On a Connection between Infima of Norms and Eigenvalues of Associated Operators*

RICHARD S. VARGA Kent State University Kent, Ohio

1. INTRODUCTION

If \mathcal{F}_1 is the family of all vector norms on \mathbb{C}^n , i.e.,

$$\mathscr{F}_1 \equiv \{\phi \colon \phi \text{ is any vector norm on } \mathbb{C}^n\},$$
 (1.1)

and if $A: \mathbb{C}^n \to \mathbb{C}^n$ is any (bounded) linear transformation, i.e., $A \in [\mathbb{C}^n]$, then it is very well known (cf. Householder [1, p. 46]) that

$$\inf\{||A||_{\phi} \colon \phi \in \mathscr{F}_1\} = \rho(A), \tag{1.2}$$

where $||A||_{\phi} \equiv \sup_{\phi(x) \leq 1} \phi(Ax)$ denotes the operator norm of A with respect to the vector norm ϕ , and

$$\rho(A) \equiv \max\{|\lambda_i| : \lambda_i \text{ is an eigenvalue of } A\}$$

denotes the spectral radius of A. On the other hand, if, for the canonical basis $\{e_j\}_{j=1}^n$ in \mathbb{C}^n , \mathscr{F}_2 is the particular family of vector norms on \mathbb{C}^n of the form

$${\mathscr F}_2 \equiv igg\{ \phi \colon ext{there exist positive real numbers } \phi_1, \, \phi_2, \dots, \, \phi_n ext{ such }$$

that for all
$$x = \sum_{i=1}^{n} c_i e_i$$
 in \mathbb{C}^n , $\phi(x) = \max_{1 \leqslant i \leqslant n} \left\{ |c_i|/\phi_i \right\}$, (1.3)

it is less well known [cf. Eq. (5.3)] that

$$\inf\{||A||_{\phi} \colon \phi \in \mathscr{F}_2\} = \rho(|A|),\tag{1.4}$$

 $[\]mbox{*}$ Research supported in part by the Atomic Energy Commission under Grant AT(11-1)-2075.

[©] American Elsevier Publishing Company, Inc., 1973

where if $A=(a_{i,j})$ is the matrix representation of $A\in [\mathbb{C}^n]$, relative to the canonical basis $\{e_j\}_{j=1}^n$, then $|A|\in [\mathbb{C}^n]$ is defined analogously by $|A|=(|a_{i,j}|)$. The expression in Eq. (1.4) is in fact an interesting consequence of the Perron-Frobenius theory of nonnegative matrices.

The expressions of Eqs. (1.2) and (1.4) are similar in that each, loosely speaking, states that the infimum of the norm of a fixed element A in $[\mathbb{C}^n]$ over a family of norms is related either to the eigenvalues of A, or to the eigenvalues of a $B \in [\mathbb{C}^n]$, in some way associated with A. One aim here is to obtain a generalization of Eqs. (1.2) and (1.4) for arbitrary families \mathscr{F} of norms. In so doing, we are naturally led to problems which connect with the theory of invariant cones and with the Perron-Frobenius theory of nonnegative matrices.

2. A GENERALIZATION

Let \mathscr{F} be any fixed (finite or infinite) nonvoid family of vector norms on \mathbb{C}^n , $n \geqslant 1$, and let A be a fixed element in $[\mathbb{C}^n]$. Relative to \mathscr{F} and A, set

$$\hat{\Omega}_{\mathscr{F}}(A) \equiv \{ B \in [\mathbb{C}^n] \colon ||B||_{\phi} \leqslant ||A||_{\phi} \, \forall \phi \in \mathscr{F} \}. \tag{2.1}$$

This set is, of course, nonempty since it contains ωA for any complex number ω with $|\omega| \leq 1$.

We now prove

Theorem 1. For any arbitrary family of norms \mathscr{F} on \mathbb{C}^n , and for an arbitrary $A \in [\mathbb{C}^n]$,

$$\inf\{||A||_{\phi}\colon \phi\in\mathscr{F}\} \,=\, \sup\{\rho(B)\colon B\in \hat{\mathcal{Q}}_{\mathscr{F}}(A)\}. \tag{2.2}$$

In particular, there is a $\hat{B} \in \hat{\Omega}_{\infty}(A)$ such that

$$\inf\{||A||_{\phi} \colon \phi \in \mathscr{F}\} = \rho(\hat{B}). \tag{2.3}$$

Proof. Since it is classical (cf. Householder [1, p. 45]) that $||D||_{\phi} \ge \rho(D)$ for any $D \in [\mathbb{C}^n]$ and any vector norm ϕ on \mathbb{C}^n , it follows from Eq. (2.1) that

$$||A||_{\phi} \geqslant \rho(B), \quad \forall \phi \in \mathscr{F}, \quad \forall B \in \hat{\Omega}_{\mathscr{F}}(A),$$

from which it is evident that

$$\inf\{||A||_{\phi}\colon \phi\in\mathscr{F}\}\geqslant \sup\{\rho(B)\colon B\in \hat{\mathcal{Q}}_{\mathscr{F}}(A)\}.$$

To show that equality holds in the above inequality, let η be the nonnegative real number defined by $\eta \equiv \inf\{||A||_{\phi} \colon \phi \in \mathscr{F}\}$, and consider $\hat{B} \equiv \eta I$. By definition, $||\hat{B}||_{\phi} = \eta \leqslant ||A||_{\phi}$ for all $\phi \in \mathscr{F}$, so that $\hat{B} \in \mathcal{Q}_{\mathscr{F}}(A)$. But, as $\rho(\hat{B}) = \eta$, the desired results of Eqs. (2.2) and (2.3) follow immediately. Q.E.D.

3. CHARACTERIZATION

With respect to the equality in Eq. (2.2), it is natural to ask if there is a $\phi \in \mathscr{F}$ such that

$$||A||_{\phi} = \inf\{||A||_{\psi} \colon \psi \in \mathscr{F}\}. \tag{3.1}$$

The answer to this question is in general *negative*, as we shall see. However, what we seek now is a *characterization* of $A \in [\mathbb{C}^n]$ and a norm ϕ in \mathscr{F} for which Eq. (3.1) is valid.

For notation, let K_{ϕ} denote the unit ball in \mathbb{C}^n for the particular vector norm ϕ in \mathscr{F} , i.e., $K_{\phi} \equiv \{x \in \mathbb{C}^n \colon \phi(x) \leqslant 1\}$. Clearly, K_{ϕ} is a closed, bounded, convex, and balanced set with interior points in \mathbb{C}^n , for each $\phi \in \mathscr{F}$. For any $\phi \in \mathscr{F}$ and for any $A \in [\mathbb{C}^n]$, we have by definition that

$$B: K_{\phi} \to ||A||_{\phi} K_{\phi}, \qquad \forall B \in \hat{\Omega}_{\mathscr{F}}(A),$$

or equivalently, if $BK_{\phi} \equiv \{y \in \mathbb{C}^n \colon y = Bx \text{ for some } x \in K_{\phi}\}$, then

$$BK_{\phi} \subset ||A||_{\phi}K_{\phi}, \qquad \forall B \in \hat{\Omega}_{\mathscr{F}}(A).$$

Since $||A||_{\phi}K_{\phi}$ is a balanced convex set in \mathbb{C}^n , it is then evident that the balanced convex hull of all BK_{ϕ} , for B in $\hat{Q}_{\mathscr{F}}(A)$, is in $||A||_{\phi}K_{\phi}$, i.e., if $\operatorname{conv}\{\hat{Q}_{\mathscr{F}}(A)K_{\phi}\}$ denotes the smallest balanced convex set containing all BK_{ϕ} for B in $\hat{Q}_{\mathscr{F}}(A)$, so that

$$\operatorname{conv}\{\hat{\mathcal{Q}}_{\mathscr{F}}(A)K_{\phi}\} = \left\{ \sum_{i=1}^{m} \lambda_{i}x_{i} : m \text{ finite, each } x_{i} \text{ is in some } BK_{\phi} \right.$$

with
$$B$$
 in $\hat{Q}_{\mathscr{F}}(A)$, and $\sum_{i=1}^{m} |\lambda_i| \leqslant 1$, (3.2)

then

$$\operatorname{conv}\{\hat{\Omega}_{\mathscr{F}}(A)K_{\phi}\} \subset ||A||_{\phi}K_{\phi}, \qquad \forall \phi \in \mathscr{F}. \tag{3.3}$$

Next, for a fixed $\phi \in \mathscr{F}$ with unit ball K_{ϕ} , we define the unit ball of $\psi \in \mathscr{F}$, relative to ϕ , by

$$K_{\psi}^{\phi} = \{x \in \mathbb{C}^n : \psi(x) \leqslant \alpha_{\psi}\},$$

where $\alpha_{\psi} \equiv \sup\{\psi(x) : \phi(x) \leqslant 1\}$. Clearly, $K_{\phi} \subset K_{\psi}^{\phi}$ but $K_{\phi} \subset (1 - \varepsilon)K_{\psi}^{\phi}$ for any $0 < \varepsilon < 1$, and K_{ψ}^{ϕ} is just a multiple of the usual unit ball for ψ . It is clear from $K_{\phi} \subset K_{\psi}^{\phi}$ that

$$BK_{\phi} \subset BK_{\psi}{}^{\phi} \subset ||A||_{\psi}K_{\psi}{}^{\phi}, \qquad \forall B \in \hat{\Omega}_{\mathscr{F}}(A),$$

so that

$$\operatorname{conv}\{\hat{\boldsymbol{\varOmega}}_{\mathscr{F}}(A)\boldsymbol{K}_{\boldsymbol{\phi}}\} \subset ||\boldsymbol{A}||_{\boldsymbol{\psi}}\boldsymbol{K}_{\boldsymbol{\psi}}{}^{\boldsymbol{\phi}}, \qquad \forall \boldsymbol{\psi} \in \mathscr{F}.$$

Hence, as this holds for all $\psi \in \mathscr{F}$, then

$$\operatorname{conv}\{\hat{\varOmega}_{\mathscr{F}}(A)K_{\phi}\} \subset \bigcap_{\psi \in \mathscr{F}}\{||A||_{\psi}K_{\psi}{}^{\phi}\}.$$

Since

$$\bigcap_{\psi \in \mathscr{F}} \{||A||_{\psi} K_{\psi}{}^{\phi}\} \subset ||A||_{\phi} K_{\phi},$$

then from the above inclusion,

$$\operatorname{conv}\{\hat{\varOmega}_{\mathscr{F}}(A)K_{\phi}\} \subset \bigcap_{\psi \in \mathscr{F}} \{||A||_{\psi}K_{\psi}{}^{\phi}\} \subset ||A||_{\phi}K_{\phi}. \tag{3.4}$$

This is used in proving

Theorem 2. For an arbitrary family \mathscr{F} of norms on \mathbb{C}^n and for an arbitrary $A \in [\mathbb{C}^n]$, the following relations are equivalent:

(i) there is a $\phi \in \mathscr{F}$ such that

$$||A||_{\phi} = \inf\{||A||_{\psi} \colon \psi \in \mathscr{F}\}; \tag{3.5}$$

(ii) there is a $\phi \in \mathcal{F}$ such that

$$\operatorname{conv}\{\hat{Q}_{\mathscr{F}}(A)K_{\phi}\} = ||A||_{\phi}K_{\phi}; \tag{3.6}$$

(iii) there is a $\phi \in \mathscr{F}$ such that $K_{\phi} \notin (1-\varepsilon)K_{\psi}^{\phi}$ for any $0 < \varepsilon < 1$, and

$$||A||_{\phi}K_{\phi} = \bigcap_{\psi \in \mathscr{F}} \{||A||_{\psi}K_{\psi}^{\phi}\}. \tag{3.7}$$

Proof. Assuming (i), then $||A||_{\phi} \leqslant ||A||_{\psi}$, $\forall \psi \in \mathscr{F}$. If $\hat{B} \equiv ||A||_{\phi} \cdot I$, then by definition, $\hat{B} \in \hat{\Omega}_{\mathscr{F}}(A)$, and as such, $\hat{B}K_{\phi} \subset \operatorname{conv}\{\hat{\Omega}_{\mathscr{F}}(A)K_{\phi}\}$. Thus,

$$||A||_{\phi}K_{\phi} \subset \operatorname{conv}\{\hat{\Omega}_{\mathscr{F}}(A)K_{\phi}\} \subset ||A||_{\phi}K_{\phi},$$

the last inclusion following from Eq. (3.4), i.e., $||A||_{\phi}K_{\phi} = \operatorname{conv}\{\hat{\Omega}_{\mathscr{F}}(A)K_{\phi}\}$, and (i) implies (ii). Assuming (iii), (iii) follows from Eq. (3.4). Next, assuming (iii), it follows from (3.7) that $||A||_{\phi}K_{\phi} \subset ||A||_{\psi}K_{\psi}^{\phi}$, $\forall \psi \in \mathscr{F}$. But as $K_{\phi} \subset K_{\psi}^{\phi}$ and $K_{\phi} \subset (1 - \varepsilon)K_{\psi}^{\phi}$ for any $0 < \varepsilon < 1$, it is clear that $||A||_{\phi} \leqslant ||A||_{\psi}$ for any $\psi \in \mathscr{F}$, i.e., $||A||_{\phi} = \inf\{||A||_{\psi} : \psi \in \mathscr{F}\}$, and (iii) implies (i). Q.E.D.

COROLLARY. Given a family \mathscr{F} of norms on \mathbb{C}^n , assume that $A \in [\mathbb{C}^n]$ satisfies one (and hence all) of the relations (3.5)–(3.7). Then, for any $B \in \hat{\Omega}_{\mathscr{F}}(A)$ with $\rho(B) = \inf\{||A||_{\psi} \colon \psi \in \mathscr{F}\}$, each eigenvalue λ_i of B with $|\lambda_i| = \rho(B)$ is such that the number of linearly independent eigenvectors belonging to λ_i is equal to the multiplicity of λ_i for B, i.e., the Jordan block associated with λ_i in the Jordan normal form of B is diagonal.

Proof. First, we note from Theorem I that the set of matrices $B \in \hat{\Omega}_{\mathscr{F}}(A)$ with $\rho(B) = \inf\{||A||_{\psi} \colon \psi \in \mathscr{F}\}$ is not empty. Next, as $\rho(B) \leqslant ||B||_{\phi}$ and as $||B||_{\phi} \leqslant ||A||_{\phi}$ because $B \in \hat{\Omega}_{\mathscr{F}}(A)$, then the assumption that $||A||_{\phi} = \inf\{||A||_{\psi} \colon \psi \in \mathscr{F}\}$ gives us that $\rho(B) = ||B||_{\phi}$ for every such $B \in \hat{\Omega}_{\mathscr{F}}(A)$,

and the eigenvalue and eigenvector properties of the Corollary follow from a well known result of Householder (cf. [1, p. 47]). Q.E.D.

As a remark, consider the particular family \mathscr{F}_1 of norms of Eq. (1.1). For any $A \in [\mathbb{C}^n]$, we know from Eq. (1.2) that

$$\rho(A) = \inf\{||A||_{\phi} \colon \phi \in \mathscr{F}_1\}.$$

Suppose that A has an eigenvalue λ with $|\lambda| = \rho(A)$ for which the Jordan block associated with λ in the Jordan normal form of A is not diagonal. Then, as $A \in \hat{\Omega}_{\mathscr{F}}(A)$ does not satisfy the conclusions of the above corollary, we obtain the known result (cf. [2]) that

$$||A||_{\phi} > \inf\{||A||_{\psi} \colon \psi \in \mathscr{F}_1\} = \rho(A), \qquad \forall \phi \in \mathscr{F}_1,$$

i.e., Eq. (3.1) cannot hold for any $\phi \in \mathcal{F}_1$.

4. CONNECTIONS WITH CONES

For an arbitrary family \mathscr{F} of norms on \mathbb{C}^n , and an arbitrary but fixed $A \in [\mathbb{C}^n]$, choose any $B \in \hat{\Omega}_{\mathscr{F}}(A)$ for which

$$\rho(B) = \inf\{||A||_{\phi} \colon \phi \in \mathscr{F}\}. \tag{4.1}$$

Next, by way of normalization, choose any eigenvalue λ of B with $|\lambda| = \rho(B)$, for which the Jordan block associated with λ (in the Jordan normal form) is maximal in size, and rotate λ into $\rho(B)$, i.e., if $Bx = \lambda x$ where $x \neq 0$ and $\exp(i\theta)$ $\lambda = \rho(B)$, then $\hat{B}x = \rho(B)x$ where $\hat{B} \equiv \exp(i\theta)$ B is also an element of $\hat{\Omega}_{\mathscr{F}}(A)$. Thus, we are considering all $B \in \hat{\Omega}_{\mathscr{F}}(A)$ for which

- (i) $\rho(B) = \inf\{||A||_{\phi} : \phi \in \mathscr{F}\}\$ is an eigenvalue of B;
- (ii) the maximal Jordan block associated with $\rho(B)$ in the Jordan normal form of B is no smaller than the Jordan block of any eigenvalue ν of B with $|\nu| = \rho(B)$. (4.2)

It is interesting to note that the particular matrix $\hat{B} = \eta \cdot I$ where $\eta \equiv \inf\{||A||_{\phi} \colon \phi \in \mathscr{F}\}$ trivially satisfies the conditions of (4.2), and is, in addition, a *real* matrix. Thus, for any real $B \in \hat{\Omega}_{\mathscr{F}}(A)$ satisfying Eq. (4.2),

there is (cf. Vandergraft [3, Theorem 3.1]) a real solid cone \mathcal{K}_B in real Euclidean space E^n for which $B: \mathcal{K}_B \to \mathcal{K}_B$, and consequently [3], \mathcal{K}_B contains an eigenvector corresponding to $\rho(B)$. We state this as

Theorem 3. For an arbitrary family \mathscr{F} of norms on \mathbb{C}^n , and an arbitrary $A \in [\mathbb{C}^n]$, there exist $B \in \hat{\Omega}_{\mathscr{F}}(A)$ satisfying Eq. (4.2), and hence, for each such real B, there is a real solid cone \mathscr{K}_B in E^n for which $B \colon \mathscr{K}_B \to \mathscr{K}_B$, and \mathscr{K}_B contains an eigenvector of B corresponding to $\rho(B)$.

It is interesting to note that if $A \in [\mathbb{C}^n]$ maps a real solid cone \mathscr{K} in E^n into itself, i.e., $A : \mathscr{K} \to \mathscr{K}$, then it is known [3] that $\rho(A)$ is an eigenvalue of A, and that (4.2ii) holds with B = A. Next, it is always possible to choose a family \mathscr{F} of norms on $[\mathbb{C}^n]$ for which

$$\rho(A) = \inf\{||A||_{\phi} \colon \phi \in \mathscr{F}\}.$$

For A and this family \mathcal{F} , (4.2) is evidently satisfied with B=A, and Theorem 3 regenerates the cone property of A.

5. AN EXAMPLE

To illustrate some of the above results, consider the particular family \mathscr{F}_2 of norms on \mathbb{C}^n given in Eq. (1.3). For $\psi \in \mathscr{F}_2$, we associate via Eq. (1.3) with ψn positive numbers $\psi_1, \psi_2, \ldots, \psi_n$, and write $\psi \sim (\psi_1, \psi_2, \ldots, \psi_n)$. For a fixed $A \in [\mathbb{C}^n]$, it is easy to verify that

$$||A||_{\psi} = \max \left\{ \sum_{j=1}^{n} |a_{i,j}| (\psi_j | \psi_i) : 1 \leqslant i \leqslant n \right\},$$
 (5.1)

where $A=(a_{i,j})$ is the matrix representation of A. Note that the norm $||A||_{\psi}$ depends only on the moduli $|a_{i,j}|$ of $A=(a_{i,j})$. Because of this, if $|A|\equiv (|a_{i,j}|)\in [\mathbb{C}^n]$, then $|A|\in \hat{\Omega}_{\mathscr{F}_2}(A)$, and we have as a well known consequence of the Perron-Frobenius theory of nonnegative matrices (see [4, p. 32] for the irreducible case) that

$$\rho(|A|) = \inf \left\{ \max_{1 \le i \le n} \left[\sum_{j=1}^{n} |a_{i,j}| (\psi_j/\psi_i) \right] : \psi_i > 0, i = 1, 2, \dots, n \right\}, \quad (5.2)$$

from which it follows from Eq. (5.1) that [cf. Eq. (1.4)]

$$\rho(|A|) = \inf\{||A||_{\psi} \colon \psi \in \mathscr{F}_2\}. \tag{5.3}$$

256 RICHARD S. VARGA

Moreover, it is also known from the Perron-Frobenius theory of non-negative matrices that if |A| is *irreducible*, then there exist n positive numbers ϕ_i , i = 1, 2, ..., n, such that (cf. [4, p. 32])

$$\rho(|A|) = \sum_{j=1}^{n} |a_{i,j}| (\phi_j / \phi_i) \quad \text{for all} \quad i = 1, 2, \dots, n,$$
 (5.4)

so that $\rho(|A|) = ||A||_{\phi}$ where $\phi \sim (\phi_1, \phi_2, \dots, \phi_n) \in \mathscr{F}_2$. In this case, we have that

$$\rho(|A|) = ||A||_{\phi} = \inf\{||A||_{\psi} \colon \psi \in \mathscr{F}_2\}. \tag{5.5}$$

In this irreducible case, one can draw a stronger conclusion about |A| than that given in the Corollary of Theorem 2, i.e., that $\rho(|A|)$ is a *simple* eigenvalue of |A|. However, it is easy to see that Eq. (5.5) can hold for certain reducible matrices, such as

$$|A| = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix},$$

for which $\rho(|A|)$ is not a simple eigenvalue of |A|.

REFERENCES

- 1 A. S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell, New York (1964).
- 2 J. L. Mott and H. Schneider, Matrix algebras and groups relatively bounded in norm, Archiv der Math. 10(1959), 1-6.
- 3 J. S. Vandergraft, Spectral properties of matrices which have invariant cones, SIAM J. Appl. Math. 16(1968), 1208-1222.
- 4 R. S. Varga, *Matrix Iterative Analysis*, Prentice-Hall, Englewood Cliffs, New Jersey (1962).

Received November 23, 1971