—

PR S——

SIAM J. NUMER. ANAL.
Vol. 10, No. 3. June 1973

A NOTE ON LACUNARY INTERPOLATION BY SPLINES*
BLAIR K. SWARTZt anp RICHARD S. VARGA}

Dedicated to Professor I. J. Schoenberg on the occasion of his seventieth birthday.
April 21, 1973 (old) and May 4, 1973 (new).

Abstract. In the previous paper by A. Meir and A. Sharma, error bounds for lacunary interpola-
tion of certain functions by deficient quintic splines are developed. In this note, we extend their results
to a wider class of functions and indicate that the extended results are best possible. In addition, a
stability result for such interpolation is also presented.

1. Introduction. In the preceding paper [1] by A. Meir and A. Sharma, error
bounds have been developed for lacunary interpolation of certain functions by
deficient quintic splines. More precisely, let S’} be the class of quintic splines s(x)
such that

(i) se C[0, 1],

(i) semsoneach [v/n, (v + I)n],0 S v=n-—1,
and given fe C3[0, 1], let s, be the unique element (cf. [1, Theorem 1]) (for n odd)
in S$*) which interpolates f in the sense that

1 (f =s)v/n)=0,0=v=n,

(i) D*(f —s)(v/n) =0,0 < v < n,

(iii) D(f — 5,)(0) = D*(f — 5,)(1) = 0.

We call this interpolant s, the Meir—Sharma interpolant of f. If w(f:d) denotes
the usual modulus of continuity of f, and if [|- |, = |- [, _0.1;- then Meir and
Sharma [1] have established the following.

THEOREM A. Let fe C*[0, 1], let n be an odd integer, and let s, be its unique

Meir-Sharma interpolant in Si’). Then

(1) IDI(f = s, £ 750D n) + 80 7H DL, 0=j=4

The purpose of this note is to extend their results to a wider class of functions,
to exhibit a stability result for their interpolation process, and to describe evidence
indicating that the results to be established are best possible.

2. Main result. We begin with the preliminary result of the following lemma.
LemMa 1. Let fe C®[0, 1], let n be an odd integer, and let s, be its unique

M eir-Sharma interpolant in S). Then
(2) DS = s).. =200/ |DOf], 0sj=s4

Proof. Let § be any piecewise quintic function in C*[0, 1] such that D*3(x)
is the continuous piecewise linear interpolation of D*f(x) in the points v/n,
0 < v £ n. Since the Meir-Sharma interpolant of § in S{’} is evidently § (cf. [1,
Theorem 1]), then the Meir-Sharma interpolant of /' — §is 5, — 5. Hence, from
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liA

Theorem A for any mteger j with 0 £ j = 4,
(3) . :
< 7500 DA = 5 my 4+ S TR IDH S = B,

But as D*5 is the continuous piecewise linear interpolant of D*/f, then it is well
known that

=3 e
D(I—\) ,é).ﬂ;D} ,
81

Sunilarly,

40 4 N / 1 o

) D(Afv-g);f é‘““j\D’/;}
n 4n*

Then, substituting in (3) gives the desired result. QED.

We remark that this useful trick in the above lemma, of using § to deduce
interpolation error bounds for smoother functions from interpolation results for
less smooth functions, can be found in Swartz [2. p. 19], where it is attributed to
C. deBoor.

We next state a special case of a result from Swartzand Varga [3, Lemma 3.2].

LemMa 2. Let fe CMO, 1], where O £ k < 6, and let n be any positive integer.
Then, there exists a unique Hermite spline interpolant g of f, with ge C°[0,1] and
with gem,, oneach [v/n, (v + 1)/nl. such that

D —glym=0, 0=2/=5khk 0=2v=n,

(it) Diglv/n) = 0, k<jg6, 0=v=En
Moreover, there exists a constant K, independent of f and n, such that

DS =g, 0=j=k
Digl,.. k<j=o.

=
=

|
DM -

1

=

4 Kn ™k

Given [ e CMO.1] where 0 £ k < 6, and given n an odd positive integer,
let g be its unique Hermite spline interpolant. in the sense of Lemma 2. Since g
admits a unique Meir-Sharma interpolant, say §,. we call § the generalized
Meir-Sharma interpolate of / in S$3. Note, of course, that if /'€ C*[0.1] with
k = 3,then the generalized Meir-Sharma interpolant of f in S’} reduces identically
to the Meir-Sharma interpolant of f 1n S}’%.

This brings us to our main result.

THEOREM 1. Let f & CHO. 1] where 0 < k < 6, let n be an odd positive inleger.
and let §, be the unique generalized Meir—Sharma interpolant of [ in S, Then,
their exists a constant K. independent of f and n, such that

1

0 <j<min(k,4).

.
¢

Kn'™ 7 0| DY -1 =z [IDI(f —5,)

n
Proof. 1f g is the unique interpolant of / of Lemma 2, and 3, is the unique
generalized Meir-Sharma interpolant of / in Si’1. then, by the triangle inequality.

DS =801 = 1D = g)| o + [1D(g = 3

O
The first term on the right side of the above inequality can be bounded above
from Lemma 2 by Kn/ *a(D*f: 1/n) for 0 £ j £ k. The second term on the right
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can be bounded above from Lemma | by

IDig — 3], <2007 D“g.;; 0<j<4
But. again by Lemma 2. [D%¢ . < Kn" " *w(D/: 1/n). so that
1y Y fi+‘—k[k’1
IDi(g —35)1, < K'n' " 0| DY, 04
n
Combining these inequalities establishes (5) for 0 £ j < min (4, k). Q.E.D.
.L

Several comments are in order. First, if [ C*[0, 1], then we see that the
special case k = 4 of Theorem [ cflectively reduces to the result of Theorem A
above due to Meir and Sharma [1]. Second, as it is easy to see for /€ C°[0, 1] that
the error bounds of (2) follow dm,cti} from the error bounds of (5), it is natural
to ask if the exponent of n in (2), namely j — 5, is best possible, particularly since
other quintic piecewise polynomials, such as quintic splines, have a known inter-
polation error bound like that of (2), but with the exponent of 1 in (2) replaced
by j — 6. Based on a computer test of the cases f(x) = x° and f(x) = x7 using
n o= 11, 21, 41, and 81, we have observed numerically that

=5, =00,

But.as the corresponding inequality of (2) in these cases also gives the same bound,
we thus believe the exponents of n in both (2) and (5) are best possible. Finally,
Meir and Sharma also consider a somewhat different type of lacunary interpola-
tion {¢f. [1, Theorem 3]) in SP*L for which the interpolation error bound of (1) of
Theorem A is also valid. We remark that the result of Theorem 1 applies without
change 1o this interpolation as well.

We conclude this note with a stability result, along the lines of those in [3].

TureorrM 2. Let e CHO. 1], where 0 £ k < 6. let n be an odd positive integer,
and ler §, be the uiziqw Meir—Sharma interpolant of the following data:

{1} 3;{&“;1} = 4, 0y =n,
(i) D=§8,0v/ny = 1‘& 0Ly =,
{iii) D‘x (()) =43, DS(1) = 5,5,

where we suppose that there exists a function F( [, n) such that

(a) n K E(fin) =z max [f/n) — 2.

O=vEn

( max |[D*f(v/in) — x| ik

v
)

(b) n? E(f.n)

Z } \\ \n
'1 de o, ol il k<2,
O=svzn
() »* FF(fin) = { o HD}NO} — 2oL DY) = 50 i k23,
‘ o max [lx(‘ ?l &Ly, 1[} "f k < 3

Then there is a constant K, independent of [, F. and n, such that
6y Kn' ™MD ey + F(fL.m) 2 DS =800, 0<j<min(k, 4.

Remarks. Should these bounds of (0) be sharp. they would indicate that the
Meir-Sharma interpolant is less stable than many local piecewise quintic approxi-
mants. such as quintic spline interpolants of continuity class C*[0. 1]. In this
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latter case, if for example f e C°[0, 1] and if s is its unique quintic spline inter-
polant in C*0, 1], defined by (f — s)(v/n) =0, 0 =<v = n, DI(f — 5)(0)
= Di(f —s)(1) = 0,j = 1,2, then

DS = ). = Kn'" D% | 0=<j=s

But if perturbed data are similarly interpolated, i.e., §is the unique quintic spline
interpolant such that §(v/n) = %, 4,0 £ v < n, D3(0) = o, ;, DI3(1) = o, ;,j = 1,2,
where |x, ; — D/f(v/n)] £ Kn/~¢|[D°f| ., then the above interpolation error
bounds hold also for § (¢f. [3]). Loosely speaking, in this latter case one may
perturb the data by the order of associated interpolation error, without affecting
the order of magnitudes of the resulting global error bounds. This seems no longer
to be true for the Meir-Sharma interpolant, for, according to Theorem 2, one
similarly needs O(n"~ °)yaccuracy for the data for D’f (v/n), to obtain global approxi-
mation accuracies of order O(n’™7). ,

We also note that Theorem 2 implies (cf. [3]) that, independent of the con-
tinuity class for f, we may supply Meir-Sharma data (for example, «,,) via
appropriate derivatives (for example, D*Q(v/n)) of a quintic Lagrange polynomial
interpolant Q of / in any six contiguous points within O(1/n) of the location at
which the data is required, without affecting global approximation error bounds.

Proof of Theorem 2. We follow here basically the proof of Theorem 5.1 of
[3]. Let §, be the generalized Meir-Sharma interpolant of f in 52, (Theorem 1),
and let §, be the unique interpolant in S’} of the given approximate data of
Theorem 2.

Define a Hermite spline function g(x), with ge C°[0, 1] and with gen,; on
each [v/n, v/(n + 1)], such that

gv/n) = (f = $,)0/n), O=v=n,
(D(f —38,)(v/n) if k=2

ng(y/’”) - (j ’ )( / ) ' = j 0 é . é n,
—D% () if k<2

DXf—=35)0) if k=3 Dl _{D3(f— ) if k= 3}
_D%(0)  if k< 3}’ gD = _psay i k<3

Dig(v/n) = 0 otherwise, 0<v<n, j=173456.

Dg(0) = {

A

It is readily verified that the Meir-Sharma interpolant of g in S’} is §, — §,.
Now, for 0 £ j £ min (k, 4), we have from the triangle inequality

(1) 1D = 81, < DU = 5, + [Digll, + [1Di{g — Gy — 3}

We note that, by Theorem 1, the first term on the right side of (7) is bounded

above by Kn' "/ kw(D*: 1/n) for 0 < j < min (k,4). Next, from the hypotheses

of Theorem 2 and from Lemma 4.3 of [3], the second term on the right of (7) can

be bounded above by

(&) ID7g|l,, = Kn'""F(f.n), 0=j=6
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Finally, since §, — 3, is the Meir~Sharma interpolant of g in S$’2, then the third
term on the right of (7) can be bounded above from the case k = 5 of Theorem 1 by

9) ID{g — (5, — 3}, < Kn/™*a(D3g; 1/n), 0=sj=s4
8 §

But, using the case j = 5 of (8), then w(D%g;1/n) < 2|D%g|, < Kn® “*F(f.n).
Combining this inequality with that of (9) then yields

IDifg — (5, — 3.1, < Kn'*i=¥F(f, n). QED.
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