -y PU® SnpIeutsp *5 ‘Apony of 4 7
V16 ‘9T N ¥<$6T ‘Yo x @3N ‘ssaig Slwapedy “suorrounf adnquy “if ‘seoq *g I R |

SHONTYI 439

(s, 2*1)g2d 7q° oo u
dNd N ¢
. /1 . >u/;(” Q\;) wrp

183 9 watosyy, jo suonidunsse ay3 Iapun pasoid oy osye pue (8°1) ur Wiy

4q wry paserdas [(1eadde o1) (o0 ‘0] @z suorroun] snjus wrviizs og uo1rvwIxoiddny
n2qsAqagry jpuorivs oy uoyInqiiuoo ) Appay A[ausssy *Jooud ur pappy

"OPBW 3q OS[B UBD (o0 + ‘oo ~) U0 suoriduny

sndreve-rsenb o3 § W3IOSY], JO SUOTSUIIXD Je[Tug *¢ Wwa103Y ], Jo 2SNEI3q UOTIOUN]

ST3U3 UE 031 Popu2IxXad 9q UBd (x)/ UaY) ‘oo ¥ SE papunoq st alu/I”’u orner

243 3eq1 yons st (7°%) ur 0:1{91” Souanbas sy g “([eLe d ¢] "§2) ursisurag jo

anbruysa1 sys Fursn ‘srduexs 104 "¢ wal0ay] o3 paridde A130amp 3q ued syealal
-Ul 93101y UO suonouny orikTeue-rsenb 10§ SINSSI UMOUY I3YI0 IBYI YIewsI 54

THO [+ 0lvD 3 / oy

‘0 <+ yoea 105 spjoy SIQI sy ‘[ ‘0] 5 x [[e 10} (x)ZS = (x)IS usyl “[2 ‘0] 0 [¢ ‘v]

Ieu;:uyqné 13doid swos uo (x)zé’ = (x)‘? A [4 ‘0] vo orif[eue-1senb a1e (x)zx?

pue (x)lg J¥ "' ‘0 <4 yoes 10§ [4 ‘0] uo onifyeve-rsendb st / ey sargdur (S¥)

jo Larpenbosur ay3 ‘([ec€ +d <] “32) urarsurag *N °§ jo nsar umouy-1[am e £q ‘ing

Ib Hu,  Yu

—- Yu N TP R y L3 %o D )
.(J)I,q <¥ t____/___> [ O] 7”/ . u.D“ jur = (1 o /) q (g ?)
() ue
1eqy sorrdwr gorym
; — 0] Yu , 3
Wiy Ty ey L bwlur s WO Ty (v'%)

S81 NOILVAIXOYdddV TVNOILVY ATGHSA9THD L6t




