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On Collections of G-Functions*

DAVID H. CARLSON** sxp RICHARD S. VARGA*
Kent State University

Kent, Ohio

Communicated by Hans Schneider

1. INTRODUCTION

Weighted row and column sums of an # X # complex matrix have
always played a central role in the Gerschgorin circle of ideas for obtaining
regions of eigenvalue inclusion for matrices. The object of this paper is
to generalize previous results [4], dealing with the sharpness of the boundary
of an eigenvalue inclusion region for a collection of weighted row sums, to
general collections of the more recently introduced G-functions (see [3]).

2. NOTATION

Following Hoffman [3] and Carlson and Varga [1], let Z,, n > 2, be
the collection of all functions f = (f,,..., f,) for which f: C*» — R 4", that
is, 40 > f(4) >0 for all + =1,2,..., %, and all 4 € C"", and for
which / depends only on the moduli of the off-diagonal entries of any
A = (a;;) € C™n, that is, if B = (b, ;) and 4 = (a;,) are in C** with
[bs,5] = |as,,| for all i 3£ 4, 4§ =1,2,..., %, then {,(B) = f,(4) for i =
L,2,...,n Anfe2,is said to be a G-function if, for every 4 = (a, ;) €
Cmn with

lassl > fi(d),  i=1,2,..n, 2.1)
then 4 is nonsingular. Equivalently, if 4 is any eigenvalue of A, then A
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66 DAVID H. CARLSON AND RICHARD 5 VARGA
is contained in at least one of the # disks G/(4) in the complex plane, where
G/ (A) = {zeCa;,; — 2| < [i(4)} (2.2)

Thus, if S(4) denotes the collection of all eigenvalues of 4, then for any
AeCmm,

si)c Cj G/ (A) = G/(A). 2.3)
i=1

Next, for any 4 = (a; ;) € C™", let

QA = {B = (bi.j) € Cn’n: bi,’i = ai’i,

bi,f‘ = la’i,jl’ i' 7 = 1: 2)' . ey 1’L}
2.4)

Because any G-function depends only on the moduli of the off-diagonal
entries of a matrix, the inclusion of (2.3) can be strengthened to S(B) C
G*(A) for any Be 2, Thus, if

S(R,) = {Ae C: det(Al — B) = 0 for some B e}, (2.5)
then for any 4 € C*" and any G-function f in 2,
S, c GHA). (2.6)

Consider now any non-empty collection § of G-functions in #,. As
(2.6) is then valid for each [ € §, it necessarily follows for any A € C™m that

S(Q,) C M 6HA) = G¥A). 2.7)
e

As in [4], we are interested in whether the inclusion of (2.7) is sharp for all
A € C™n, that is, if each boundary point of the set GB(A) in the complex
plane is an eigenvalue of some B € Q4 for every A € C™", which we would
write as

3G%(4)c S(R2,) forany AeCrm (2.8)
Next, for any 4 € C**, we define
Q4= (B = (b1) €O by = ays [bis < Jacslyini = 1,2, o),
(2.9)

and analogously set
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S(@.4) = {A€C: det(Al — B) = 0 for some Be 0}, (2.10)

It is clear that

S(2)C S UGYB), (2.11)
Bef)A

the second inclusion following from (2.7). However, we are interested in
when the more precise formula

S, = G¥4) (2.12)

is valid. We shall consider the questions of (2.8) and (2.12) for general
collections of G-functions in &,,.
For f,ge &#,, we say that f > g if

f{4) > gi4) forall i=1,2,...,n, andall AeCrn (2.13)

A G-function f is minimal (see (1]) if it is minimal with respect to the
partial order determined by (2.13), that is, if g€ P, is a G-furniction with
g</ theng =1

3. SOME LEMMAS
We begin with

Lemma 1. For § any collection of functions in P, and for any A € Crn,
define, for any ze C,

v(2) = vg(z; 4) = inf{max(f,(4) — |a;; — 2|)}. (3.1)

e 1<i<n

Then, z € GY(A) if and only if v(z) > 0.

Proof. Ifze G8(A), then it follows from (2.7) that for each fe g,
there is an integer ¢, 1 <7 <#, such that la; ; — 2| < f,(4), that is,
max;<;<n(fi{d) — |a;; — 2]) > 0. As this is true for all e, then

»(z) = 0. Conversely, if »(2) > 0, then max; <i<n(fi(4) — |a;; — 2]y =0
for any fe §. Thus, for each fe &, there is an ¢, 1 < 1 < n, for which
|ai,s — 2| < fi(4), that is, z€ GF(A) C G/(A). As this is true for each
f€g, then ze G¥(4). Q.E.D. '
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For any collection § of functions in #, and for any (fixed) 4 € Crom,
it is easy to see that v(z) = vg(z; A) is a (uniformly) continuous function
of 2. This is useful in proving

LemMa 2. Forg any collection of functions in P and for any A e Crn,
then z € 0G¥(A) if and only if v(z) = 0 and there exists a sequence of complex
numbers {z,}v_, with Zn = % for which v(z,) < 0 foralln =1,2,. .. .

Proof.  Since G7(4), from (2.2) and (2.3), is the union of closed bounded
disks in C, then G%(A) is a closed bounded set in C. Thus, if z € G¥A) =

GYA) N (GF(A))', then ze GB(4), which implies from Lemma 1 that
»(z) = 0. On the other hand, if ze (G%(A4))’, there is a sequence {z,}_,
in (G¥(4))’ for which Zn = 4. By Lemma 1, »(2,) < 0 for each # — 1,2,....
Thus,‘ from the continuity of v, it follows that »(z) = 0, which establishes

one part of Lemma 2, Conversely, if ¥(z) = 0 and 2, — 7 with v(2,) <0,
then 2€ G%(4) from Lemma 1, and s (GB(A4))', thatis, ze 3G%(4). Q.E.D.

Lemma 8. For § any collection of G-functions in Py, and for any

AeCmrn et = (T1e oo, T,) € C* with ¢ = 0 be such that the n x n matrix
71 - ,41,2, o — ]“1,nf
wig) = | Tl m e e (3.2)
— ol —lanal e,

18 a singular M-matrix. Then,

inf{max(f,(4) — v,)} > 0. (3.3)

€F 1<i<n

Proof. For f any G-function, it is known [1, Proposition 1] that the
matrix M’ (4), determined from (3.2) with ¢, = f:(4),7=1,2,.. ., %, is an
M-matrix. Consequently, if WM (A) of (3.2) is a singular M-matrix, then
/:(4) cannot be less than tiforalli =1,2,. .. 4, that Is, max, ;. (f,(4) —
7;) 2 0, from which (3.3) follows. Q.E.D.

Lemma 3 then serves to motivate our next definition,

DEFINITION 1, Lot & be a collection of G-functions in P, Then, for
AeCm §is full at A if, for each v = (z,,. .., Ta) € C™ with v > 0 jor
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which the n X n matrix M (A) of (3.2) is a singular M -matrix, then

inf{max(f,(4) — 7,)} = 0. (3.4)

e 1<in

I} § is full at each A € C™™, then § is said to be full,

Before proving Lemma 4, it is necessary to introduce some additional
notation. Given any reducible 4 € C*”, it is well-known (see [5, p. 46])
that there is a permutation matrix P e C*» and a positive integer m with
2 << m < m, such that

11.1 frl,z ffl,m

0 “1’2,2 JZ,m

PAPT = , (3.5)

0 0 . | .
where each square submatrix 4, ,, & =1, 2,.. ., m, is either irreducible
oral x Inull matrix. The form (3.5), called the reduced normal form of A,
gives rise to a partitioning of {1, 2,.. ., #} into m disjoint nori-empty sets
Sy = Si(A4), corresponding to the distinct connected components of the
directed graph for 4. The subsets S, do not depend on the choice of the
permutation matrix P. Foreachi = 1,2,..., n, let (1) denote the unique

subset S, containing 4, and, for each x € C* with % > 0, define the G-
function 7 = (7,2,.. ., 7,%) in 2, (see [1]) by

1 .
PoA) == lag v, i=1,2,...,n, (3.6)
X jeciy
i
where we take 7,7(4) to be zero if (¢) = {i}. If 4 is irreducible, then we
define (v) = {1,2,...,#n} for each 7 = 1, 2,...,n. In this case, the sum
of (3.6) becomes the familiar row sum

13 .
rA) = — D |aisln;, i=1,2,... n, (3.7)
J#
and as is well-known, »* = (1%, ..., 7,%) is a G-function in 2, for each

x € C" with x > 0.
As a result of Theorem 6 of [1], we can establish

Lemma 4. Given A € C*, a collection F of G-functions in ‘@" s full
at A if and only if, for every x = (xy,..., x,) € C* with x > 0, we have
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inf{max(f,(4) — #2(4))} = 0. (3.8)

T I<i<n

Proof. Suppose that § is full at 4. Then, for any x € C* with x > 0,
let 7; =7,°(4), 4 = 1,2,...,n. From [1, Theorem 6], the matrix m(4)
of (3.2) is a singular M-matrix. Since § is full at 4, then (3.4) is valid with
7; = 7,%(4), that is, (3.8) holds. Conversely, suppose that & is a collection
of G-functions in &, which satisfies (3.8) for any x € C" with x > 0. For
any v = (71,..., 7,) € C" with 7 > 0 such that M*(4) of (3.2) is a singular
M-matrix, it follows, whether A4 is irreducible or reducible, that there is a
vector y € C* with ¥ > 0 such that (see [1, Theorems 2 and 6])

T, = 7YA) forall j=1,2,..., % (3.9)
Now, writing f;(4) — 7; as the sum
(fi(d) — 75) = (15(4) — 72(4)) + (##(4) — 1)),
it follows that

max(f;(4) — 7;) < max(f;(4) — 7,7(4)) + max(?¥(4) — 1),

1<ji<n 1<si<sn 1< j<n

and taking infimums over § and invoking (3.8) gives

inf{max(f,(4) — 7;)} < max(?¥(4) — 7,) <0

T 1<j<n 1<s<n

the last inequality following from (3.9). But as the reverse inequality
necessarily also holds (see (3.3) of Lemma 3), then infg{max; ;. (f,(4) —
7;)} = 0, thatis, ¥ is full at 4. Q.E.D.

In what follows, we will consistently use the notation ¥ for the follow-
ing collection of G-functions in 2,

¥ = {7 = (71°,..., /%) xe Cr with v > 0}, (3.10)

where 7/ is defined in (3.6). It is clear from Lemmas 3 and 4 that §' is
full, that is, full at each 4 € C™n. It is also convenient to deﬁne the collec-

tion i‘s- of G-functions in £, as
= {r" = (r®...,7,%:x € C" with x > 0}, (3.11)

where 7% is defined in (3.7). It is clear that § is full at each irreducible
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matrix in C™7, for if 4 is irreducible, then 7*(4) = 7%(4). We shall later
show that % is also full.

4. MAIN RESULT

With the Lemmas of Sec. 3, we can prove our main result, which
generalizes Theorems 4 and 6 of [4].

THEOREM 1. Let § be a collection of G-functions in P,. The following
conditions are equivalent:
1) s full at A;
(i) G5(4) = GY(A)(= MusneG(A):
(iti) 9GT(A)C S(Q,);
(iv) S(Q, = G¥(A).

Proof. TFirst, assume that § is full at 4. Since § is composed of G-
functions in &, then, for any fe& &, it is known (see Fan [2] for the
irreducible case and [1, Theorem 6] for the general case) that

f(A) =72(4), i=1,2...,n (4.1)

for some % € Cr with > 0. Thus it follows from (4.1) and the definitions
of vg(z; A) and vg(z; 4) in (3.1) that

vg(z; A) = vy (z; 4) 4.2)
for all ze C. On the other hand, for any fixed xeC” with x > 0, we can -
write

flA) — las; — 2| = (fi(4) — 78(4)) + (##(4) — |a, — z|),
so that

max(f;(4) — |a; ; — 2|) < max(f,(4) — 7,5(4)) + max(7»(4) — |a;,: — 2|)-
1<i<n 1<i<n I<i<n
Taking infimums over § and applying (3.8) of Lemma 4, since § is assumed
full at A, we have

”{g(z} A) < max(7,5(4) — l“m‘ - Zl)’

1<isn

and since this is true for any x € C" with » > 0, then vg(z; 4) <y (z; 4),
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which, when coupled with the inequality of (4.2), gives us that
vele; A) = vy l(z; 4) (4.3)

for any ze C. Thus, from Lemmas 1 and 2, we necessarily have from
(4.3) that (ii) is valid. Thus, if 4 is irreducible, then 7°(4) = r%(4) for
every x € C" with x > 0, and it follows directly from [4, Theorems 4 and 6]
that (iii) and (iv) are also valid. If, however, 4 is reducible, one can apply
the results of [4, Theorems 4 and 6] to each of the diagonal submatrices
of the reduced normal form for A (see (3.5)) to again conclude that (iii)
and (iv) are valid.

Conversely, assume that § is not full at A. Thus, there is a 7 =
(z1,. - ., Ty) € C* with 7 > 0 for which the matrix M*(4) of (3.2) isa singular
M -matrix, such that

inf{max(f;(4) — 7;)} = a # 0. (4.4)
T I<i<n
From Lemma 3, we know that « must then be positive. Defining o0 =
max; ., Ts Set a4, =0 — 7, i=1,2,...,n, so that each a,; is non-
negative. Since f(4), for each f € §, depends only on the moduli of the off-
diagonal entries of 4, we may assume these entries to be non-negative;
this then fully defines a non-negative matrix 4 € C*™.

It is easily seen that o is p(4), the Perron-Frobenius eigenvalue of the

non-negative matrix A. Consequently, p(4) € S(€2,), and thus from (2.7),

p(4) € GB(A). (4.5)
Consider now »(p(4)) = vg(p(4); 4). From (3.1) and (4.4), we have

¥(p(A)) = inffmax(fi(4) — |as.; — p()])} = inf{max(f(d) — 1)} = &> 0.

T 1I<i<n F 1<i<n

Next, from Lemma 2, the fact that »(p(4)) = « > 0 gives us that p(4) ¢
9G%(4). Thus, if

o =max{y=>0:puc GS(A)}, (4.6)

then w € 9G%(4) and w > p(A), using the continuity of ». But again, from

the Perron-Frobenius theory of non-negative matrices, it follows for any

Ae S(QA) that |A| < p(d4). Thus, we see that o, as defined in (4.6), cannot

be an eigenvalue of any B € @A, thatis, w ¢ S(@A). We have w € 3G%(4) C

G%(4), yet wqéS(f) 4) = G%(4), the last equality following again from

[4]. Hence, w ¢ S(£2,), and none of (i), (iii) and (iv) hold. ~Q.E.D.
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CoroLLARY. The collection § of (3.11) is full.

Proof. From Theorem 1, it suffices to show that S (f) 4) = G3 (4) for
all 4 € C*». But this is precisely Theorem 6 of [4]. Q.E.D.

We remark that if all elements / = (f,.. ., f,) of a collection § of G-
functions in &, are continuous, that is, each f; is continuous on C»7,

1 =1,2,...,n, then to show that § is full, it suffices to show that & is
full at each irreducible 4 € C»»,

5. EXAMPLES

The collections § and %y of (3.10) and (3.11) are of course examples
of full collections. (In fact, if D is any dense subset of {xe C»: x > 03},
the collections {r*: x € D} and {#*: x € D} are still full.) However, the
collection % can be viewed as being generated by the single G-function

7 = 7% (where ¢ = (1,..., 1)7) of unweighted row sums, in the sense that
for every x € C* with x > 0,

r(4) = »(XAX), where X = diag(xy,..., x,).

We shall see in Theorem 2 that every element of &, genefates, in a different
way, a full collection of minimal G-functions.
Let g be any element in &,. For any 4 = (a, ;) € C*", let

g1(4) {“1,2[ Tt |“1,n|
Pu(4) = ]“ﬁ'll ald) 2. (5.1)
'a'r';,lf I“;z,z' te gn(A)

Clearly, #9(A) is a non-negative matrix, and if 9(4) is reducible, the
normal reduced form for 29(4) (see (3.5)) gives us a partitioning of 2 (4)
whose diagonal submatrices 2% ,(4) are either irreducible non-negative
matrices, or 1 X 1 null matrices. Let 1,7(A4) denote the Perron-Frobenius
eigenvalue of the diagonal submatrix % ,(4). Note that if 4 is irreducible,
then £ = 1 = m, and 1,9(4) is the spectral radius of #9(4). With this,
define /¢ = (f,9,..., /,9) € 2, by

fo(4) = 19(d) — g(A), where i€S,, i=1,2. . n (52
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If M#(A4) = M4 (4) is reducible, the normal reduced form for M*4(4)
gives us a partitioning of M7*(4) whose diagonal submatrices are M,(4).
We have by (5.2) that

W(A) = 2 (A — PL(d),  k=12..m  (53)

by the definition of 1,9(4), each M#(4) is a singular M-matrix, hence by
{1, Theorem 6], /9 is a minimal G-function.

On the other hand, consider any minimal G-function f in &,; for
each 4 € C™*, define 7,(4) = max,gy, f;(4), # = 1,2,...,m; and set

g(4) = 1,(4) — f,(4), where i€S,, ¢=12,...,n (6.4)

Because each g,(4) in (5.3) is non-negative and depends only on the moduli
of the off-diagonal entries of 4, g€ #,. Now, we have for M/ (4) =
MAA(A),

PEA) = 1 (A)] — W (4), k=12, m (5.5)

Since f is a minimal G-function, each imﬁ;k (A4) is a singular M-matrix, and
hence 7;(4) = 2;%(4), the Perron-Frobenius eigenvalue of #§,(4). Hence

14(4) = 4(4) — gi(4) = w(4) — &i(4) = [i(4),

wheret€ S,,7 = 1,2,...,n, thatis, f = f. We have thus shown

(5.6)

LemMA 5. Given any ge 2P, define (9€ P, by (5.2). Then, {9 is a
minimal G-function. Conversely, every minimal G-function in P, has the
form f9 for some g € P,.

Next, for any fixed ge &, let §¢ be the collection of all minimal G-
functions of the form f* (see Lemma 5), where each & € &, satisfies, for
some y = (y1,..., Yy € C*, withy >0,

hi(A) = giA) +y, i=12...,n al AdeCrr (57

Thus, & is generated by a single fixed g€ &,. We now show that such
collections & are full. Pick any 4 € C**, and any 7 = (7y,..., T,) EC"
with v 2> 0 for which M*(4) of (3.2) is a singular M-matrix. Defining

M{A) = max(g,(4) + 1), E=1,2,...,m, (5.8)

€Sk
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set
Vi = M(A) — g;(4) — 1, where ie Se i=1,2...,n (59)

By definition, y = (y,,...,y,) € C* with y = 0. For this y, let he 2, be
given by (5.7). We have

hi(d) = g;(4) + v, = n(d) — 7, where €S, = 1,2,..., n,

and, by direct calculation,
im;’:;(/l) =LMA) — P} (A) = (AH(A4) — A ANI+I ,(4), k=1,2,... m.

(5.11)

Since szngf’k(A) and M ,(4) are M-matrices, the first of which is singular, we
must have 4,M(4) — 2,(4) < O forall k = 1, 2,...,m. Now, looking at
the diagonal entries of the matrices in (5.11), we have, forall = 1, 2,...m,
that f*(4) < 1;, and hence

inf(max(f,(4) — 7)) <0.

feB8 1<in

But by Lemma 3, this quantity is non-negative; hence it is zero. It follows
that &7 is full at A. But as 4 is arbitrary in C*", we have proved

THEOREM 2. For any g€ P,, the collection F is full.

As a final remark, it is clear that if & is a full collection, then so is the
collection

r={f+ee:fefFe>0},
where ¢ € &, is defined by
e(d) =1, i=1,2,...,n, all 4eCrn

This shows that a full collection of G-functions need #ot contain any
minimal G-functions,
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Graphs and
Hypergraphs

by CLAUDE BERGE, University of Paris, France.
North-Holland Mathematical Library, Vol. 6
1973. 555 pages. DfI.80.00 (about US$30.80). ISBN 0 7204 2453 4

Since 1957 when the author published the first modern book on graph
theory, this field has expanded geometrically in depth and importance.
This new book deals with the present status of, and new trends in,
graph theory from a unifying point of view. It also offers a systematic
study of hypergraphs which both generalizes and greatly simplifies a
large part of the theory of finite graphs, at once providing a new line of
attack on the problems of graph theory. Some new contributions to the
theory, by Professor Berge and his students, are published here for

the first time. The combinatorial aspect of matroid theory and network
theory as a basis for graph theory, are also included.

Frequent use is made of practical examples so as to illustrate the wide
range of possible applications of the theory and exercises are added at
the end of each chapter. The first four chapters will also be of interest
to operations research students and to those who apply graph theory
to other fields, such as group theory, probability, genetics, computer
science, theoretical physics, etc...

CONTENTS:

Part |: Graphs. Basic concepts. Cyclomatic number. Trees and arbor-
escences. Paths, centres and diameters, Flow problems. Degrees and
demi-degrees. Matchings. C-matchings. Connectivity. Hamiltonian
cycles. Covering edges with chains. Chromatic index. Stability number.
Kernels and grundy functions. Chromatic number. Perfect graphs.
PartIl: Hypergraphs. The hypergraphs and their duals. Transversals,
Chromatic number of a hypergraph. Balanced hypergraphs and uni-
modular hypergraphs. Matroids. Bibliography. Index of definitions.
English, French, German dictionary.
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Extended L,-Error Bounds for Spline and
L-Spline Interpolation™

'STEPHEN DEMKO AND RICHARD S. VARGA

Kent State University, Kent, Ohio 44242

1. INTRODUCTION

Our basic aim here is to extend and improve the error bounds for spline
and L-spline interpolation recently given by Swartz and Varga [11]. In so
doing, we also extend some recent results of Scherer [9]. To illustrate one
such improvement, consider the interpolation of a given function f € C*{a, b],
with 0 < k < 2m, by a smooth polynomial spline s € C2—2q, b}, of local

degree 2m — 1 on each segment of a uniform partition 4 of [a, b], where s
is uniquely determined from f by means of

(f—s)x) =0 1<i<N—1
Di(f — s)(@a) = DI(f — s)(b) = 0 for 0 <j < mink,m — 1), (1.1)
Dis(a) = Dis(b) = 0 if k<j<m—1,

with x; = a -+ ih, h= (b — a@)/N, 0 < i < N. It is known from [11, Theo-
rem 7.4] that there exists a constant K, independent of f and A, such that

- | DI(f — eganr, 0<Jj<k,
& k ool &»

K= (D) = | gy < g <om =1, 42
where w,, denotes the usual L.-modulus of continuity. If f€ W,*[a, b] with
1 <k<2m,and 2 < p < c0, one can deduce from (1.2) (cf. [11, Corol-
lary 7.5]) that

th—j»{—(l/q)A(l/p) ” D;ff”Lp[a,,b]

| DI(f — Drgan» 0<i<k—1 p<qg<s

2 Disllggoms i k—1<j<2m—1, p<q<o (1.3)
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