Numer. Math. 20, 93—98 (1972)
© by Springer-Verlag 1972

On Asymptotically Best Norms for Powers of Operators
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Abstract. In the study of the successive overrelaxation iterative method for solving
large systems of linear equations, a frequently considered problem is the behavior
of the norm of powers of the successive overrelaxation matrix, %, both as a function
of m and of the given norm. Our main result is a rather natural necessary and sufficient
condition for the existence of a norm asymptotically best for a non-nilpotent matrix 4.
As a corollary of our main result, it is shown here that there is o asymptotically best
norm for the successive overrelaxation matrix %,,.

1. Introduction

If [€"] denotes the collection of all # X # complex matrices, and if # denotes
the collection of all vector norms on €*, the vector space of all column vectors
with # components, then as usual,

|A]y=sup{p(dx): p(x) =1}, Ae[C"], ¢e&
denotes the induced operator norm of 4 with respect to ¢, and
0(4) =max{|A|: 1 is an eigenvalue of A}

denotes the spectral radius of A. Then, given 4€[C"] and given ¢€Z the
sequence {|A4™|,}5-; can be formed, and of specific interest here is the asymp-
totic behavior, as m oo, of | 4™],.

Definition 1. A norm ¢p€F is asymptotically best for A €[C"] if, for every
yEZ, there exists a finite positive integer m () for which

[A™,=|4™], forall m=my). (1.1)

We remark that if o(4) =0, i.e., 4 €[C"] is nilpotent, then it is easily seen,
as a rather trivial case, that every norm in # is asymptotically best for 4.

Before proving our main result, we need to recall the followmg definition,
introduced by Householder [1].

Definition 2. A matrix 4 €[C"] is of class M if there exists a ¢ €F for which

| 4], =e(4). (1.2
Equivalently (cf. Householder [2, p. 47]), 4 €[C"] is of class M if and only
if, for every eigenvalue 4 of A with |1| =g (4), the number of linearly independent
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eigenvectors associated with 4 is equal to the multiplicity of 1. In other words,
the Jordan blocks, in the Jordan normal form for 4, corresponding to those ‘_,
eigenvalues A of 4 with |A|=p(4) are all 1 X 1 matrices.

2. Main Result

With the above definitions, we now prove

Theorem 1. For any 4 €[C"] with ¢(4) >0, there exists an asymptotically
best norm ¢ € for 4 if and only if 4 is of class M.

Proof. First, assume that A4 is of class M, so that there exists a peF for
which (1.2) is valid. Then, for any positive integer #,
_ 0" (A) =o(A™) =A™, <[4} =" (4),
ie.,

o(A™) =A™, forall m=1,2,....
Thus, for any ye& it follows that
[4™ ], =0(4™) =|4™|, forall m=1,2, ...,

showing that ¢ is asymptotically best for 4.

Conversely, assuming that A is neither nilpotent nor of class M , we shall
show that there is #o asymptotically best norm for 4. More precisely, we shall
show that, given any y €%, we can construct a norm ¢ €% for which (cf. (1.1))

|4y <] 4™|, for all m sufficiently large. (2.1)

To do this, consider first the special case where 4 €[C"], # > 1, with
A=AI+N, 1==0, (2.2)

where N is the strictly lower triangular matrix given by N =[e, e, ..., e, 0],
with e, denoting 4-th column vector of the # X » identity matrix. Then, given
any pe#, let K, ={xeC": y(x) <1} denote its unit ball. Since K, and aK,,
o >0, induce the same operator norm, we may assume that K, is normalized so

#n
that chKwE{mzigl xe,€C": [{a:]]w—zgg]xi[gq}. Let a=ae;, a >0, be

the vector for which v (@) =1. Since K,C K, then evidently 0 <<a=<1. Now,
choose & >0 such that 0<é&"'<a=<1. Next, we recall (cf. Householder [2,
p. 41]) that for any nonsingular Pe[C"] and for any g€ with unit ball K,
then K, =PK,={yeC": y=Px for some x£cK,} is the unit ball for a norm
7€% and moreover, as 7 (&) = ¢(P~1 x), then

“A ”r = ” P14 P“a' (2.3)

In particular, defining We[C"] by W =diag{1, ¢, &2, ..., &'}, then as W is
nonsingular, K,=W-K _ defines the unit ball for a norm ¢e# We see from
these definitions that K,c K, C K,, so that

¢ @) =|x|, <w(@®) forall xeC” (2.4)
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Next, from (2.2), we see that

n—1
A" =(I +Ny*= 3 (’;‘) MENE =m 1,
=0
and applying (2.3) simply gives
n:l m _
4ty =W amw, =S () 23)

On the other hand, since | 4™, =sup{y (4™#): y () =1}, and since y (@) =1, then
14", =y (4™a) | A™al],,, (2.6)

the last inequality following from (2.4). A short calculation shows from the

definition of a that |4"a|, =a (n ﬁ 1) |A]"="+1 for all m sufficiently large, i.e.,
from (2.6),

4™, =a (n " 1) |A|*=*+ for all m sufficiently large. 2.7)

Thus, as 0<&""'<a, a comparison of (2.5) and (2.7) gives us that (cf. (2.1))
[4™],<[A™], for all m sufficiently large. (2.8)

For the general case, assume now that 4 €[C"] is an arbitrary matrix which
is neither nilpotent (i.e., p(4) >0), nor of class M. Because of (2.3), there is
no loss of generality in assuming that 4 is in Jordan normal form, ie., 4 =
diag [ /1, Ja» .-+, J,], where each of the square submatrices J, is either a 1 x 1
matrix or a p; X p,; matrix, p, >1, of the form

i 0 ... 0 0

1 A ... 00
7= :\\: . (2.9)
0 0 ... 1 A

Assuming 4 =diag [y, ..., J,] means that the vector space €* can be de-
composed into 7 pairwise disjoint subspaces W,1=i<7, ie,

C=WOW® . OW, (2.10)

and each W, is invariant under 4.

Given the decomposition of €* in (2.10), let P, denote the projection mapping
of €" onto W, and let T, denote the natural injection mapping of W, into C*,
whereby appropriate zero components are simply added to an ;€ W, to define
an analogous vector in €*. Then,

Wt(wz)EW(Ttmt)’ w'LGW;: 1 éié?’,

defines a norm on W,. Since W, is a subspace of C" and since 4 on W, is given by
J:, then for each ¢,

| 4™, =sup{yp(4”®): p(®) =1} Zsup{y(4™ T;x,): ;€ W, and p(T; ;) =1}
=sup{y; (Ji'®,): ®;€W; and p;(x;) =1} =| ]|,
7*
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where [ [,,, denotes the induced operator norm on W, with respect to the norm ;.
As this inequality is valid for each 7, 1 <4 <7, then

147}, = max {| 77],}. (2.11)

1<isr

We now make use of our previous analysis for matrices of the form (2.2). If
Ji1s either a 1 x1 matrix or Ji1s given by (2.9) with 4, =0, then define the norm
¢, on W, to be just the Z_-norm on W. 1If J, is given by (2.9) with 2; =0 and
$: >1, we can select the norm ¢; on W, so that (cf. (2.8))

L7216, < T2}, for all m sufficiently large. (2.12)

With these norms ¢, on W, 1 <; <7, we then define the norm ¢ on C” by
o (x) = max ¢;(P,®) forall xeqn (2.13)
Then, since 4 is assumed to be neither nilpotent or of class M/ , there is at least
one J; from 4 =diag[J,, Jo --., J,] for which (cf. (2.9)) 0<|2;/=0(4) and for

which $,>1. It then easily follows from (2.11) and (2.12) that the norm ¢ so
defined on C* by (2.13) is such that

4], > 4™, for all sufficiently large,

which shows that no norm on C"is asymptotically best for 4. Q.E.D.
The following corollaries are direct consequences of Theorem 1 and its proof,
Corollary 1, If A€[C"] is of class M » then there exists a norm ¢ €Z for which
o(4”) =[am|, =[4[} forall m=1, 2, (2.14)

Corollary 2, If  is any complex polynomial and if 4 €[C"] is similar to a
diagonal matrix, then there exists a norm ¢ €# which is asymptotically best for

p(4).

Corollary 3. If A ¢ [€"] is neither nilpotent nor of class M » then for any e
there exists a ¢ € for which

4™, <|am l, for all m sufficiently large. (2.15)

If de[e*], n> 1, is of class M, we remark that there are infinitely many
norms ¢ €% for which (2.14) is valid.

3. Application
If Ge[C"] is a positive definite Hermitian matrix of the form

o[ B

~B, 1, J =I-—B, (3_1)

where I, and 7, are respectively 7 X 7 and (n—7) x (n —7) identity matrices,
1<<7 <, then the well-known successive overrelaxation matrix £, is defined by

%:(I—wl,)‘l{wl,*—}-(i —w)I}, (3.2)
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where o is the relaxation factor and where L €[C"] is the strictly lower triangular
matrix determined from (3.1) by

L]0 o
=15 ol
It is also well known that
min o(%,) = (L) =0, —1, (3-3)
where w, = Tiﬁ%ﬁ with B€[C"] being defined from G in (3.1).

Of late, there has been renewed interest in the behavior of the norms of %
as m—>oo. In particular, it is known (cf. Young [7, p. 248]) that

Lol =7 {m (r=3 %) + [P (rF 42 41478, m=1,2,..., (3.4)

where » =w, —1=¢(%,,), and where ¢, (€)= (x*x)* is the usual Ly-norm on C".
Similarly, it has been recently shown (cf. Young [7, p. 258] and Young and Kin-
caid [8]) that

[ Zalg, =7 {m (= =) - (2 (r =2 =2 1), m=1,2,..., (3.5)

where again 7=w,—1=0(%,), and where ¢,(®)= ¢, (Gtx)=(x*Gx)? is a
norm on €”, since G is by hypothesis a positive definite Hermitian matrix. It is
clear from (3.4) and (3.5) that

1L lse<|Znls, forall m=1,2,....

These above investigations, as well as those of others (cf. Kincaid [3, 4, and 5J),
could be interpreted as having, in addition to other objectives, the goal of finding
norms which are asymptotically best for %,,. As the next corollary shows, this
goal simply cannot be attained.

Corollary 4. Given the matrix G of (3.1), assume that G is Hermitian and
positive definite, and that ¢(B)>0. Then, for any yp€ % there is a ¢p€F for
which

Lo lg<|Zos], for all m sufficiently large. (3.6)

Proof. The assumption that ¢(B) >0 implies from (3.3) that %, is not nil-
potent. Further, as it is known (cf. Varga [6, p. 111] and Young [7, p. 238))
that %, is not of class M, then the inequality of (3.6) follows directly from
Corollary 3. Q.E.D.

We finally remark that the result of Corollary 4 is also valid for the more
general case of the block successive overrelaxation method in which the matrix 4
is a consistently ordered p-cyclic matrix, p =2, for which the eigenvalues of
B?, B being the associated Jacobi matrix, are assumed to be real, and nonnegative,
with 0<p(B) < 1. The proof analogously depends on the fact that the matrix
&£, is again neither nilpotent or of class M (cf. Varga [6, p. 111)).
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