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1. Introduction

To iteratively solve the matrix problem
~ Ax=b, ’ (1.1)

~ where b is a given vector in €” and where 4 is a given positive definite
‘Hermitian n X n matrix, the well-known successive overrelaxation (SOR)
iterative method can be applied:

- (D— L)W= {(1 -~ w)D + WL*}x™ + wb, n=0,1,.. - (1.2)

where D, defined as D = diag (4), is evidently also Hermitian and positive
definite, and where L, defined as the strictly lower triangular part of — A4,
evidently satisfies

L+L*=D_ 4. (1.8)

Forany w in (0, 2), it is well-kknown that the iterates x™ defined by
(1.2), converge as n —> oo to the unique solution of (1.1), for any

x@eegn, Interestingly enough, the usual proofs for this convergence (cf.
Forsythe and Wasow [8, p. 239], Householder [4, § 4.8], Varga [11, §3.4],
Wachspress [13, § 4.4] and Young [14, § 4.3]) do not make any spedial

use of properties of the matrix L, other than the obvious one that D — wL
1s non-singular for all real w. One of the objects of this paper is to analyze
the successive overrelaxation iterative method in a way which leads to
extensions of several known results for this iterative method.

-
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Our sterung point will be that we are given any three n X n matrices 4,
D, and $ such that

(1) A and D are Hermitian and positive definite,

(ii) S is skew-Hermitian, 1.e., $* = —§, (1.4)

With these given matrices, we then define then xn matrix L as -
L=}D—-A4+8) - (1.5)

' We remark that L defined in this way evidently satisfies (1.8). Conversely,
for any L satisfying (1. 3), then L has the representation of (1.5) with

§ skew-Hermitian. Of course, the matrix L defined by (1.5) is not in general
strictly lower triangular, and it is not 1mmcd1atcly apparent for which valuc
of w, D — wL is invertible. However, using (1.5), we can write

D — wL=3{(2 — w)D + w4 — wS). ‘ -
With (v, w) = Zf=, vyw, for any v, w € €", then as (v, Sv) is purely
imaginary since S is skew-Hermitian, the positive definite characters of
A.and D give us that

Re(v,(D— wL)>0 forany v#0in¥" any w€E][0,2].

Consequently, D — wL is invertible for all w € [0, 2]. In other words, in
assuming (1.4) and (1.5), the iterative method of (1.2) is well-defined for
any w €[0,2].

To examine the convergence propcrtlcs of the iterative proccdurc of
(1.2) under the assumptions of (1.4) and (1.5), write (1.2) as

x D= @ x4 (D - wL) b, n=0,1,... (1.6)
where the n X n matrix %, is defined by
L., =(D— wL)™{(1 — w)D + wL*}. (1.7)
It then follows from (1.5) that
w ={(2 — w)D + wA — wS} (2 - w)D — wA — wS}. (1.8)

’Now, if Z,v=tvforv#0in€" and if w € [0, 2], then we see from
(1.8) that
£= {(2 — w)(v, Dv) — w(v, Av)} —~w(v Sv) (1.9)
{(2 — w)(v, Dv) + w(v, Av)}— w(v, Sv) ]

* As the terms in brackets in both the numerator and denominator are real
from (1.4), and as w(v Sv) is again purely imaginary, then | ¢ |2 is given
by
, _{(2 — w)(v, Dv) — w(v, Av)}? + w?|(v, Sv)?
1% = gt (1.10)
{(2 — w)(v, Dv) + w(v, Av)}* + wW?*|(v, Sv)|
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wiiere K(v), the Rayleigh quotient, is defined by

v, Av n
R(v)=§v—,_b_z;§ forall v.0€¥n, (2.3)

Because of the assumption of (1.4i), the eigenvalues {4}y of the
associated cigenvalue problem Ax = uDx are all positive and, if we order
these eigenvalues as 0 < py < pr, -+ - < Hp, it is well known that

0<u SR(v)<p, forall py#0ingn (2.4)

In what follows, we assume knowledge of two positive numbers X, and A,
for which
0<A; SR(v)<A, . forall v#0in¥", ' (2.5)

i.C., [)\l’ >\2] 2 [pb un]'
With (2.5), it follows from (2.2) that

P L) S maxiglt, w, 70): Ay <t <A, ),
where we set for convenience

= (2 - w— wt)?+ w2p?
g(t" w, ﬁ)—' (2 —w + wt)2+ w2ﬂ2‘

(2.6)

Then, as the maximum of g(t, w, B), considered as a function of t for
A; <t < A,, must occur at either A 1 OT A,, we immediately have

Theorem 2 . ,
Assuming (1.4) and (2.5), then for any w € [0, 2],

p'Z( -?w) < max {go\lr W, ITw); gO2: -OJ, Tw)}° (2. 7)

If equality holds in (2.7) for some w € (0, 2), then either A, = U, or
A2 = M, and there is a v €E,, with | (v, Sv)| = 7, such that v is an cigen-
vector of Ax = uDx, with corresponding eigenvalue either KMy orp,. -

Since g(t, w, B), as defined in (2.6), is, for fixed t> 0 and for fixed
w € (0, 2), a monotone increasing function of B, then replacing 7, in
(2.7) by any upper bound of 7, preserves the inequality (2.7) of Theorem
" 2. One easily derived upper bound for 7, is obviously given by

IISlip = sup {%—g—%-:b'# Oin ?f’} , (2.8)

since, from the definition of T, in (2.1), we evidently have

P o<r,<|ISl, forall we [0, 2]. (2.9)
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Thus, if p(C) = max {|A|: det (M — C) = 0} denotes the spectral radius of
any n x n matrnx C, then on defining the non-empty sct

E,={v€€": (v,Dv)=1, L,v=tv,and |£| = p( L)), (L.11)
we have from (1.10) that

A2,)= {2—w—w(v,Av)}2+w2|(v’ Sv) 2
P ) e o e, Ay T, S)P

forany v€E_.
(1.12)

We remark that a similar expression for p’( Z.,), derived from stfongcr
hypotheses, appears in Fix and Larsen [2]. Equivalently, we can write

(1.12) as .
C4w(2 — w)(v, Av)

(2 —w+ o, )2+ [(, So) P 7Y ¥ EEq,
(1.18)

pALL)=1—

Interestingly enough, the expression in ( 1.13) immediately gives a proof
of (1.14) of Theorem 1 below, known in the literature, under varying
stronger hypotheses, as the Ostrowski-Reich Theorem (cf. [6], [7]). For
the remainder of Theorem 1, the proof of [11, p. 78] can be applied

without change.

Theorem 1
Assuming (1.4),

p(£,)<1if and only if w € (0, 2). . (1.14)

Conversely, assume that 4 is an Hermitian n x n matrix, that D is an
Hermitian and positive definite n X n matrix, and that D — wL is
invertible, where w € (0, 2). Then, '

(£, )<1lif and only if 4 is positive definite. (1.15)

2. General Upper Bounds

LetA, D, and S be any n X n matrices satisfying (1.4). For any
w€ [0, 2], set :

To = inf{|(v, Sv)|:v EE_}. ‘ | (2.1)

It is then evident that there is at least one p € E,, for which 7, = |(v, Sv)l.
Hence, from (1.12), we have for such a v that

2 _(2-— W — wR(v))? + w72
P L) C— ot oR@) o (2.2)
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For our purposes below, we postulate the existence of a rcal number |,
with 0 < A < || §||p such that

0<7,<A forall wEe[o,2]. (2.10)

Then, as an immediate consequence of (2.7) of Theorem 2, we have

Corollary 3
Assuming (1.4), (2.5), and (2.10), then for any w € [0, 2],

P (Z,) < max{g(Ay, ©, A);g(A,, w, A)). (2.11)

Now, because the functions g(A,, w, A) and g(A,, w, A) depend only on
W, we can determine the minimum of the right side of (2.11) of Corollary
3, as a function of w.

Theorem 4
Assuming (1.4), (2.5), and (2.10), then

P(Lw)<gMy, w,A) forall w€[0,2]if\, =\, or if A, >\,
and A\, A, — A%<0. (2.12)
Similarly, if A, > A, and AiA; — A?> 0, then

{pz(s’w)<g<x,, @A) forall w€[o, o, (2.18)

PH L) <g(h,, w, A) forall we€[®,?2],

where @ is defined by

& 2 : (2:14)
LA N = A2 |

~In particular,

. 2 oy
min {p*(£_): 0 < w < 2} <g(?\,,1+\/)\§+A2,A)<11f)\,—)\2,
Orisz >)\l and )\,7\2——-1\2 <O, : (2.15)

and

2 .
' (mm{pz(.?w):0<w<2}<g()\,, 1 +\/m, A)< Lif Ay > A,

d — AT + A2
an 0<)\1)\2 A lv (2‘16)

" —

rnin{pz(.i"w):0<w<2} <g()\1, (:), A)< 1 if)\2>kl
\ and A\Z+AZ <A\, — AL,
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Froo

\\:ithf(z,l 1) of Corollary 3, we first determine for which values of

w € [0, 2] we have g(\,, w, A) = g(h,, w, A). Of course if w =0 or = 2,
this inequality 1s trivially satisfied. Similarly, if A, = A, this inequality is
satisfied for all w € [0, 2], which gives us part of the conclusion of (2.12).
For the case that A; > A, and w € (0, 2), then g(A,, w, A) > g(A,, w, A)

if and only if

4— 4w+ wHl -, — AW} >0. ' (2.17)

If \;A; — A? > 0, there is only one zero of (2.17), viz. & given by (2.14),
which lies in the interval (0, 2). If \; A, — A? < 0, (2.17) has no zeros in
(0, 2), and thus, g(A,, w, A) 2 g(A,, w, A) forall w € [0, 2]. This then
proves (2.12) and (2.13).

Now, we minimize g(\, w, A), for fixed A = 0, as a function of
w € [0, 2]. It is easy to verify that there is a unique minimum of
g(A, w, A)in [0, 2] at '

N =
1+4/A2+A%
so that
g @, A) =g\, d(A), A) forall wE€ [0, 2]. " (2.18)

Applying the above inequality then to (2.12) obviously gives the desired
result of (2.15).

Suppose now that A, > A, and that 0 <\, A, — A2 < A% + A% Then,
&(A;) € @, and it follows from (2.13) and (2.18) that

min{p*( L, ): 0<w< @} < min{g(Ay, W, A): 0 S w < D} =
=g(A1, (), A). : (2.19)
On the other hand, as ®(\;) < &, it follows from (2.18) and (2.18) that

min {p*( £,,): ® < w < 2} < min{g(A;, @, A): @ < w < 2} = |
=g(A3, @, A)=g(\;, @, A). - (2.20)

Thus, upon combinihg the inequalities of (2;19) and (2.20) and using

(2.18), we have :

min{p?(£,): 0 < w <2} <g(A,, G(\,), A),

which establishes the first inequality of (2.16). The sccond inequality of
(2.16) is similarly derived. Q.E.D. |
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A careful examination of the proof of Theorem 4 shows that we can
relax the hypothesis of (2.10) slightly to
0<7, <A for 0SKwWKOA)IfA; =2, orif A\, > A, and

AAg— A2 <A + A, (2.21)

and

0<7,<A for 0Sw<® if\,> A, and
)\2+A2<7\1X3——A2 : (2.21")

and prove, from (2.11) of Corollary 3, the followmg result like that of
Theorem 4. This will be useful in thc next section.

- e

— q..A‘-.M.J LR

Theorem 5 v
Assummg (1 4), (2.5), and (2 21)—(2 21'), then

2
2(_2”,_.,)<g(7«,,w A) forall O<w<l+m

if Az =Xy, 0rif Ay > X and A A; — A2<AZ+ A2 (2.22)

and A
P &) <g(ry, w,A) forall 0w ®ifA; >, and

AT+AZK AN, — AL | ' (2.23)

In parﬁmlar,‘ "

A

2 )

A, x,, onf7\3>)\, and m\, A"<)\,+A’ | (2.24)
min {p( Z,,): O<w_<2} <g(A, O, A)<1 if A; >, and
NN, AL (2.25)

..“-q ..‘-:::6;-3. .e e ' | -

3. The Special Casa A=0 = - **viws
The bounds deduced i in Theorem- 4m rather i mtcrcstmg in the spedal case
that A= 0in (2.10),1.c., lf

mf{l(v Sv)l:vEE}=0 foral] w € [0, 2].

In fact, it is easy to see from (1.9) that a v exists in E, for w € [0, 2],
with its corrcspondmg cigenvalue ¢ of % ,v = ¥v being real, if and only if

(3.1)
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w(v, Sv) = U. in otuer worus, assuming A = 0 in (2.10) 1s equivalent 1o
assuming that £, has a real eigenvalue § with | £ = pP(& ), for every
w € [0, 2]. Thus, m assuming A = 0, then as A} <\, A, Theorem 4
reduces to the following

Theorem 6
Assuming (1.4) and (2.5), suppose that &, has a real eigenvalue ¢ with

1§l = p(2,) for every w € [0, 2]. Then,

2'—‘(0‘—‘(.0}\1 2 .
f —_— .
p(g“’)<2—-w+w)\, or all 0<w<l+m (3.2)
and
w>\2+w—2 2
< f —_— . .
4p($jw) o 2w or all l+m<w<? (3.3)
In particular, ,
| mjn{p(:fw):0<w<2}”<3’i:’)"“)“ (8.4)

\/Xx)\z +A

Moreover, equality holds in (8.2) for some w € [0, 2/(1 + v/A10,)] (resp.
(3.3) for some w € [2/(1 +1/X;X;), 2]) only if there is a v € E_, with
Sv=0and &,v=p(L,)(resp. L ,v=—p(L,)) satisfying
Lv=L*v=%(1 — p,)Dv (resp. Lv=L*v =4(1 — Mp)Dv).

Proof ‘ }
Equations (3.2)-(3.4) follow directly from Theorem 4. If cquality holds

in (3.2) for some w € [0, 2/(1 + \/A{X;)], then, as in the case of cquality
in Theorem 2, thereisav €EE,, with & ,v = v, ¢ real, and (v, Sv) =0 for
which R(v) =4, i.e., A; = p, (cf. (2.4) and (2.5)), and hence, Av = u,Do.
Thus, writing £ = p(2_)) ', where 8 = 0 or m, we have from (1.8) that

A2 — @) — wy}Do — wSp = p( L) P [{(2 — w) + wity} Do — wSo].
. - (83)
Taking inner products with » and using that fact that (v, Dv) = 1 since
v EE,,(3:8) reducei to . —_—
2= w—owm)=p(2L,)e"(2 - w+wp).

But as equality holds in (8.2) with A = p,, then evidently 8 = 0, and this -
implies from (38.5) that wSv{1 — (L)} =0,i.c., Sv = 0. Hence, from
(1.5), Lv = 3 (1 — p,)Dv, and analogously, L*v = 4(1 — p,)Do. The case
for equality in (3.8) is similarly treated. Q.E.D. '

In a similar way, assuming A = 0 in (2.21)-(2.21') gives, from Theorem 5,
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Tneorcm 7
Assuming (1.4) and (2.5), suppose that %, has « rcai cigenvalue £ with

It} =p(L,,) forevery w € [0, 2/(1 + /A 73)]. Then,

2 —w — WA, 2
p(& ‘*’)<2—-w+ Ny forall.0<w<—'--~——1+\/.)—\l—)\2, (8.6)

J

and

min{p(.z’w):o<w<2}<l\g"£ﬁ | ' (8.7)

1A +

Moreover, equality holds in (3.6) for sorme w € [0, 2/(1 + /A1 ;)] only
if there isav EE,, withSv = 0 and &L v = p( &, )v satisfying
Ly = L*p = (1 — p,)Dv.

To make connections with known results for the successive overrelaxa-
tion method, it is necessary to restrict thé hypothcscs of Theorems 6 and
7 somewhat further. With S any skew-Hermitian matrix, assume now that
D =1, and that 4 =I — B, where B is Hermitian with 0 < p(B) < 1, so that
(1.4) is surely satisfied. In this case, we can choose

A =1—p(B), A=1+p(B)
in (2.5), and for A = 0, we see from (2.14) that
2 | » . 2 .
1+\/)\,x2 T Iy T= B
Thc point here is that & rediées in this case to the familiar quantity w,,

which appears frequently in analyses of the successive overrelaxation
method. With these added hypotheses; we havc, as a conscqucncc of

Theorem 7, the

w=

i

(3.8)

- Corollary 8 :
WithD =1 and with4 =71 — B whcch 1s an n X 7 Hermitian matrix with

0< p(B) <1, let S be any skew-Hermitian matrix, and assume that %,
‘has a rcal clgcnvaluc ¢ w1th 1El= p(.?,’w) for every [O wp)- Then,

2(1 — w) + wp(B)

(L) < 2—wp(B) for cvéry’ WE[0, W], | '«(.3.9)
and ' : ‘ '
min{p(L,): 0Sw<2} </wp—1L (8.10)

Moreover, equality holds in (3.9) for some w € (0, w,) only if there is a
vEE, withSv=0and & v =p(L ) satisfying Lv = Lv* = p(B)v/2.

Now, as a consequence of Corollary 8, we have the following result of
Kahan [5, Theorem $.6.18].
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Corollary ©
With D =] and with 4 =1 — B where B is an n X n real matrix which
satisfies
() B is anonnegative matrix (i.c., B 2 0), with zero diagonal
entres,
(ii) 0<p(B)< L , (8.11)
(iii) B is symmetric,

let L of (1.5) be defined as the strictly lower triangular part of B, Then,

2(1 —w) + B , &
L)< 0 c)op(c;f( D forevery we@wml @iz
P(Luy) < \/wb‘ -1, (3.18)
and ‘ . | '
min{p(£,): @ € [0,2]} < /@35 —1. - (8.14)
~ Proof

Using the Perron-Frobenius theory of nonnegative matrices, Kahan [5,
Theorem 3.6.18] and Varga [10, Theorem 3] (for the case 0 < ¢y < 1)
have shown that, with the hypotheses of this corollary, p(2,,) is itself -

“an eigenvalue of &, for each w € [0, w,). (For a more compact proof
of this in the case that B is irreducible, see Varga [11, § 4.4]). Thus, (3.9)
and (8.10) of Corollary 8 are valid. Moreover, as L is defined in thjs
corollary to be the strictly lower triangular part of B, then evidently
p(L) = 0. Consequently, from the discussion of equality in Corollary 8,
we must have strict inequality holding in (8.9) and (3.10) for every
w € (0, wp], which establishes (8.12) and (8.14). Finally, (3.13) is just
the speaal case of w = w, in (3.12). Q.E.D. o .

For the special case w = 1 of (3.9) of Corollary 8, i.ec.,

p(Sf"x).Sv%; - | - '(3.'15)

we also remark that this special result of Corollary 8 similarly generalizes
results of Fielder and Ptik [1, Theorem 8.5}. . - =

Actually, it is interesting to point out that Kahan [5, Theorem 3.6.18],
under the hypotheses of Corollary 9, shows that , -

-

©=1)*(B) form w,<w<2, (8.16)

2 + wp(B)

p(2) <2

which is cxactly the case of strict inequality in (8.8) of Theorem 6, if Lo
has a real eigenvalue ¢ with | ] = p(Z,,) for every w € (w,, 2]. The proof
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given in [5] of (3.10) however, does not directly snow G & hus such ¢
real eigenvalue, and it is an open question if (8.16) is valid under the
weaker hypotheses of Corollary §.

4. Application to Finite Element Approximations

As in Fix and Larsen [2], consider the numerical approximation of the
solution of the real lincar 2mth order self-adjoint elliptic problem

ZLu(x)=fx), =€, : (4.1)
where £ is 2 bounded region in &%, and where & is given in Q by
Lulx)= T (—1)*D*{po(x)D%u(x)}, (4.2)
[+ ] m

where we are using standard multi-index notation. For simplicity, we
assume that the boundary conditions are homogeneous, of the form

DPu(x)=0,x €3Q, forall |fl<m—1, (4.3)

where 32 denotes the boundary of 2. In addition, for the bilinear form
a(v, w) defined on WZ'(2) x W3 (S2) by ‘ |

a{v,w)= 2 f poDvD dx ' (4.4)
(for definitions of the Sobolev space W2 (S2) and related material, see
cither Strang and Fix [9] or Varga [12]), we assume that

a(v,0)>C 3 [ ID%*dx forall »E€WF(Q), (4.5)
) lael<m g5

and some constant C > 0. This guarantees ‘that the elliptic problem of
(4.1)~(4.8) admits a unique generalized solution u in W3'(£2), i.c.,

a(u,v)= [ fodx "forall v € WH(Q). (4.6)

To approximate this unique generalized solution u in Wﬁ"(ﬂ) of (4.1)-
(4.3), we apply the Ritz-Galerkin (or finite element) method. To this
end, let H be a collection of numbers £ tending to zero, where h play the
role of a mesh spacing, with 0 < h < 1, such that for each h € H, there are
linearly independent functions {¢ (x)}ﬁh, N,, finite, with ¢ € W&"(Q) for
all 1 <: < N,, and for all k € H. Then, for each h € H, we have, in analogy
with (4.6), a unique u”(x) € 7" = span {¢/} (x), ¢4 (x), - - -, q&;’vh(x)} which

satisfies

a(u",v)= [ fodx forall vET" all hEH (4.7)
0 .
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The solution u” of (<.7) can be expressea as « matrix problem in terms of
the basis elements ¢;'(x) by

Akh = fh, (4.8)
where 4% = (o] ;) is an N, x N), matrix, whose entries are defined from
(4.4) by _ .
a{",=a(¢1h, ¢[h)9 1 <i’j<Nh! . (4.9)
where u*(x) = Z{ cf¢f'(x), and where £ = [, foh dx; 1 < SN, Itis
evident from (4.4) and (4.5) that 4" is real, symmetric, and positive

definite for any h € H.
To approximate the unique solution ¢* of (4.8), we use the successive

overrelaxation method of (1.2), and, following the discussion of §1, we
assume that

(i) D" is Hermitian and positive definite for all h € H,

(ii) S" is skew-Hermitian for all k € H. (4.10)

Ordinarily, D" in practical computations is taken to be some positive
definite block-diagonal decomposition of 4%, and S is selected so that
L* defined from (1.5), is strictly lower triangular. We also assume (cf. [2,
Lemma 1]) that there is a positive constant X, such that

h
0<K1hm<%<l{l forall v€ €¥n, all h € H, (4.11)

so that from (2.5), we can set .
Al=K,h*", A=K, forall hEH (4.12)
As mentioned in [2], B-spline bases in a Ritz-Galerkin approximation to

(4.1)-(4.3) do satisfy the condition of (4.11) (cf. Strang and Fix [8], [9]).
In analogy with (2.1), set ,

T =inf{l(v, S*)|: v EER} forall w€[0,2], all hEH,
| (4.13)

where E}) and .?';, are determined from (1.11) and (1.8) in terms of the
matrices A%, D*, and S*. Now if, as in Theorem 7, 7%, = 0 for cvery
w € [0, 2/(1 + K,h™)] for all h € H, we then have from (8.7) of Theorem
7 that

min {p(L1): 0< w<2) <1 —2r" forallh sufficiently small

in H. , (4.14)

In particular, it follows from (3.6) that .

p(.??;,h) <1-—2h™ forall h sufficiently small in H, (4.15)



where

@hgm, forall hE€AH. (4.16)

Nate that for w = 1 in (3.6), we have in contrast that
| p(#£%) < 1— 2K,k forall h sufficiently small in 1, (4.17)

which would indicate that a substantial gain in iteration speed is made if
@), of (4.16) is used in the successive overrelaxation method, rather than
w = 1. Actually, results similar to that of (4.15) are valid for weaker
restrictions than 7%, = 0 for every w € [0, w,] forall k € H, as the next
result, Theorem 10, shows. Its proof follows directly from Corollary 3.

Theorem 10 ,
Assume (4.10) and (4.11), and assume for some positive constant K,

that
™ < K,h™ forall WEJ[0,2], forall hEH (4.18)

If wp(p) = 2/(1 + K3h*) for some positive constant K5 > 1, for all A € H,
where 0 < g < 2mj then there exists a positive X 4, independent of A, such
that :

p(’g’}t‘-)h(ﬂ)) <1-—-K.h “‘"‘“"2’"““]‘ for all & sufficiently small in H, .
: (4.19)

In particular,

p_(.?.’(“,h(m)) K1 -—-Kbh™, p(Lh)<1—Khp2m (4.20)
forall h sufﬁciént?ly small in H. If, however,

Th, <K,h° foral w€[0,2], forallk €H, 0<o<m, (4.21)

and if w, (1) =2/(1 + K3h*) for some cofistant K, > 1 for all k € H where
0 << u < 2m, then there exists a positive constant K, independent of A,
such that - -~ :

p(.?"’oho,)) < 1-—— K:h‘ for all sufficiently small hE€H,  (4.22)
where | | . | o
s = max {,2m — p, 2m +p — 20}. (4.23)

'We remark that the results of (4.19) and (4.22) correct the main result
of Theorem 1 of Fix and Larsen [2], which as stated has an incorrect
proof. It is also believed that the lower bounds obtained for p(Z)in
[2] are in error.
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it is also the case that

5 e <5 s 10
sup { . D) v in : forall h€E€H, r (4.24)

for some positive constant K, independent of h, i.c.,
- ¢<|]Sh||D<K forall AhEH, all wE€]|O,2], (4.25)

. for those matrices-S" obtained in practical settings by choosing L" to be
the strictly lower triangular part of D* — 4%, where D* is some block
diagonal decomposition of A". If no other special properties of the matrices
AP, D" and S" are available, such as the nonncgativity of certain matrices

in Corollary 9, then only (4.21) is known to be valid with ¢ = 0. But this
has a disastrous cffect on the upper bound for p(#£%)). In fact, with

K= A> 0, it follows from (4.12) that A > A} and that MjA} — A2 <.
Hence, from (2.15) of Theorem 4, we see that

min{p(Z£"): 0K w<2}<1-—Kh?>",

i.c., in terms of the upper bound for p(£%,), no w in (0, 2) gives
apprccxably better convergence than, say, w = 1, the case of the Gauss-
Seidel method. Of course, this focuses attention on the problem of when
(4.18), or (4.21) with 0 <0 <m, is valid.
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