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THE ROLE OF INTERPOLATION AND APPROXIMATION THEORY
IN VARIATIONAL AND PROJECTIONAL METHODS FOR
SOLVING PARTIAL DIFFERENTIAL EQUATIONS*

Richard S.VARGA
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It is first shown for linear elliptic homogeneous boundary value problems how Galerkin methods for such prob-
lems lead naturally to questions concerning approximation-theoretic results for finite-dimensional subspaces. Using
the theory of monotone operators, it is shown that the answers of such approximation-theoretic results apply to
more general nonlinear boundary value problems. Then, a brief study of spline interpolation and approximation is
coupled to the Galerkin error bounds. Included are recent results from Fourier transform methods.

1. HISTORY

It is quite interesting to look back at the theoretical
developments in the numerical solution of, say, ellip-
tic boundary value problems in the period 19551965,
and to contrast them with today’s developments.
First of all, it may come as a bit of a surprise that a
good bit of the research in that area in the period
19551965 largely centered about finite difference
methods for second-order linear differential equations
in two spatial variables. The reason for this is simple
enough. The basic tool for an error analysis used
then was the Gerschgorin-Collatz monotone matrix
technique (cf. Collatz [8, p.348] and Forsythe and
Wasow [10, p.283}), in which a nonsingular discrete
matrix 4, having all the entries of its inverse non-
negative, i.e., 4;" > 0, played a central role. This
technique then essentially restricted attention to
problems with positive Green’s functions. Nonlineari-
ties were difficult to treat by this approach, and
higher order elliptic equations, such as eighth-order
elliptic structures problems, were seldom theoretically
considered.

Early in the 1960Q’s, however, a renewed interest
at General Motors in using spline functions, first
pioneered by Schoenberg [13] in 1946, grew, and
the results of this effort prompted numerical analysts
to reconsider the classical Rayleigh-Ritz-Galerkin pro-

jectional methods for elliptic boundary value problems.

This was the first key ingredient for the current devels
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opments in this area of numerical analysis: the use of
piecewise-polynomial or spline subspaces. The next
key ingredient was the development of a new (and
more general) type of error analysis which wasn’t re-
stricted to linear second-order problems. This new
error analysis, to be described in sects. 3,4, strongly
focuses attention on approximation-theoretic results
for spline functions, and is in fact the motivation for
the title of this talk.

2. LINEAR ELLIPTIC PROBLEMS IN 2 C R”?

For simplicity, consider the following linear elliptic
homogeneous boundary value problem in a bounded
region £2 in R whose boundary 9} satisfies a re-
stricted cone condition (cf. Agmon |1, p.11]):

Lulx) =fx), x€Q,
DPu(x)=0, x€03Q, foral Bl<m—1, (2.1)
where
Lu()= 25 (~1)2D* {p(x)D%u(x)} .(2.2)
lalsm

Here, we are using the usual standard multi-index no-
tation (cf. Yosida [18, p.27]), i.e., a = (a; 05,...,0,)
is an n-tuple of nonnegative integers, and

aa1+“2+~~-+0‘n

Do =

o,y Q, ap
axl ax2 an
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denotes the differential operator of order

n
1045209‘

=1

If CS’(Q) is the space of all real-valued functions

u(x) = u(x,x,....x,,), infinitely differentiable in {2
with compact support in £, i.e., u(x) vanishes iden-
tically outside some compact set contained in £2, then
for any nonnegative integer s,

Hull%vs(mE 2. HDO‘uH%Z(m, where
’ arf<s

Wl o= Jo? dx. 23)
Q

defines a norm on Cj(£2), and the completion of
C(£2) in this norm serves to define the Sobolev space
W%(Q) With this notation, we assume that the coeffi-
cients p, (x) in (2.2) are real-valued and bounded in
Q, the closure of £, and that the bilinear form a(u,v)
associated with .2, defined by

a(u,v) = E fpa Dy D dx |
joa<Sm £2

U vE ﬁ/g“‘(sz) , 2.4

is Mn/ﬁn (R")elliptic,i.e., (cf. Céa [6]), there is a con-
stant p > 0 such that

a(u,u) = pllull? forall u €WE(Q). (2.5)
2

()

Then, u is said to be a generalized solution of (2.1) if

a(uv) = ffv dx forall ve I/T/?(Q) . (2.6)
Q

Let Sy be any finite-dimensional subspace of IX/T( 2).
Then, 1, is analogously said to be the Galerkin ap-
proximation of the solution of (2.1) in Sy, if

a(uy,wi) = ffwkdx forall w,€8,. (2.7)
Q

The existence and uniqueness of the solutions of (2.6}
and (2.7) poses no problems, as we shall see in sect. 3.
We now obtain an error bound for the difference
 — u. From (2.6) and (2.7), it follows from the defi-
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nition of a(u,v) in (2.4) that
a(up—uwy) =0 forall wp €5 . (2.8)

Thus, from (2.5), (2.8), and the boundedness of the
p,, in €2, it also follows for some positive constant K
(independent of u and Sy ) that

pfiukﬂuli%‘/;ﬁ(m <a(uy—vhup—u) = a(ug—uwp—u)

< Klfue—ull fwg—ull

Win) W)

forall w, €8y, .
Consequently, with K" = p 1K,

<K' inf [twy— ]

4= lly () Wi ESk

W)

This inequality obviously focuses attention on the
approximation-theoretic questions of how

inf  {lw,—ul depends on the smoothness
Wi ES) {lwg HW%’”(Q) p

of the generalized solution u, as well as on the choice
of the particular finite-dimensional subspaces Sy of
W3'(). These questions will be considered in sect. 4.
The next section shows that the basic inequality of
(2.9) can be obtained for nonlinear differential equa-
tions also.

3. MONOTONE OPERATOR THEORY

In this section, we discuss briefly the theory of
monotone operators, due to Zarantonello [19],
Browder [4], and Minty [12]; see also [7]. Let H be
a real Hilbert space with inner product (-,"); and
norm ||*||g, and let 7 be a (possibly nonlinear) map-
ping from H into A which satisfies the following hypo-
theses:

(i) Tis finitely continuous, i.e., for any finite-dimen-
sional subspace ;. of H and any sequence
{“n}:ﬂ of elements of Hj, which converges to an
element u € H, then the sequence {(Tu, 0y} n=1
converges to (Tu,v)y for any v €,

(i) T is strongly monotone, i.e., there exists a positive
constant p for which

pllu—vliy < (Tu-Tou—v)y forall u,v€H. (3.1)

Consider then the problem of determining 4 € H such
that

.(2.9)
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Tu=0, (3.2)
ie.,
(Tu,v); =0 forall veH. (3.3)

The abstract Galerkin method, corresponding to

Tu = 01in (3.2), consists in finding a u;, in H), where
H, is any finite-dimensional subspace of H, which
satisfies

(Tuk,U)H =0 (34)

forall vEH, .
It is known (cf. Browder [4]) that if the mapping T

is finitely continuous and strongly monotone, then
there exists a unique u satisfying (3.3), and moreover,
for any finite-dimensional subspace H), of H, there is
a unique u;, satisfying (3.4).

To study the convergence of the Galerkin approxi-
mation uy, in Hy to the solution u of (3.2), we now
state a result of [7].

THEOREM 1. Let the mapping T: H = H be finitely

continuous, strongly monotone, and bounded, i.e.,

T maps bounded subsets of H into bounded subsets of

H.If u is the unique solution of Tu = 0, and u,, is its

unique Galerkin approximation in Hy (cf. (3.4)), then

there exists a positive constant K such that
lu—up iy <K inf |lu—wlly, (3.5)

wysH

for any finite-dimensional subspace H;. of H. More-
over, if T is Lipschitz continuous for bounded argu-
ments, i.e., given M > 0, there exists a constant K(M)
such that

1 Tu—Tolljy <K M)l lu—vllg

for all u, veH with |fully, (lly <M, (3.6)
then there exists a positive constant K such that
Hu—uplly <K inf {lu—wglly , 3.7

WkEHk

for all finite-dimensional subspaces H;, of H.

The whole point of our discussion here on mono-
tone operators is that the inequality (3.7) is a general-
ization of the inequality (2.9), and this in fact allows
us to treat nonlinear versions of the homogeneous
boundary value problem of (2.1). Specifically, if £ is
as before a bounded region in R”, n 2= 1, whose bound-

R.S. Varga, The role of interpolation and approximation theory 1187

ary 0£2 satisfies a restricted cone condition, consider
the 2m-th order nonlinear boundary value problem:

20 (=1 DELA (xu(x),..Du(x)} =0, xe€Q,
lal<m (3.8)
Diy(x)=0, x€09Q, foral |Bl<m—1,

where 4, (x,u,...,.D™u) denotes a function which can
depend upon x and any DYu with |y[ < m. Associated
with this nonlinear boundary value problem of (3.8)
is the quasi-bilinear form a(u,v), the analogue of (2.4),
defined by

a(u,v) = 27 an(x,u,...,Dmu) - D%dx ,
lo[<m
(3.9)
u, v € WHQ).

With suitable growth conditions on the functions 4,
it can be shown [7] that for any u € Wm (), there
exists a positive constant K = K, dependmg onu,
such that

la(u,v) < K, - [l for all v & W (€2).(3.10)

W)
Asa consequence of (3.10), the quasi-bilinear form is,
for each ue Wm (£2), a bounded linear functional in v
on W2 (). As such the Riesz Representation Theo-
rem [18 p.90] gives us that there is a unique
Tu € W (£2) such that

for all v€ WI (),

a(u,v) = (Tu,v) 3.1H)

W)
27 (Dw DW); (o) denotes
lafsm,
the usual inner product on W (£2). This then defines
an abstract nonlinear mapping 7 from Wm (2) into
W5 (S2). If this mapping T, defined through (3.11),
satisﬁes all the hypotheses of theorem 1, then of
course the error bounds of (3.5) and (3.7) are valid,
and, as shown in [7], there are interesting cases of
nonlinear boundary value problem (3.8) for which
the conclusions of Theorem 1 are valid.

where (v, W)Wm(SZ)

4. ERROR BOUNDS FOR SPLINE APPROXIMA-
TION

Splines have certainly grown in popularity since
Schoenberg’s fundamental results [13] in 1946, and
some 600 papers have now been written on splines
and their applications. To give some of the current
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known error bounds for spline interpolation and ap-
proximation, we first partition the finite interval
[a,b] by means of A:a=xy<xy <..<xy=b.lf
= max (XX, = min (6 -xp), let

o<ien-1 LT o<isN-1 )
P_(a,b) denote all partitions A of [a,b] for which
n< o . Next, consider the m-th order operator

m

Lu(x)= 27 ¢(x) D u(x)
j=0

(4.1)

where ¢; € C/a,b),j=0,1,..,m, withc,(x)>38

> 0 for all x € [a,b]. Next, lét z be any (fixed) posi-
tive integer with 1 <z <m. Then, Sp(L,A,z), the
L-spline space, is the collection of all real-valued func-
tions w defined on {a,b] such that

LeLw(x) =0, forall x € (ab) — {x;}27, with

DFw(x;—) =Dkw(xt) for 0<k<2m-—1-1z,

0<i<N, (4.2)

where L* is the formal adjoint of L. It can be shown
that Sp(L,A,z) is a linear space, with Sp(L,A,z)
C W%m'z [a,b] (cf. [14]). In the important special
case L = D' | the elements of Sp(D™,A,z) are, from
(4.2), polynomials of degree 2m—1 on each subinter-
val of A, and as such are called polynomial splines.
We now discuss the possibility of interpolation of
given functions by elements in Sp(L, A, z). Given any

fecm=1 [gb],itis easy tosee (cf. [14]) that there is

a unique s € Sp(L, A,z) which interpolates f in the
sense that

i=0,1,.,2-1, if 0<i<N,
(4.3)

i=0,1,.,m-1,

Di(f—s)(x)=0,
D/(f—s)(a) =DI(f~s)(b)=0,

for which the following error bounds are typical (cf.
[16] and [17]).

THEOREM 2. Let f€ W% [a,b] with m <0 <2m.If
s is the unique element in Sp(L,A z) interpolating fin
the sense of (4.3), then

DI, [ap) S W5l <ETOT gy 5

(4.4)

foranyj=0,1,..,m.
We remark that the quantity o in Theorem 2 need
not be an integer; the interpretation of W4 [a,b] is then
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made through the use of interpolation space theory
(cf. [5]), yet another useful tool to numerical analysts
today.

More general forms of Theorem 2 are known, these
generalizations coming from more general (Besov)
spaces, more general types of interpolation, and more
genral types of differential operators. For a survey of
such results, see for example [17].

In particular, the inner inequality of (4.4) of Theo-
rem 2 gives us that

H a
wesit o Wl SKTT e gy - (49)
and the exponent of m can be shown to be sharp, i.e.,
it cannot be increased for the function classes con-
sidered. It is natural to ask when such optimal approxi-
mation holds in higher dimensions as well. This is the
topic of the next section. Note that the inequalities of
(4.4) and (4.5) then directly apply to the error estima-
tion of spline subspaces Sp(L, 4, z) in a Galerkin setting
for one-dimensional problems (n=1). In a completely
analogous way, these error estimates for spline inter-
polation can be applied also to tensor products of
one-dimensional problems.

5. FOURIER TRANSFORM METHODS

One of the significant difficulties in applying the
Galerkin method is the requirement of finding finite-
dimensional subspaces whose elements satisfy all
essential boundary data, (e.g., DPu(x) = 0 for all
x € 28 and all [B| <m~1 in (2.1} and (3.8)). There
are several ways around this. If one is given a bound-
ary value problem with Neumann boundary condi-
tions, then one has no essential boundary restrictions.
Similarly, in the case of problems with periodic
boundary conditions defined on hypercubes, or
problems defined on all of R”, both lead to prob-
lems in R for which there are no essential bound-
ary restrictions. The point is that one can then make
strong use of the tool of Fourier transforms, thus
following the route of differential equations theory.
We shall describe some recent penetrating results by
Strang and Fix [15].

Start with a fixed function ¢(x) € WE(R™) with
compact support (written ¢ € (WE(R™))q), i.e., ¢(x)
is identically zero for all

n

[x] = (2 x?)%

=1
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sufficiently large. If Z" denotes the collection of all
n-tuplesj = (7 j5,..../,,) of integers, then from the
single ¢, other functions, viz.,

o) =hPe( ), jEZT, xERM, (5.1)

can be constructed, where A is a positive parameter
with 0 <k < 1. From this single ¢, weighted sums

E w]’7 9]]7 (x)
]EZ 1

can be formed, and it is of interest to couple the ap-
proximation-theoretic behavior of such weighted
sums to properties of the single function ¢. This has
been done by Strang and Fix [15], and we state the
following result of [15]. For notation,

de)= [ e g(x) dx
Rn

(5.2)

denotes the Fourier transform of ¢.

THEOREM 3. Let ¢ € (W5(R™)). Then, the follow-

ing are equivalent:

(i) $(0) # 0, but D(2mj) = 0 for all 0 #j € 2,
lof < p;

(i) for any la| <p,

25 (i)
jezn

is a polynomial in 11, ..., f,, with leading coeffi-
cient Cr%*, C+# 0;

(iii) for any u € Wgﬂ (R™), there exist weights w]h
and constants ¢, and K, independent of &, such
that as 72— 0,

= 23 WG s ey < €1 il s oy
jezn
(5.3)

for 0 <s<p,with

h2 2
; <
]g%” |W] | K Hu“wg(Rn) .

The results of Theorem 3 have been used to prove
the following improved form of the inequality of
(2.9), now with §2 = R If the generalized solution u
of (2.6) is in WB*1(R"), with p + 1 >m, let the sub-
space §" of all sums of the form
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20 whehx),
jezn

where ¢ satisfies the hypotheses of Theorem 3. Then
[15], the Galerkin approximation #/ in §” satisfies

[u—ul|| < Kho||uf]

WiR™ wpHlgrn)
where 0 = min{p+1—s; 2(p+1-m)}. Results in other
norms have similarly been obtained (cf. [2]).

Finally, just as results from interpolation and ap-
proximation theory are used in an essential way in
the analysis of Galerkin methods, the same is true of
the least squares methods, recently investigated by
Bramble and Schatz [3]. Moreover, the idea of using
interpolation-and-approximation-theoretic results is
not confined just to elliptic boundary value problems;
recently again, they play an essential role in the anal-
ysis of parabolic Galerkin methods {cf. Douglas and
Dupont [9], Strang and Fix [15], and [17]).
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