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1. INTRODUCTION

If &, is the family of all vector norms on €, i.e.,
F 1 = {¢: ¢ is any vector norm on "}, (1.1)

and if 4: C* — " is any (bounded) linear transformation, i.e., 4 € [C"],
then it is very well known (cf. Householder [1, p. 46]) that

int{][4]|: ¢ € 71} = p(A), (1.2)

where ||4||, = sup,,,<; $(4x) denotes the operator norm of 4 with respect
to the vector norm ¢, and

p(4) = max{|2,|: A, is an eigenvalue of 4}

denotes the spectral radius of 4. On the other hand, if, for the canonical
basis {¢;}7_; in €, F, is the particular family of vector norms on € of
the form

Fy = {qS there exist positive real numbers ¢, ¢,,. . ., ¢, such

g=1 1<i<n

that forall x = D ce, in €", (%) = max {l%!/?‘%}}, (1.3)
it is less well known [cf. Eq. (5.3)] that

inf{[[4]]o: ¢ & F3} = p(l]), oy
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where if 4 = (a;,,) is the matrix representation of 4 €[€»], relative to
the canonical basis {e;}7_,, then |4][€[C*] is defined analogously by
|4] = (|a;,s]). The expression in Eq. (1.4) is in fact an interesting con-
sequence of the Perron-Frobenius theory of nonnegative matrices.

The expressions of Eqgs. (1.2) and (1.4) are similar in that each, loosely
speaking, states that the infimum of the norm of a fixed element 4 in
[€"] over a family of norms is related either to the eigenvalues of 4, or to
the eigenvalues of a B € [€"], in some way associated with 4. One aim
here is to obtain a generalization of Eqgs. (1.2) and (1.4) for arbitrary
families # of norms. In so doing, we are naturally led to problems which
connect with the theory of invariant cones and with the Perron-Frobenius
theory of nonnegative matrices.

2. A GENERALIZATION

Let F be any fixed (finite or infinite) nonvoid family of vector norms
on €7, n > 1, and let 4 be a fixed element in [€*]. Relative to & and
A, set

9 _(4) = (B (0 [Blls < [l4]ls Yé< F. 21
This set is, of course, nonempty since it contains w4 for any complex

number o with |o| < 1.
We now prove

TaeoreM 1. For any arbitrary family of norms & on C", and for an
arbitrary A e [C"],

inf{|[A]ly: ¢ € Z} = sup{p(B): Be 2 _(A)}. (2.2)

In particular, theve is a Bel g,‘(A) such that
int(|| A, é € ) = p(B). 2.3

Proof. Since it is classical (cf. Householder [1, p. 45)) that |[D]|, =
p(D) for any D € [€"] and any vector norm ¢ on €7, it follows from Eq. (2.1)
that

4]l = p(B), VdeF, VB eﬁﬁ,(A),

&
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from which it is evident that
inf{l[Allo: ¢ € 7} > sup{p(B): Be 2 _(4)).

Toshow that equality holds in the above inequality, let # be the nonnegative
real number defined by # = inf{||4||,: ¢ € #}, and consider B = nl. By
definition, ||B||, = 5 < |4]|, for all ¢ € #, so that B ng;(A). But, as

p(B) = 5, the desired results of Egs. (2.2) and (2.3) follow immediately.
Q.E.D.

3. CHARACTERIZATION

With respect to the equality in Eq. (2.2), it is natural to ask if there
is a ¢ € F such that
[4]]s = inf{]|4]],: e 7}, (3.1)

The answer to this question is in general negative, as we shall see. However,
what we seek now is a characterization of A e [C"]) and a norm ¢ in & for
which Eq. (3.1) is valid.

For notation, let K, denote the unit ball in ¢* for the particular vector
norm ¢ in #, ie., K, = {xe 0 $(x) <1} Clearly, K, is a closed,
bounded, convex, and balanced set with interior points in €*, for each
¢ e F. Forany ¢ e.F and for any A4 € [C"], we have by definition that

B: Ky — ||4]|sK,, VB ng;_(A),
or equivalently, if BK, = {ye (": y = By for some x & K,}, then
BK, C ||4]|:K,, VB le(A).

Since ||4[|4K, is a balanced convex set in C", it is then evident that
the balanced convex hull of all BK,, for Bin 2 _(4), is in [|4]l,K,, ie.,
F

if conv{f) z\4)K,} denotes the smallest balanced convex set containing
&

all BK, for B in !}g:(A)’ so that

R m
conv{Q AV} = { 2 At m finite, each x, is in some BK A
= oy




252 RICHARD S. VARGA

with B in Q , and Z 1J (3.2)

then
conv{[)g;(A)Kd,} ClA|lKs  VEF. (3.3)
Next, for a fixed ¢ € F with unit ball K,, we define the unit ball of
e F, relative to ¢, by
o= (re 0 hln) <al,
where a, = sup{(x): ¢(x) < 1}. Clearly, K,CK,obut K, & (1 —&)K,?

for any 0 < & < 1, and K, is just a multiple of the usual unit ball for .
1t is clear from K, C K,? that

BK,c BE,C ||4l[,K,*,  VBeQ(4),

so that

conv{2 (4K} C ALK e F

Hence, as this holds for all s € #, then

COHV{Qy(A)Kw} c M {14]l Ky}
e F

Since

N 4K < [All6Ko,
veF

then from the above inclusion,

COUV{H(:)Q;(A)KQ c M {14]K.% < [|4][oKo- (3.4)
‘ peF

This is used in proving

TueoreM 2. For an arbitrary family F of norms on " and for an
arbitrary A € (€], the following velations are equivalent:
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(i) there is a € F such that
A|ly = inf{[|A]]y: e F}; (3.5)
(i) there is a ¢ € F such that

convi@ _(A)K,} = ||A[loKs; (3.6)

(iil) thereis a ¢ € F such that K, & (1 — e)K,? for any 0 <e <1, and

4]l6Ks = M {|4]1,K,%}. (8.7)
weF

Prooj. Assuming (i), then ||4||, < ||4]|,, Ve Z. If B =||A||,- I,
then by definition, E’E.Qg:(A), and as such, BK‘chonv{Qg;(A)Ktp}.

Thus,
416K C conviQ (A)K o} € [|4 55,

the last inclusion following from Eq. (3.4}, i.e.,

4]l K, = conv(@ (4K},

and (i) implies (ii). Assuming (ii), (iii) follows from Eq. (3.4). Next,
assuming (i), it follows from (3.7) that ||4||,K, < ||4]|[,K,%, Ve Z.
Butas K, K,? and K, ¢ (1 — ¢)K,° for any 0 < & < 1, it is clear that
|4]l, < ||4]]y for any e ZF, ie., ||4]], = inf{||4||,: e F}, and (iii)
implies (i). O.E.D.

COROLLARY. Given a family F of norms on C", assume that 4 € [C"]
satisfies one (and hence all) of the relations (3.5)—(3.7). Then, for any

BE‘Q%(A) with p(B) = inf{||4]|,: y€ F}, each eigenvalue A; of B with
|4;| = p(B) ts such that the number of linearly independent eigenvectors
belonging to A; is equal to the multiplicity of A; for B, i.e., the Jordan block
associated with 1, in the Jordan normal form of B is diagonal.

Proof. First, wenote from Theorem 1 that theset of matrices BeQ gr(A>
with p(B) = inf{||4||,: ¢ € F} is not empty. Next, as p(B) < ||B||, and
as ||B|ls < ||4}|, because B e.ng_(A), then the assumption that [|4]|, =

inf{||4]||,: ¢ € Z} gives us that p(B) = ||B||, for every such B eéﬂ.(/l),
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and the eigenvalue and eigenvector properties of the Corollary follow from
a well known result of Householder (cf. [1, p. 47]). Q.E.D.

As a remark, consider the particular family 4 of norms of Eq. (1.1).
For any A € [€"], we know from Eq. (1.2) that

p(d) = inf{|[As: ¢ € F1}-

Suppose that 4 has an eigenvalue A with || = p(4) for which the Jordan
block associated with A in the Jordan normal form of A is no¢ diagonal.

Then,as 4 e Q (A) does not satisfy the conclusions of the above corollary,
F

we obtain the known result (cf. [2]) that

|4l > int{||4][,: p€ F 1} = p(4), Ve Fy,

i.e., Eq. (3.1) cannot hold for any ¢ € .

4. CONNECTIONS WITH CONES

For an arbitrary family & of norms on €", and an arbitrary but fixed

A € [C"], choose any B e 97(14) for which

p(B) = int{||4]|y: $ & F}. (1)

Next, by way of normalization, choose any eigenvalue 2 of B with |4 =
p(B), for which the Jordan block associated with 4 (in the Jordan normal
form) is maximal in size, and rotate 4 into p(B), ie., if Bx = Ax where
x # 0 and exp(if) A = p(B), then Bx = p(B)x where B = exp(if) B is
also an element of g:(A)‘ Thus, we are considering all B EQ?(A) for

which

1)
(i)

p(B) = inf{||4||,: ¢ € Z#} is an eigenvalue of B;

the maximal Jordan block associated with p(B) in the
Jordan normal form of B is no smaller than the Jordan

block of any eigenvalue » of B with |»| = p(B). (4.2

~

Tt is interesting to note that the particular matrix B = - I where 7 =
inf{||A||,: ¢ € F} trivially satisfies the conditions of (4.2), and is, in

addition, a real matrix. Thus, for any real B € Q %(A) satisfying Eq. (4¢.2),
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there is (cf. Vandergraft [3, Theorem 3.1]) a real solid cone X5 in real
Euclidean space E™ for which B: A — X 5, and consequently [3],
contains an eigenvector corresponding to p(B). We state this as

THEOREM 3. For an arbitrary family F of norms on C", and an
arbitrary A €[], theve exist B e g;(A) satisfying Eq. (4.2), and hence,

for each such real B, theve is a real solid cone A gin E™ for which B: Ay — A 4,
and Ay contains an eigenvector of B corvesponding to p(B).

It is interesting to note that if A € [€*] maps a real solid cone 2" in
En into itself, i.e., A: A — A, then it is known [3] that p(4) is an eigen-
value of 4, and that (4.2ii) holds with B = 4. Next, it is always possible
to choose a family & of norms on [€*] for which

p(4) = inf{[4]},: ¢ < 7).

For A and this family &%, (4.2) is evidently satisfied with B = A4, and
Theorem 3 regenerates the cone property of A.

5. AN EXAMPLE

To illustrate some of the above results, consider the particular family
ZF, of norms on (" given in Eq. (1.3). For s € #,, we associate via Eq.
(1.3) with ¢ n positive numbers sy, i, . . ., i, and write b~ (ifiy, o, . - -, ).
For a fixed 4 € [C"], it is easy to verify that

14]ly = max | 3 a1 <i < } 5.1)

where A = (a; ;) is the matrix representation of 4. Note that the norm
||[4]], depends only on the moduli |a; ;| of 4 = (a, ;). Because of this,
it |4] = (|aq 4]) € [0"], then |4]

el 7 (4), and we have as a well known
2

consequence of the Perron-Frobenius theory of nonnegative matrices (see
[4, p. 32] for the irreducible case) that

p(l4]) = inf{max ‘inE \dzg‘(lﬁa/l/lz):I B >0,0=1,2,..., n} , (6.2)

1<i<n | j=1

from which it follows from Eq. (5.1) that [cf. Eq. (1.4)]

pllA]) = int{]ld]ly: e #3}. 5
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Moreover, it is also known from the Perron-Frobenius theory of non-
negative matrices that if |A4| is drreducible, then there exist n positive
numbers ¢;, ¢ = 1, 2,.. ., n, such that (cf. [4, p. 32])

#n

p(lA]) = D las|(pslps) forall @ =1,2,..., 2, (5.4)
i=1

so that p(|4]) = ||4]|, where ¢ ~ (¢4, ¢s,. .., $n) € Fo. In this case, we
have that

p(lA]) = ||4llo = inf{][4]]s: e Fs}. (5.5)

In this irreducible case, one can draw a stronger conclusion about |4| than
that given in the Corollary of Theorem 2, i.e., that p(|4]) is a simple
eigenvalue of |4|. However, it is easy to see that Eq. (5.5) can hold for
certain reducible matrices, such as

3 0 0
=10 2 1}
0 1 2
for which p(|4|) is not a simple eigenvalue of |4].
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