Appeared in <u>Topics in Numerical Analysis</u> (J. J. H. Miller, ed.), Academic Press, Inc., New York, 1973.

Extensions of the Successive Overrelaxation Theory with Applications to Finite Element Approximations†

Richard S. Varga

1. Introduction

To iteratively solve the matrix problem

$$Ax = b, (1.1)$$

where b is a given vector in \mathcal{C}^n and where A is a given positive definite Hermitian $n \times n$ matrix, the well-known successive overrelaxation (SOR) iterative method can be applied:

$$(D - \omega L)x^{(n+1)} = \{(1 - \omega)D + \omega L^*\}x^{(n)} + \omega b, \quad n = 0, 1, \ldots, \quad (1.2)$$

where D, defined as D = diag (A), is evidently also Hermitian and positive definite, and where L, defined as the strictly lower triangular part of -A, evidently satisfies

$$L + L^* = D - A. (1.3)$$

For any ω in (0, 2), it is well-known that the iterates $x^{(n)}$, defined by (1.2), converge as $n \to \infty$ to the unique solution of (1.1), for any $x^{(0)} \in \mathscr{C}^n$. Interestingly enough, the usual proofs for this convergence (cf. Forsythe and Wasow [3, p. 239], Householder [4, § 4.3], Varga [11, § 3.4], Wachspress [13, § 4.4] and Young [14, § 4.3]) do not make any special use of properties of the matrix L, other than the obvious one that $D - \omega L$ is non-singular for all real ω . One of the objects of this paper is to analyze the successive overrelaxation iterative method in a way which leads to extensions of several known results for this iterative method.

[†] Research supported in part by the Atomic Energy Commission under Grant AT(11-1)-2075.

Our starting point will be that we are given any three $n \times n$ matrices A, D, and S such that

With these given matrices, we then define the $n \times n$ matrix L as

$$L \equiv \frac{1}{2}(D - A + S). \tag{1.5}$$

We remark that L defined in this way evidently satisfies (1.3). Conversely, for any L satisfying (1.3), then L has the representation of (1.5) with S skew-Hermitian. Of course, the matrix L defined by (1.5) is not in general strictly lower triangular, and it is not immediately apparent for which value of ω , $D-\omega L$ is invertible. However, using (1.5), we can write

$$D - \omega L = \frac{1}{2}\{(2 - \omega)D + \omega A - \omega S\}.$$

With $(v, w) \equiv \sum_{l=1}^{n} v_{l}\overline{w}_{l}$ for any $v, w \in \mathcal{C}^{n}$, then as (v, Sv) is purely imaginary since S is skew-Hermitian, the positive definite characters of A and D give us that

Re
$$(v, (D - \omega L)v) > 0$$
 for any $v \neq 0$ in \mathscr{C}^n , any $\omega \in [0, 2]$.

Consequently, $D - \omega L$ is invertible for all $\omega \in [0, 2]$. In other words, in assuming (1.4) and (1.5), the iterative method of (1.2) is well-defined for any $\omega \in [0, 2]$.

To examine the convergence properties of the iterative procedure of (1.2) under the assumptions of (1.4) and (1.5), write (1.2) as

$$x^{(n+1)} = \mathcal{L}_{\omega} x^{(n)} + \omega (D - \omega L)^{-1} b, \quad n = 0, 1, \dots$$
 (1.6)

where the $n \times n$ matrix \mathscr{L}_{ω} is defined by

$$\mathscr{L}_{\omega} = (D - \omega L)^{-1} \{ (1 - \omega)D + \omega L^* \}. \tag{1.7}$$

It then follows from (1.5) that

$$\mathscr{L}_{\omega} = \{(2-\omega)D + \omega A - \omega S\}^{-1} \{(2-\omega)D - \omega A - \omega S\}. \tag{1.8}$$

Now, if $\mathcal{L}_{\omega}v = \xi v$ for $v \neq 0$ in \mathcal{C}^n and if $\omega \in [0, 2]$, then we see from (1.8) that

$$\xi = \frac{\{(2-\omega)(v, Dv) - \omega(v, Av)\} - \omega(v, Sv)}{\{(2-\omega)(v, Dv) + \omega(v, Av)\} - \omega(v, Sv)}.$$
(1.9)

As the terms in brackets in both the numerator and denominator are real from (1.4), and as $\omega(v, Sv)$ is again purely imaginary, then $|\xi|^2$ is given by

$$|\xi|^2 = \frac{\{(2-\omega)(v,Dv) - \omega(v,Av)\}^2 + \omega^2 |(v,Sv)|^2}{\{(2-\omega)(v,Dv) + \omega(v,Av)\}^2 + \omega^2 |(v,Sv)|^2}.$$
 (1.10)

where R(v), the Rayleigh quotient, is defined by

$$R(v) = \frac{(v, Av)}{(v, Dv)} \quad \text{for all} \quad v \neq 0 \in \mathcal{C}^n.$$
(2.3)

Because of the assumption of (1.4i), the eigenvalues $\{\mu_l\}_{l=1}^n$ of the associated eigenvalue problem $Ax = \mu Dx$ are all positive and, if we order these eigenvalues as $0 < \mu_1 \le \mu_2 \le \cdots \le \mu_n$, it is well known that

$$0 < \mu_1 \le R(v) \le \mu_n$$
 for all $v \ne 0$ in \mathscr{C}^n . (2.4)

In what follows, we assume knowledge of two positive numbers λ_1 and λ_2 for which

$$0 < \lambda_1 \le R(v) \le \lambda_2$$
 for all $v \ne 0$ in \mathscr{C}^n , (2.5)

i.e., $[\lambda_1, \lambda_2] \supseteq [\mu_1, \mu_n]$.

With (2.5), it follows from (2.2) that

$$\rho^2(\mathcal{L}_{\omega}) \leq \max\{g(t, \omega, \tau_{\omega}): \lambda_1 \leq t \leq \lambda_2\},$$

where we set for convenience

$$g(t, \omega, \beta) \equiv \frac{(2 - \omega - \omega t)^2 + \omega^2 \beta^2}{(2 - \omega + \omega t)^2 + \omega^2 \beta^2}.$$
 (2.6)

Then, as the maximum of $g(t, \omega, \beta)$, considered as a function of t for $\lambda_1 \le t \le \lambda_2$, must occur at either λ_1 or λ_2 , we immediately have

Theorem 2

Assuming (1.4) and (2.5), then for any $\omega \in [0, 2]$,

$$\rho^{2}(\mathcal{L}_{\omega}) \leq \max\{g(\lambda_{1}, \omega, \tau_{\omega}); g(\lambda_{2}, \omega, \tau_{\omega})\}. \tag{2.7}$$

If equality holds in (2.7) for some $\omega \in (0, 2)$, then either $\lambda_1 = \mu_1$ or $\lambda_2 = \mu_n$, and there is a $v \in E_{\omega}$ with $|(v, Sv)| = \tau_{\omega}$ such that v is an eigenvector of $Ax = \mu Dx$, with corresponding eigenvalue either μ_1 or μ_n .

Since $g(t, \omega, \beta)$, as defined in (2.6), is, for fixed t > 0 and for fixed $\omega \in (0, 2)$, a monotone increasing function of β , then replacing τ_{ω} in (2.7) by any upper bound of τ_{ω} preserves the inequality (2.7) of Theorem 2. One easily derived upper bound for τ_{ω} is obviously given by

$$||S||_D \equiv \sup \left\{ \frac{|(v, Sv)|}{(v, Dv)} : v \neq 0 \text{ in } \mathscr{C}^n \right\}, \tag{2.8}$$

since, from the definition of τ_{ω} in (2.1), we evidently have

$$0 \le \tau_{\omega} \le ||S||_{D} \quad \text{for all} \quad \omega \in [0, 2]. \tag{2.9}$$

Thus, if $\rho(C) \equiv \max\{|\lambda|: \det(\lambda I - C) = 0\}$ denotes the spectral radius of any $n \times n$ matrix C, then on defining the non-empty set

$$\mathcal{E}_{\omega} = \{ v \in \mathcal{C}^n : (v, Dv) = 1, \ \mathcal{L}_{\omega} v = \xi v, \text{ and } |\xi| = \rho(\mathcal{L}_{\omega}) \}, \tag{1.11}$$

we have from (1.10) that

$$\rho^{2}(\mathscr{L}_{\omega}) = \frac{\{2 - \omega - \omega(v, Av)\}^{2} + \omega^{2} |(v, Sv)|^{2}}{\{2 - \omega + \omega(v, Av)\}^{2} + \omega^{2} |(v, Sv)|^{2}}, \quad \text{for any} \quad v \in E_{\omega}.$$
(1.12)

We remark that a similar expression for $\rho^2(\mathcal{L}_{\omega})$, derived from stronger hypotheses, appears in Fix and Larsen [2]. Equivalently, we can write (1.12) as

$$\rho^{2}(\mathcal{L}_{\omega}) = 1 - \frac{4\omega(2-\omega)(v, Av)}{\{2-\omega+\omega(v, Av)\}^{2} + \omega^{2} |(v, Sv)|^{2}}, \text{ for any } v \in E_{\omega}.$$
(1.13)

Interestingly enough, the expression in (1.13) immediately gives a proof of (1.14) of Theorem 1 below, known in the literature, under varying stronger hypotheses, as the Ostrowski-Reich Theorem (cf. [6], [7]). For the remainder of Theorem 1, the proof of [11, p. 78] can be applied without change.

Theorem 1
Assuming (1.4),

$$\rho(\mathcal{L}_{\omega}) < 1 \text{ if and only if } \omega \in (0, 2).$$
 (1.14)

Conversely, assume that A is an Hermitian $n \times n$ matrix, that D is an Hermitian and positive definite $n \times n$ matrix, and that $D - \omega L$ is invertible, where $\omega \in (0, 2)$. Then,

$$\rho(\mathcal{L}_{\omega}) < 1$$
 if and only if A is positive definite. (1.15)

2. General Upper Bounds

Let A, D, and S be any $n \times n$ matrices satisfying (1.4). For any $\omega \in [0, 2]$, set

$$\tau_{\omega} \equiv \inf\{|(v, Sv)| : v \in E_{\omega}\}. \tag{2.1}$$

It is then evident that there is at least one $v \in E_{\omega}$ for which $\tau_{\omega} = |(v, Sv)|$. Hence, from (1.12), we have for such a v that

$$\rho^{2}(\mathcal{L}_{\omega}) = \frac{(2 - \omega - \omega R(v))^{2} + \omega^{2} \tau_{\omega}^{2}}{(2 - \omega + \omega R(v))^{2} + \omega^{2} \tau_{\omega}^{2}}$$

$$(2.2)$$

For our purposes below, we postulate the existence of a real number Λ with $0 \le \Lambda \le ||S||_D$ such that

$$0 \le \tau_{\omega} \le \Lambda$$
 for all $\omega \in [0, 2]$. (2.10)

Then, as an immediate consequence of (2.7) of Theorem 2, we have

Corollary 3

Assuming (1.4), (2.5), and (2.10), then for any $\omega \in [0, 2]$,

$$\rho^{2}(\mathscr{L}_{\omega}) \leq \max\{g(\lambda_{1}, \omega, \Lambda); g(\lambda_{2}, \omega, \Lambda)\}. \tag{2.11}$$

Now, because the functions $g(\lambda_1, \omega, \Lambda)$ and $g(\lambda_2, \omega, \Lambda)$ depend only on ω , we can determine the minimum of the right side of (2.11) of Corollary 3, as a function of ω .

Theorem 4

Assuming (1.4), (2.5), and (2.10), then

$$\rho^{2}(\mathcal{L}_{\omega}) \leq g(\lambda_{1}, \omega, \Lambda) \quad \text{for all} \quad \omega \in [0, 2] \text{ if } \lambda_{1} = \lambda_{2}, \text{ or if } \lambda_{2} > \lambda_{1}$$
and $\lambda_{1}\lambda_{2} - \Lambda^{2} \leq 0$. (2.12)

Similarly, if $\lambda_2 > \lambda_1$ and $\lambda_1 \lambda_2 - \Lambda^2 > 0$, then

$$\begin{cases} \rho^{2}(\mathscr{L}_{\omega}) \leq g(\lambda_{1}, \omega, \Lambda) & \text{for all } \omega \in [0, \tilde{\omega}], \\ \rho^{2}(\mathscr{L}_{\omega}) \leq g(\lambda_{2}, \omega, \Lambda) & \text{for all } \omega \in [\tilde{\omega}, 2], \end{cases}$$
 (2.13)

where $\tilde{\omega}$ is defined by

$$\tilde{\omega} \equiv \frac{2}{1 + \sqrt{\lambda_1 \lambda_2 - \Lambda^2}}.$$
(2.14)

In particular,

$$\min \{ \rho^2(\mathcal{L}_{\omega}) : 0 \le \omega \le 2 \} \le g \left(\lambda_1, \frac{2}{1 + \sqrt{\lambda_1^2 + \Lambda^2}}, \Lambda \right) < 1 \text{ if } \lambda_1 = \lambda_2,$$
or if $\lambda_2 > \lambda_1$ and $\lambda_1 \lambda_2 - \Lambda^2 \le 0$, (2.15)

and

$$\lim_{\Omega} \{ \rho^{2}(\mathscr{L}_{\omega}) : 0 \leq \omega \leq 2 \} \leq g \left(\lambda_{1}, \frac{2}{1 + \sqrt{\lambda_{1}^{2} + \Lambda^{2}}}, \Lambda \right) < 1 \text{ if } \lambda_{2} > \lambda_{1} \\
\text{and } 0 < \lambda_{1} \lambda_{2} - \Lambda^{2} \leq \lambda_{1}^{2} + \Lambda^{2}, \\
\min_{\Omega} \{ \rho^{2}(\mathscr{L}_{\omega}) : 0 \leq \omega \leq 2 \} \leq g(\lambda_{1}, \tilde{\omega}, \Lambda) < 1 \text{ if } \lambda_{2} > \lambda_{1} \\
\text{and } \lambda_{1}^{2} + \Lambda^{2} \leq \lambda_{1} \lambda_{2} - \Lambda^{2}.$$
(2.16)

Proof

With (2.11) of Corollary 3, we first determine for which values of $\omega \in [0, 2]$ we have $g(\lambda_1, \omega, \Lambda) \ge g(\lambda_2, \omega, \Lambda)$. Of course if $\omega = 0$ or $\omega = 2$, this inequality is trivially satisfied. Similarly, if $\lambda_2 = \lambda_1$, this inequality is satisfied for all $\omega \in [0, 2]$, which gives us part of the conclusion of (2.12). For the case that $\lambda_2 > \lambda_1$ and $\omega \in (0, 2)$, then $g(\lambda_1, \omega, \Lambda) \ge g(\lambda_2, \omega, \Lambda)$ if and only if

$$4 - 4\omega + \omega^{2} \{1 - (\lambda_{1}\lambda_{2} - \Lambda^{2})\} \ge 0.$$
 (2.17)

If $\lambda_1 \lambda_2 - \Lambda^2 > 0$, there is only one zero of (2.17), viz. $\tilde{\omega}$ given by (2.14), which lies in the interval (0, 2). If $\lambda_1 \lambda_2 - \Lambda^2 \leq 0$, (2.17) has no zeros in (0, 2), and thus, $g(\lambda_1, \omega, \Lambda) \geq g(\lambda_2, \omega, \Lambda)$ for all $\omega \in [0, 2]$. This then proves (2.12) and (2.13).

Now, we minimize $g(\lambda, \omega, \Lambda)$, for fixed $\lambda \ge 0$, as a function of $\omega \in [0, 2]$. It is easy to verify that there is a unique minimum of $g(\lambda, \omega, \Lambda)$ in [0, 2] at

$$\hat{\omega}(\lambda) \equiv \frac{2}{1 + \sqrt{\lambda^2 + \Lambda^2}},$$

so that

$$g(\lambda, \omega, \Lambda) \geqslant g(\lambda, \hat{\omega}(\lambda), \Lambda)$$
 for all $\omega \in [0, 2]$. (2.18)

Applying the above inequality then to (2.12) obviously gives the desired result of (2.15).

Suppose now that $\lambda_2 > \lambda_1$ and that $0 < \lambda_1 \lambda_2 - \Lambda^2 < \lambda_1^2 + \Lambda^2$. Then, $\hat{\omega}(\lambda_1) \leq \tilde{\omega}$, and it follows from (2.13) and (2.18) that

$$\min \{ \rho^{2}(\mathcal{L}_{\omega}) : 0 \leq \omega \leq \tilde{\omega} \} \leq \min \{ g(\lambda_{1}, \omega, \Lambda) : 0 \leq \omega \leq \tilde{\omega} \} =$$

$$= g(\lambda_{1}, \hat{\omega}(\lambda_{1}), \Lambda). \tag{2.19}$$

On the other hand, as $\hat{\omega}(\lambda_2) \leq \tilde{\omega}$, it follows from (2.13) and (2.18) that

$$\min \{ \rho^{2}(\mathcal{L}_{\omega}) : \tilde{\omega} \leq \omega \leq 2 \} \leq \min \{ g(\lambda_{2}, \omega, \Lambda) : \tilde{\omega} \leq \omega \leq 2 \} =$$

$$= g(\lambda_{2}, \tilde{\omega}, \Lambda) = g(\lambda_{1}, \tilde{\omega}, \Lambda). \qquad (2.20)$$

Thus, upon combining the inequalities of (2.19) and (2.20) and using (2.18), we have

$$\min \{ \rho^2(\mathscr{L}_{\omega}) \colon 0 \le \omega \le 2 \} \le g(\lambda_1, \hat{\omega}(\lambda_1), \Lambda),$$

which establishes the first inequality of (2.16). The second inequality of (2.16) is similarly derived. Q.E.D.

$$0 \le \tau_{\omega} \le \Lambda$$
 for $0 \le \omega \le \hat{\omega}(\lambda_1)$ if $\lambda_1 = \lambda_2$, or if $\lambda_2 > \lambda_1$ and $\lambda_1 \lambda_2 - \Lambda^2 \le \lambda_1^2 + \Lambda^2$, (2.21)

and

$$0 \le \tau_{\omega} \le \Lambda$$
 for $0 \le \omega \le \tilde{\omega}$ if $\lambda_2 > \lambda_1$ and $\lambda_1^2 + \Lambda^2 \le \lambda_1 \lambda_2 - \Lambda^2$, (2.21')

and prove, from (2.11) of Corollary 3, the following result like that of Theorem 4. This will be useful in the next section.

Theorem 5

Assuming (1.4), (2.5), and (2.21)-(2.21'), then

The said of a wall . In

$$\rho^{2}(\mathcal{L}_{\omega}) \leq g(\lambda_{1}, \omega, \Lambda) \quad \text{for all} \quad 0 \leq \omega \leq \frac{2}{1 + \sqrt{\lambda_{1}^{2} + \Lambda^{2}}}$$

$$\text{if } \lambda_{2} = \lambda_{1}, \text{ or if } \lambda_{2} > \lambda_{1} \text{ and } \lambda_{1} \lambda_{2} - \Lambda^{2} \leq \lambda_{1}^{2} + \Lambda^{2}, \tag{2.22}$$

and.

$$\rho^{2}(\mathcal{L}_{\omega}) \leq g(\lambda_{1}, \omega, \Lambda) \quad \text{for all} \quad 0 \leq \omega \leq \bar{\omega} \text{ if } \lambda_{2} > \lambda_{1} \text{ and}$$

$$\lambda_{1}^{2} + \Lambda^{2} \leq \lambda_{1} \lambda_{2} - \Lambda^{2}. \tag{2.23}$$

In particular,

$$\min \{ \rho^2(\mathcal{L}_{\omega}) \colon 0 \le \omega \le 2 \} \le g \left(\lambda_1, \frac{2}{1 + \sqrt{\lambda_1^2 + \Lambda^2}}, \Lambda \right) < 1 \text{ if}$$

$$\lambda_2 = \lambda_1, \text{ or if } \lambda_2 > \lambda_1 \text{ and } \lambda_1 \lambda_2 - \Lambda^2 \le \lambda_1^2 + \Lambda^2, \tag{2.24}$$

$$\min \{ \rho^2(\mathcal{L}_{\omega}) \colon 0 \le \omega \le 2 \} \le g(\lambda_1, \, \bar{\omega}, \, \Lambda) < 1 \text{ if } \lambda_2 > \lambda_1 \text{ and}$$

$$\lambda_1^2 + \Lambda^2 \le \lambda_1 \lambda_2 = \Lambda^2. \tag{2.25}$$

3. The Special Case $\Lambda = 0$

The bounds deduced in Theorem 4 are rather interesting in the special case that $\Lambda = 0$ in (2.10), i.e., if

$$\inf\{|(v, Sv)|: v \in E_{\omega}\} = 0 \quad \text{for all} \quad \omega \in [0, 2]. \tag{3.1}$$

In fact, it is easy to see from (1.9) that a v exists in E_{ω} for $\omega \in [0, 2]$, with its corresponding eigenvalue ξ of $\mathcal{L}_{\omega}v = \xi v$ being real, if and only if

 $\omega(v, Sv) = 0$. In other words, assuming $\Lambda = 0$ in (2.10) is equivalent to assuming that \mathcal{L}_{ω} has a real eigenvalue ξ with $|\xi| = \rho(\mathcal{L}_{\omega})$, for every $\omega \in [0, 2]$. Thus, in assuming $\Lambda = 0$, then as $\lambda_1^2 \leq \lambda_1 \lambda_2$, Theorem 4 reduces to the following

Theorem 6

Assuming (1.4) and (2.5), suppose that \mathcal{L}_{ω} has a real eigenvalue ξ with $|\xi| = \rho(\mathcal{L}_{\omega})$ for every $\omega \in [0, 2]$. Then,

$$\rho(\mathcal{L}_{\omega}) \leq \frac{2 - \omega - \omega \lambda_1}{2 - \omega + \omega \lambda_1} \quad \text{for all} \quad 0 \leq \omega \leq \frac{2}{1 + \sqrt{\lambda_1 \lambda_2}}$$
 (3.2)

and

$$\rho(\mathcal{L}_{\omega}) \leq \frac{\omega \lambda_2 + \omega - 2}{\omega \lambda_2 + 2 - \omega} \quad \text{for all} \quad \frac{2}{1 + \sqrt{\lambda_1 \lambda_2}} \leq \omega \leq 2. \tag{3.3}$$

In particular,

$$\min \left\{ \rho(\mathcal{L}_{\omega}) \colon 0 \leq \omega \leq 2 \right\} \leq \frac{\sqrt{\lambda_1 \lambda_2} - \lambda_1}{\sqrt{\lambda_1 \lambda_2} + \lambda_1}. \tag{3.4}$$

Moreover, equality holds in (3.2) for some $\omega \in [0, 2/(1 + \sqrt{\lambda_1 \lambda_2})]$ (resp. (3.3) for some $\omega \in [2/(1 + \sqrt{\lambda_1 \lambda_2}), 2]$) only if there is a $v \in E_{\omega}$ with Sv = 0 and $\mathcal{L}_{\omega}v = \rho(\mathcal{L}_{\omega})v$ (resp. $\mathcal{L}_{\omega}v = -\rho(\mathcal{L}_{\omega})v$) satisfying $Lv = L^*v = \frac{1}{2}(1 - \mu_1)Dv$ (resp. $Lv = L^*v = \frac{1}{2}(1 - \mu_n)Dv$).

Proof

Equations (3.2)-(3.4) follow directly from Theorem 4. If equality holds in (3.2) for some $\omega \in [0, 2/(1 + \sqrt{\lambda_1 \lambda_2})]$, then, as in the case of equality in Theorem 2, there is a $v \in E_{\omega}$ with $\mathscr{L}_{\omega}v = \xi v$, ξ real, and (v, Sv) = 0 for which $R(v) = \lambda_1$, i.e., $\lambda_1 = \mu_1$ (cf. (2.4) and (2.5)), and hence, $Av = \mu_1 Dv$. Thus, writing $\xi = \rho(\mathscr{L}_{\omega}) e^{i\theta}$, where $\theta = 0$ or π , we have from (1.8) that

$$\{(2-\omega)-\omega\mu_1\}Dv-\omega Sv=\rho(\mathcal{L}_{\omega})e^{i\theta}\left[\{(2-\omega)+\omega\mu_1\}Dv-\omega Sv\right].$$
(3.5)

Taking inner products with v and using that fact that (v, Dv) = 1 since $v \in E_{\omega}$, (3.5) reduces to

$$(2 - \omega - \omega \mu_1) = \rho(\mathcal{L}_{\omega}) e^{i\theta} (2 - \omega + \omega \mu_1).$$

But as equality holds in (3.2) with $\lambda_1 = \mu_1$, then evidently $\theta = 0$, and this implies from (3.5) that $\omega Sv\{1 - \rho(\mathcal{L}_{\omega})\} = 0$, i.e., Sv = 0. Hence, from (1.5), $Lv = \frac{1}{2}(1 - \mu_1)Dv$, and analogously, $L^*v = \frac{1}{2}(1 - \mu_1)Dv$. The case for equality in (3.3) is similarly treated. Q.E.D.

In a similar way, assuming $\Lambda = 0$ in (2.21)-(2.21') gives, from Theorem 5,

Theorem 7

Assuming (1.4) and (2.5), suppose that \mathcal{L}_{ω} has a real eigenvalue ξ with $|\xi| = \rho(\mathcal{L}_{\omega})$ for every $\omega \in [0, 2/(1 + \sqrt{\lambda_1 \lambda_2})]$. Then,

$$\rho(\mathcal{L}_{\omega}) \leq \frac{2 - \omega - \omega \lambda_1}{2 - \omega + \omega \lambda_1} \quad \text{for all} \quad 0 \leq \omega \leq \frac{2}{1 + \sqrt{\lambda_1 \lambda_2}},$$
(3.6)

and

$$\min \{ \rho(\mathscr{L}_{\omega}) \colon 0 \le \omega \le 2 \} \le \frac{\sqrt{\lambda_1 \lambda_2} - \lambda_1}{\sqrt{\lambda_1 \lambda_2} + \lambda_1}. \tag{3.7}$$

Moreover, equality holds in (3.6) for some $\omega \in [0, 2/(1 + \sqrt{\lambda_1 \lambda_2})]$ only if there is a $v \in E_{\omega}$ with Sv = 0 and $\mathcal{L}_{\omega}v = p(\mathcal{L}_{\omega})v$ satisfying $Lv = L^*v = \frac{1}{2}(1 - \mu_1)Dv$.

To make connections with known results for the successive overrelaxation method, it is necessary to restrict the hypotheses of Theorems 6 and 7 somewhat further. With S any skew-Hermitian matrix, assume now that D = I, and that A = I - B, where B is Hermitian with $0 \le \rho(B) \le 1$, so that (1.4) is surely satisfied. In this case, we can choose

$$\lambda_1 = 1 - \rho(B), \quad \lambda_2 = 1 + \rho(B)$$

in (2.5), and for $\Lambda = 0$, we see from (2.14) that

$$\tilde{\omega} = \frac{2}{1 + \sqrt{\lambda_1 \lambda_2}} = \omega_b \equiv \frac{2}{1 + \sqrt{1 - \rho^2(B)}}.$$
 (3.8)

The point here is that $\bar{\omega}$ reduces in this case to the familiar quantity ω_b , which appears frequently in analyses of the successive overrelaxation method. With these added hypotheses, we have, as a consequence of Theorem 7, the

Corollary 8

With D = I and with A = I - B where B is an $n \times n$ Hermitian matrix with $0 \le \rho(B) \le 1$, let S be any skew-Hermitian matrix, and assume that \mathcal{L}_{ω} has a real eigenvalue ξ with $|\xi| = \rho(\mathcal{L}_{\omega})$ for every $[0, \omega_b]$. Then,

$$\rho(\mathscr{L}_{\omega}) < \frac{2(1-\omega) + \omega \rho(B)}{2 - \omega \rho(B)} \quad \text{for every} \quad \omega \in [0, \omega_b], \tag{3.9}$$

and

$$\min \left\{ \rho(\mathscr{L}_{\omega}) \colon 0 \le \omega \le 2 \right\} \le \sqrt{\omega_b - 1}. \tag{3.10}$$

Moreover, equality holds in (3.9) for some $\omega \in (0, \omega_b)$ only if there is a $v \in E_{\omega}$ with Sv = 0 and $\mathscr{L}_{\omega}v = \rho(\mathscr{L}_{\omega})v$ satisfying $Lv = Lv^* = \rho(B)v/2$.

Now, as a consequence of Corollary 8, we have the following result of Kahan [5, Theorem 3.6.18].

Corollary 9

With D = I and with A = I - B where B is an $n \times n$ real matrix which satisfies

(i) B is a nonnegative matrix (i.e., $B \ge 0$), with zero diagonal entries,

(ii)
$$0 < \rho(B) < 1$$
, (3.11)

(iii) B is symmetric,

let L of (1.5) be defined as the strictly lower triangular part of B. Then,

$$\rho(\mathscr{L}_{\omega}) < \frac{2(1-\omega) + \omega \rho(B)}{2 - \omega \rho(B)} \quad \text{for every} \quad \omega \in (0, \omega_b], \tag{3.12}$$

$$\rho(\mathcal{L}_{\omega_b}) < \sqrt{\omega_b - 1},\tag{3.13}$$

and

$$\min \left\{ \rho(\mathscr{L}_{\omega}) \colon \omega \in [0, 2] \right\} < \sqrt{\omega_b - 1}. \tag{3.14}$$

Proof

Using the Perron-Frobenius theory of nonnegative matrices, Kahan [5, Theorem 3.6.18] and Varga [10, Theorem 3] (for the case $0 \le \omega \le 1$) have shown that, with the hypotheses of this corollary, $\rho(\mathcal{L}_{\omega})$ is itself an eigenvalue of \mathcal{L}_{ω} for each $\omega \in [0, \omega_b]$. (For a more compact proof of this in the case that B is irreducible, see Varga [11, § 4.4]). Thus, (3.9) and (3.10) of Corollary 8 are valid. Moreover, as L is defined in this corollary to be the strictly lower triangular part of B, then evidently $\rho(L) = 0$. Consequently, from the discussion of equality in Corollary 8, we must have strict inequality holding in (3.9) and (3.10) for every $\omega \in (0, \omega_b]$, which establishes (3.12) and (3.14). Finally, (3.13) is just the special case of $\omega = \omega_b$ in (3.12). Q.E.D.

For the special case $\omega = 1$ of (3.9) of Corollary 8, i.e.,

$$\rho(\mathscr{L}_1) \leqslant \frac{\rho(B)}{2 - \rho(B)},\tag{3.15}$$

we also remark that this special result of Corollary 8 similarly generalizes results of Fielder and Pták [1, Theorem 3.5].

Actually, it is interesting to point out that Kahan [5, Theorem 3.6.18], under the hypotheses of Corollary 9, shows that

$$\rho(\mathscr{L}_{\omega}) < \frac{2(\omega - 1) + \omega \rho(B)}{2 + \omega \rho(B)} \quad \text{for all} \quad \omega_b < \omega < 2, \tag{3.16}$$

which is exactly the case of strict inequality in (3.3) of Theorem 6, if \mathcal{L}_{ω} has a real eigenvalue ξ with $|\xi| = \rho(\mathcal{L}_{\omega})$ for every $\omega \in (\omega_b, 2]$. The proof

given in [5] of (3.16) however, does not directly snow that \mathcal{L}_{ω} has such a real eigenvalue, and it is an open question if (3.16) is valid under the weaker hypotheses of Corollary 8.

4. Application to Finite Element Approximations

As in Fix and Larsen [2], consider the numerical approximation of the solution of the real linear 2mth order self-adjoint elliptic problem

$$\mathcal{L}u(x) = f(x), \quad x \in \Omega,$$
 (4.1)

where Ω is a bounded region in \mathbb{R}^d , and where \mathscr{L} is given in Ω by

$$\mathscr{L}u(x) = \sum_{|\alpha| \le m} (-1)^{\alpha} D^{\alpha} \{ \rho_{\alpha}(x) D^{\alpha} u(x) \}, \tag{4.2}$$

where we are using standard multi-index notation. For simplicity, we assume that the boundary conditions are homogeneous, of the form

$$D^{\beta}u(x) = 0, x \in \partial\Omega, \quad \text{for all} \quad |\beta| \le m - 1,$$
 (4.3)

where $\partial\Omega$ denotes the boundary of Ω . In addition, for the bilinear form a(v, w) defined on $\mathring{W}_{2}^{m}(\Omega) \times \mathring{W}_{2}^{m}(\Omega)$ by

$$a(v, w) = \sum_{|\alpha| \le m} \int_{\Omega} p_{\alpha} D^{\alpha} v D^{\alpha} w \, dx \tag{4.4}$$

(for definitions of the Sobolev space $\mathring{W}_{2}^{m}(\Omega)$ and related material, see either Strang and Fix [9] or Varga [12]), we assume that

$$a(v,v) \ge C \sum_{|\alpha| \le m} \int_{\Omega} |D^{\alpha}v|^2 dx \quad \text{for all} \quad v \in \mathring{W}_2^m(\Omega),$$
 (4.5)

and some constant C > 0. This guarantees that the elliptic problem of (4.1)-(4.3) admits a unique generalized solution u in $\mathring{W}_{2}^{m}(\Omega)$, i.e.,

$$a(u,v) = \int_{\Omega} fv \ dx \quad \text{for all} \quad v \in \mathring{W}_{2}^{m}(\Omega). \tag{4.6}$$

To approximate this unique generalized solution u in $\mathring{W}_{2}^{m}(\Omega)$ of (4.1)–(4.3), we apply the Ritz-Galerkin (or finite element) method. To this end, let H be a collection of numbers h tending to zero, where h play the role of a mesh spacing, with $0 < h \le 1$, such that for each $h \in H$, there are linearly independent functions $\{\phi_{i}^{h}(x)\}_{i=1}^{N_{h}}$, N_{h} finite, with $\phi_{i}^{h} \in \mathring{W}_{2}^{m}(\Omega)$ for all $1 \le i \le N_{h}$, and for all $h \in H$. Then, for each $h \in H$, we have, in analogy with (4.6), a unique $u^{h}(x) \in T^{h} \equiv \operatorname{span}\{\phi_{1}^{h}(x), \phi_{2}^{h}(x), \ldots, \phi_{N_{h}}^{h}(x)\}$ which satisfies

$$a(u^h, v) = \int_{\Omega} fv \, dx \quad \text{for all} \quad v \in T^h, \quad \text{all} \quad h \in H.$$
 (4.7)

The solution u^h of (4.7) can be expressed as a matrix problem in terms of the basis elements $\phi_l^h(x)$ by

$$A^h c^h = f^h, (4.8)$$

where $A^h = (\alpha_{i,j}^h)$ is an $N_h \times N_h$ matrix, whose entries are defined from (4.4) by

$$\alpha_{i,j}^h = a(\phi_i^h, \phi_j^h), \quad 1 \le i, j \le N_h, \tag{4.9}$$

where $u^h(x) \equiv \sum_{i=1}^{N_h} c_i^h \phi_i^h(x)$, and where $f_i^h = \int_{\Omega} f \phi_i^h dx$, $1 \le i \le N_h$. It is evident from (4.4) and (4.5) that A^h is real, symmetric, and positive definite for any $h \in H$.

To approximate the unique solution c^h of (4.8), we use the successive overrelaxation method of (1.2), and, following the discussion of § 1, we assume that

(i)
$$D^h$$
 is Hermitian and positive definite for all $h \in H$,
(ii) S^h is skew-Hermitian for all $h \in H$. (4.10)

Ordinarily, D^h in practical computations is taken to be some positive definite block-diagonal decomposition of A^h , and S^h is selected so that L^h , defined from (1.5), is strictly lower triangular. We also assume (cf. [2, Lemma 1]) that there is a positive constant K_1 such that

$$0 < K_1 h^{2m} \le \frac{(v, A^h v)}{(v, D^h v)} \le K_1$$
 for all $v \in \mathscr{C}^{N_h}$, all $h \in H$, (4.11)

so that from (2.5), we can set

$$\lambda_1^h = K_1 h^{2m}, \quad \lambda_2^h = K_1 \quad \text{for all} \quad h \in H.$$
 (4.12)

As mentioned in [2], B-spline bases in a Ritz-Galerkin approximation to (4.1)-(4.3) do satisfy the condition of (4.11) (cf. Strang and Fix [8], [9]). In analogy with (2.1), set

$$\tau_{\omega}^{h} \equiv \inf\{|(v, S^{h}v)| : v \in E_{\omega}^{h}\} \quad \text{for all} \quad \omega \in [0, 2], \quad \text{all} \quad h \in H,$$

$$(4.13)$$

where E^h_{ω} and \mathcal{L}^h_{ω} are determined from (1.11) and (1.8) in terms of the matrices A^h , D^h , and S^h . Now if, as in Theorem 7, $\tau^h_{\omega} = 0$ for every $\omega \in [0, 2/(1 + K_1 h^m)]$ for all $h \in H$, we then have from (3.7) of Theorem 7 that

min
$$\{\rho(\mathcal{L}_{\omega}^{h}): 0 \le \omega \le 2\} \le 1 - 2h^{m}$$
 for all h sufficiently small in H . (4.14)

In particular, it follows from (3.6) that

$$\rho(\mathcal{L}_{\omega_h}^h) \leq 1 - 2h^m$$
 for all h sufficiently small in H , (4.15)

where

$$\tilde{\omega}_h \equiv \frac{2}{1 + K_1 h^m}, \quad \text{for all} \quad h \in H.$$
 (4.16)

Note that for $\omega = 1$ in (3.6), we have in contrast that

$$\rho(\mathcal{L}_1^h) \le 1 - 2K_1h^{2m}$$
 for all h sufficiently small in H, (4.17)

which would indicate that a substantial gain in iteration speed is made if $\tilde{\omega}_h$ of (4.16) is used in the successive overrelaxation method, rather than $\omega = 1$. Actually, results similar to that of (4.15) are valid for weaker restrictions than $\tau_{\omega}^h = 0$ for every $\omega \in [0, \omega_h]$ for all $h \in H$, as the next result, Theorem 10, shows. Its proof follows directly from Corollary 3.

Theorem 10

Assume (4.10) and (4.11), and assume for some positive constant K_2 that

$$\tau_{\omega}^{h} \leq K_{2}h^{m}$$
 for all $\omega \in [0, 2]$, for all $h \in H$. (4.18)

If $\omega_h(\mu) \equiv 2/(1 + K_3 h^{\mu})$ for some positive constant $K_3 > 1$, for all $h \in H$, where $0 \le \mu \le 2m$, then there exists a positive K_4 , independent of h, such that

$$\rho(\mathcal{L}_{\omega_h(\mu)}^h) \le 1 - K_4 h^{\max\{\mu, 2m - \mu\}} \quad \text{for all } h \text{ sufficiently small in } H.$$
(4.19)

In particular,

$$\rho(\mathcal{L}_{\omega_h(m)}^h) \le 1 - K_4 h^m, \quad \rho(\mathcal{L}_1^h) \le 1 - K_4 h^{2m}$$
(4.20)

for all h sufficiently small in H. If, however,

$$\tau_{\omega}^{h} \leq K_{2}h^{\sigma}$$
 for all $\omega \in [0, 2]$, for all $h \in H$, $0 \leq \sigma < m$, (4.21)

and if $\omega_h(\mu) = 2/(1 + K_3 h^{\mu})$ for some constant $K_3 > 1$ for all $h \in H$ where $0 \le \mu \le 2m$, then there exists a positive constant K_5 , independent of h, such that

$$\rho(\mathcal{L}_{\omega_h(\mu)}^h) \leq 1 - K_5 h^s$$
 for all sufficiently small $h \in H$, (4.22)

where

$$s \equiv \max \{ \mu, 2m - \mu, 2m + \mu - 2\sigma \}. \tag{4.23}$$

We remark that the results of (4.19) and (4.22) correct the main result of Theorem 1 of Fix and Larsen [2], which as stated has an incorrect proof. It is also believed that the *lower* bounds obtained for $\rho(\mathcal{L}_{\omega})$ in [2] are in error.

as the Kayleign quotient of (4.11) is bounded above by a fixed positive constant K_1 , i.e.,

$$\sup \left\{ \frac{(v, A^h v)}{(v, D^h v)} \colon v \neq 0 \text{ in } \mathscr{C}^{N_h} \right\} \leqslant K_1 \quad \text{ for all } \quad h \in H,$$

it is also the case that

$$\sup \left\{ \frac{|(v, S^h v)|}{(v, D^h v)} \colon v \neq 0 \text{ in } \mathscr{C}^{N_h} \right\} \leq K \quad \text{for all} \quad h \in H, \tag{4.24}$$

for some positive constant K, independent of h, i.e.,

$$\tau_{\omega}^{h} \leqslant \|S^{h}\|_{D} \leqslant K \quad \text{for all} \quad h \in H, \quad \text{all} \quad \omega \in [0, 2],$$
 (4.25)

for those matrices S^h obtained in practical settings by choosing L^h to be the strictly lower triangular part of $D^h - A^h$, where D^h is some block diagonal decomposition of A^h . If no other special properties of the matrices A^h , D^h , and S^h are available, such as the nonnegativity of certain matrices in Corollary 9, then only (4.21) is known to be valid with $\sigma = 0$. But this has a disastrous effect on the upper bound for $\rho(\mathcal{L}^h_\omega)$. In fact, with $K \equiv \Lambda > 0$, it follows from (4.12) that $\lambda_2^h > \lambda_1^h$ and that $\lambda_1^h \lambda_2^h - \Lambda^2 < 0$. Hence, from (2.15) of Theorem 4, we see that

$$\min \left\{ \rho(\mathcal{L}^h_{\omega}) \colon 0 \le \omega \le 2 \right\} \le 1 - Kh^{2m},$$

i.e., in terms of the upper bound for $\rho(\mathcal{L}_{\omega}^{h})$, no ω in (0, 2) gives appreciably better convergence than, say, $\omega = 1$, the case of the Gauss-Seidel method. Of course, this focuses attention on the problem of when (4.18), or (4.21) with $0 < \sigma < m$, is valid.

References

- [1] Fiedler, Miroslav and Pták, Vlastimil (1966). Some results on matrices of class K and their application to the convergence rate of iteration procedures, Czech. Math. J. 16(91), 260-273.
- [2] Fix, George J. and Larsen, Kate (1971). On the convergence of SOR iterations for finite element approximations to elliptic boundary value problems, SIAM J. Numer. Anal. 8, 536-547.
- [3] Forsythe, George E. and Wasow, Wolfgang R. (1960). Finite-Difference Methods for Partial Differential Equations. New York, John Wiley and Sons, Inc.
- [4] Householder, Alston S. (1964). The Theory of Matrices in Numerical Analysis. New York, Blaisdell Publishing Co.
- [5] Kahan, W. (1958). Gauss-Seidel methods of solving large systems of linear equations, Doctoral Thesis, University of Toronto.
- [6] Ostrowski, A. M. (1954). On the linear iteration procedures for symmetric matrices, Rend. Mat. e Appl. 13, 140-163.

- [8] Strang, G. and Fix, G. (1900), Tourier and John Or the Innet Content of Rayleigh-Ritz theory, Studies in Applied Math. 48, 265-271.
- [9] Strang, G. and Fix, G. A Fourier Analysis of the Finite Element Method. 10 appear.
- [10] Varga, Richard S. (1959). Orderings of the successive overrelaxation scheme, Pacific J. Math. 9, 925-939.
- [11] Varga, Richard S. (1962). Matrix Iterative Analysis. New Jersey, Prentice-Hall, Inc.
- [12] Varga, Richard S. (1971). Functional Analysis and Approximation Theory in Numerical Analysis. Regional Conference Series in Applied Math. #3, Philadelphia, Pa., Society for Industrial and Applied Mathematics, 76 pp.
- [13] Wachspress, Eugene L. (1966). Iterative Solution of Elliptic Systems. New Jersey, Prentice-Hall, Inc.
- [14] Young, David M. (1971). Iterative Solution of Large Linear Systems. New York, Academic Press.