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Summary. The projectional properties and associated global and local error bounds
for quadratic interpolatory splines are studied, along with applications to the numerical
solution of two-point boundary value problems via collocation.

1. Introduction

Our basic aims in this paper are to study the projectional properties of
quadratic interpolatory splines, as well as to determine error bounds for quadratic
spline interpolation. In § 3, a result of Marsden [13] is established, namely, that
the linear interpolating projection operator P, on C-'{a, b], the space of all
bounded functions on [a, b], is bounded for any partition 4 of [a, ]. In §4,
global error bounds for quadratic spline interpolation are developed. Then, in
§ 5, local error bounds for quadratic spline interpolation are developed. A numerical
example is then given in this section to illustrate these local interpolation error
bounds. Finally, an application of quadratic splines in § 6 to the numerical
approximation by collocation of solutions of particular two-point boundary value
problems is given, and the resulting error in the uniform norm is shown to be
@ (h%) for uniform partitions.

2. Notation

For —oo<a<b <<+ o0 and for any positive integer N =2, let

Aia=2yg<x <Xy ++» <y=0b (2.1)
denote a partition of [a, b] with knots x,. The collection of all such partitions of
[a, b] is called #(a, D). We define
A =max{(x;; —%): 0=i =N —1} and A=min{x;,, —x;):0=i <N —1}
for each partition of the form (2.1). For any real number o with 0=1, Zy(a, b)
then denotes the subset of #(q, b) of all partitions A for which 4 =c4. In
particular, & (a, b} is the collection of all uniform partitions of [a, b].

If 7, denotes the collection of all real algebraic polynomials of degree at
most #, then for any nonnegative integer », the polynomial spline space Sp (n, 4)
is defined as usual by

Sp(n, A) ={s(v): seC* [a, b], s(x) €m, for x€(x;, x;14),
2.2
1=0,1,...,N—1}, 22)
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where, for the case n =0, C~1[a, 5] denotes the space of all bounded functions on
[a,b]. We remark that Sp(n, 4) is a finite-dimensional linear subspace of
C""'{a, b]. In particular, we shall be concerned here with the guadratic spline
space Sp(2, A)CCa, b], which can be seen to be of dimension N +42. For

additional notation, we set &; =x; —x;_4, 1=1,2, ..., N, and, for g(x) defined
on [a, b], weset g, =g (x;),1=0,1, ..., N, and g;. 1, =¢ (xi—k h‘;l) :g(xi +2xi+1)

1=0,1, ..., N—1.

Given any seSp(2, 4), the restriction of s on any subinterval [x;_,, %;]
determined by A is simply the unique quadratic polynomial interpolating the
values s;_;, s;_ 15, and s;, respectively in the points x;_;, x;_; s, and ;. Comparing
the restrictions of s on [w;_;, x;] and on [x; x;,,], and using the fact (cf. (2.2))
that s is continuously differentiable at x,, it is easily verified (cf. Marsden [13])
that

@;Si—1 138+ ¢S =44;S;_1p F4CSi010, 1=T=EN—1, (2.3)
where
higa 2 .
M N YR <;<N —
h= hithiy’ “= Ryt hyq 1—a; 1st=N-—1, (2.4)

so that 0 <a,, ¢;<<1, and a; +¢; =1, 1=7 =N —1. In a completely similar way,
one can show that
¢iDs; 1 +3Ds;+aDsyy =8(sipye—Si—y)/(hi+Niya), 1=1=N—1,
3D sy +Dsy=8(sya—3o)[hy; 3Dsy+Dsy_y =8(sy —Sy_yp)/x.

where Ds; = dsd(;:j)—. The identities of (2.3) and (2.5) will be used in developing

error bounds for quadratic spline interpolation.

(2.5)

3. Sp(2, A) Interpolation

Given any fe€C[q, b], let seSp(2, 4) be its (unique) interpolant defined by
the N + 2 conditions

so=Fo  Sirye=lirye O=I=N-—1, sy=/y (3.1)

From (2.3) and (3.1), this implies that the values {s;}} ' satisfy the N —1 linear

equations
@;Si—1 38468y =A4aifi e +4Ci iy 1ST=N—1, (3-2)

with s, =/, and sy =fy. With (2.4), the associated (N —1) X (N —1) coefficient
matrix for the s;'s from (3.2) is evidently strictly diagonally dominant and hence
nonsingular (cf. [17, p. 23]). This proves that the values {s;}¥ 3" are uniquely
determined. But, as s is the unique quadratic interpolation on [x;_;, #;] of the
values s;_;, S;—y/2, ands; in the points x,_;, %;_y;, and x;, then s is also uniquely
determined on [a, b].

Our interest now is in the projectional properties of the interpolants of ele-
ments in C1{a, b]. The following remarkable result is due to Marsden [13], and,
because its proof is both short and elementary, we include it below.
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Theorem 3.1. Given any f€C-1[a, b] and given any 4 € (a, d), let s be the
unique interpolant of / in Sp(2, 4), in the sense of (3.1). Then,

Isllz .. a1 = 20 e o 01 (33)
Proof. We first show (by a typical diagonal dominance argument) that
max {[s;|: 0 =i <N} <2|fr, - (3-4)

From (2.3), 3si=4a;f; 1o +4¢; i1 — ;i1 —CiSppq, 1Si<N —1, Taking
absolute values and using the fact (cf. (2.4)) that a; +c; =1, then

3[i| S 4., e +max{]s;]: 07 =N}, 1<i<N-—1. (3.5)
Let [s;| =max{[s;|: 0=¢ <N}. If { =0 or j =N, then from (3.1),
max{[s;|: 0 =7 SN} =|s;| =|f;| |flr.. a0

which certainly implies (3.4). If, on the other hand, 7 satisfies 1 <j <N —1, then
choosing 7 =7 in (3.5) gives 2 max{|s;|: 0 <j < N} <4|f|,. a0}, the desired result
of (3.4).

With (3.4), we now establish (3.3). Consider any subinterval [x;_,, ;] deter-
mined by 4. On this subinterval, the interpolant s is a quadratic polynomial,
explicitly given by

2(x —x;y5)

s(x) = I B {Sima- (=) +s;- (v — X1} + Hiys (% _;,;i_l) =) ,

for x€[x;_,, x;]. Then, using (3.4) and (3.1), a short calculation shows that

[s()|=4]f|.., [a,b]{ > —z:_l/zl + = _xiuhl‘; (x; =) }éZ“f"Lm 28]

for all we(x;_,, x;]. As this holds for an arbitrary subinterval of 4, then (3.3)
is valid. Q.E.D.

It #,:C[a, b]>Sp(2, 4) denotes the linear projection mapping of any
f€C7[a, b] into its unique Sp (2, A)-interpolant s=F,f in the sense of (3.1), the
result of Theorem 3.1 directly gives us the following

Corollary 3.2. For any partition 4 €% (a, b), the projection mapping P, satisfies
VFale =sup {2z . 02 [ . pomy S 1} =2. (3-6)

Following Marsden [13] in the periodic case, it can also be shown that the
upper of (3.6) is sharp, i.e., for any & with 0 < ¢ < 2, there is a partition 4 of
(a, 8] for which |P,|,,>2 —e.

The interesting feature of the above corollary is that the quadratic spline
interpolation mappings P, are uniformly bounded, independent of any assumption
on the partitions 4, unlike the case for many cubic spline interpolation mappings
(cf. [1, 4, 5, 11, 12], and [14]). On the other hand, de Boor [19] has recently
shown that the analogue of Corollary 3.2 holds for cubic splines, provided that
interpolation occurs at each of the average of three successive knots.

18%
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4, Global Error Bounds for Quadratic Spline Interpolation

We derive now global error bounds for quadratic spline interpolation in two
distinct ways. The first method couples the projectional properties of quadratic
spline interpolation with powerful results from the quasi-interpolation theory of
de Boor and Fix [2], and we view this combination as an important and useful
tool for deriving such error bounds. The second method in contrast is based on
a straight-forward computation in conjunction with either (2.3) or (2.5), and,
while the results from this approach are somewhat different, they have a definite
appeal of their own. For notation, let Py, as in § 3, denote the linear projection
mapping of C{a,b] onto Sp (2, 1), and as usual, let w(g, 0, I)=sup{|g(»)
—g()|:|¥—y|=dand x, yel } denote the L,-modulus of continuity of g with
respect to the interval 1. If I = [a, b], we write simply @ (g, 0) for o (g, 9, [a, b]).

For the first method, because Py is a (bounded linear) projector on Sp(2, 4),
ie., w=Pw for any weSp(2, 4), it follows that, for any f€C™[a, b] and for
any w€Sp(2, 4),

If— Byt a0 =]§f —w—Pyf+ PAWHLOO N [ —Fy) (f —©) Lo et
< (1 + 1B If =@l apr
Thus, as this inequality is valid for any weSp(2, 1), it follows from (3.6) that

1 = Pt i oy =3 Il = oot weSp(2, 4)}- (41)

We now use a special case of results from de Boor and Fix [2]. Recalling
the definition of Sp (#, 4) in (2.2), it follows from [2] that if feC*(I) and I Clab]
and with 0 <k <#, then

inf {|D7 (f — )|, 117: w€SP (1, A)} <e; 1 (A) T (DH, A(D), I), 0=] =k, (4.2)
where the constants c; ; are independent of f, and independent of the partition
-+ 1 n-+1

Aifo<i< PL’["} , while for [451 < j <mn, the constants ¢, depend only on

the local mesh ratio M of (4.3) below, determined from a somewhat larger interval
covering I. Specifically, if knots x., and x,, of the partition A are chosen so
that [x,, x,,] 21, then M and A (I) are defined by
M= I(f‘l’i:ﬁ\ i il=qandT, —n=<1]= ! __,1}’
] max x;+1—xf) |i —j|=1and 7y —n =1, =T+ 7 43)
A(D=max{x; ., — % 1 =] < Tof

Thus, coupling the inequality in (4.1) with the inequality in (4.2) for the case
n=2,j=0, and I =[a, b}, directly yields .

Theorem 4.1. Given any fe€C*[a, b] with 0 < k<2, and given any 4€Z(a, b),
then

I —Paf|

where the constants C, ; are independent of f and 4.

L., (0,51 < Cy (A (DM, A, (4.4)

To similarly derive global derivative arror bounds for j—P,f, the above
technique using (4.2) can again be used. Specifically, suppose we wish to bound
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HD(f—R,f)]{nga,bg for feC*[a, b], 1=k <2. Writing f(x) :f(a)+fxg(¢)d¢, 50
that g(¥) =D/ (x), define P, , g as s

(P4,18) (%) =D (B4f) ().

It is easily verified that Py isa linear projector in C {a, b] with range Sp(1, 4),
and one readily establishes as in Corollary 3.2, via a diagonal dominance argument
based on (2.5), that [P, ||, <2 for any 4€%(a, b). Thus, as in (4.1),

1D —Paid) e a0y =€ — 18 a1 =3 inf{lg —wr, (o,5:w €SP (1, A)}.

Applying the inequality of (4.2) for the case j =0, n=1, and I ={a, b] to the
right-hand side of the above inequality directly gives
Theorem 4.2. Given any f€C* [a,8] and 1 <k <2, and given any A€ (a, b),

then ~ _
ID(f — By 1,1 = Co e (4) 0 (DHf, A), (4.5)

where the constants C,,, are independent of f and 4.

The second method for deriving error bounds for quadratic spline interpolation
is based on (2.3) and (2.5). The most interesting case to consider is when
f€C?{a, b]. Specifically, if s =P,f and if ¢(x) =s(x) —f(x), it follows from (2.5)
and (3.1) that

¢iDe;y+3De;+aiDey =8(firp —Fi1j) (i +hitr) —6:Dfi—y
—3Df;— a;Df;,, 1=i=N-—1,
3Dey+Dey=8(fyp—fo)/ly —3Dfo—Dfy,
3Dey+Deyy=8(fy —fy-12)lhy —3Dfy —Dfy_y.
With feC2[a, b], the right sides of (4.6) can be easily shown, using a finite Taylor
series representation with remainder, to be bounded above in each case by

Aw(D%*f, ). A diagonal dominance argument, like that used in the proof of
Theorem 3.1, then shows that

max{|D¢;]: 0 <i <N} <A - 0(D?, 4)/2. 4.7)

(4.6)

Next, consider D?e(x) =D?s(x) — D*f(x) on [#;_,, #;] for any 1=7 < N. Because
D%e(x) is continuous on this interval, the mean value theorem gives the existence
of an F€(x;_,, %;) for which D?¢ (%) = (De; — De;_,)[h;. But as D?s(x) is necessarily
a constant on this interval, it follows that DZ%e(x) +D?f(x) =D?%s(x) =D2s (%)
=D?¢(%) 4 D?f (%), i.e.,

D¢ (x) =D%e(%) + D2f (%) — D?f(x) = (De; — De;_y)[h; +D2f(%) — D2f(x). (4.8)
From this and (4.7), it follows that
|D2e(x)| < (A/h;+ 1) (D2}, 4)  forany  x€[x;_y, %], - 49)
from which it follows that (cf. (4.14))
1D2(f = Pyf) | tory = (414 + 1) 00 (D, 4). (4.10)
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To similarly determine a bound for De(x) on [x;_,, x;], let p(x) be the linear
function interpolating De,_, and De, respectively in the points x;_, and x;. By

definition, D (x) =D2¢(%), and thus from (4.8) for any x€[x;_,, x,],

De(x) —p(5) = (D () — Dp(}dt= [ {D*(5) ~ D*f}as.
Hence, o o
max{|De(x)|: x;_; Sx=< iyjpp Smax{|De;_y|; |Degl}
Ximy _

+ f 2]D2;‘(£)—D2f(¢)[dz__<_(4l'/2)w(D2f,A)+(hi/2)w(D2f, A),

-1
where the second inequality makes use of (4.7). Similarly writing De (%) —p (x) =
x
J{D2f(%) — D2f ()} dt shows that the above bound is valid also for iy =X =7,

ie.,
[De(x)| < (A +h)o (D2, A)[2 forany xe[x,_,, x,]. (4.11)

Finally, to determine a bound for e(x) on [x;_;, x;], note that e(x; ;) =0
by definition. Hence,
e(x)= [ De(t)dt for any x€lx; 4, 5],

Xi-12
whence

le(®)|Sh(A +h)o (D2, A)[4 forany xelx, ,, x,). (4.12)
We summarize this in
Theorem 4.3. Given any feC?[q, b] and given any A€#(a, b), then
[ —2af) () | S 1 (A + R (D2, A) 4
ID(—Pif) (0)| = (A +h)o (D2, D)2} forany we[x;y, 2. (443)
|D*(f =Py ) (x) < (Al + 1) (D2f, )
In particular,
I = Bafle.n oy = ()20 (D2, 4) 2
nD(f_PAfHLw(a,b}gjw(D2fr A_), (4.14)

1D*(f = Baf)etar = (414 +1) 00 (D24, A).

Note that the bounds of (4.14) are comparable to those of Theorems 4.1 and 4.2,
but with explicit multiplicative constants. Moreover, the bounds of (4.13) show
the dependence of the interpolation error on the local mesh spacing.

Basically, the same derivation in Theorem 4.3 of interpolation error bounds
for quadratic spline interpolation for f€C?[a, b] can be repeated for the cases
when feC*[a, b], k=0, 1, and the resulting global error bounds, like those of
(4.14), can similarly be found in Marsden [13].

It is also worthwhile to remark that the error bounds of (4.13) and (4.14) of
Theorem 4.3 are valid for other types of boundary interpolation as well. Indeed,
Dr. Christian Reinsch has shown? that if the unique quadratic spline interpolant

1 Personal communication.
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S€Sp(2, 4) of jeC?a, b], is defined by (cf. (3.1))

Siv1je =liryp O=1=N —1, (4.15)
and any one of the following boundary conditions:
Type I: 80:]‘0: SN:](NJ
Type Il : Dsy=Df,, Dsy=Dfy, (4.16)

Type IIL:  sy=sy, Dsy=Dsy,
then the error bounds of (4.13) and (4.14) of Theorem 4.3 remain valid.

5, Local Rates of Convergence

We now develop local rates of convergence for quadratic spline interpolants.
The argument parallels techniques found in Swartz and Varga [16] and Kammerer
and Reddien [6], in that a given bounded function f is approximated by a smooth
function g, and then, using global interpolation error bounds for g developed in
§ 4, along with the exponential damping properties of the off-diagonal entries of
the inverse of the coefficient matrix associated with (2.3), local interpolation error
are then obtained for f.

For notation to be used throughout this section, we shall consider any bounded
function f defined on [a, b], i.e., feC1[a, b], with feC*[a’, b’], where 0 <k <2
and where [a/, '] =TI’ g [a, b]. We shall then focus our attention on a fixed closed
interval [, B]C[d/, '], where, for a given & with 0<<d<1/2,

a=a'+06(b' —a’) whenever ' =#=a, «=a otherwise, and

1
p=0"—0(b'—a’) whenever b’ =:b, f=0b otherwise. G-1)

We then consider partitions 4 €2 (a, b) for which
24 <6. (5.2)

With f a given function in C-1[a, b} with feC*[a’, b'] where 0 <k <2, let g
denote any fixed function such that

i) geC*[a, b],

i) g=f on [a,b]=1, (5.3)

ili) w(D*g, §) =w(D*f,t,I') forany O0<t=(b'—a’).
For example, with g=f on [a’, '] from (5.3 ii), such a function can be obtained
simply by defining g on [, 2'] to be the unique element in 7, with Dig(a’)=D’{(a’),
0 =4 =k, with an analogous definition for g in [?’, &].

If [£] denotes as usual the greatest integer less than or equal to ¢, we state

Theorem 5.1. Given any feC-1[a, b] with feC*a’, b'] where 0 <k <2, let

P} denote the quadratic spline interpolant of f in Sp(2, 4), in the sense of (3.1).
Then, for any A€%(a, b) with 24 <6,

1= Pufle = Cos 0 (D4, (), 1) 4 Moo 5

where g satisfies (5.3), and where the constants C, ; are those of Theorem 4.1.
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As an immediate consequence of Theorem 5.1, we have

Corollary 5.2. With the hypotheses of Theorem 5.1, for every &>0, there
exists an 7 > 0 such that for any 4 €% (a, b) with 4 <,
It =Pafleip = (Cox ) (D)o (DH, A(I), T').
In particular, if D*f is constant on I’, then

450¢ —fliwia,
1P =Bt o = - '“s 3][19;41r e

We next state

Theorem 5.3. Given any feC-[a, b] with feC*[a’, b’] where 1 <k <2, then
for any A€ (a, b) with 24 <4,

D= Bl 0 = Ca )0 (D, A, I) ey E e 55)

for 1=<j <k, where the constants C;,x are those of Theorem 4.2 and 4.3, and the
constants y; ;. are independent of f but dependent on o.

With the hypotheses of Theorems 5.1 and 5.3 and the fixed function g
satisfying (5.3), the triangle inequality gives us for 0 <7 =k that

1D = Paf )l SN0 (F ~8) 1 + [ D7 (€ — Pa) I
HID (B =N
From the definition of g in (5.3 ii), the first term on the right side of (5.6) is
necessarily zero, while the second term can be bounded above from the results
of §4 by

(5.6)

[D7(¢ —E18) Ity = 1D (8 — Bi8) 1. a1
SCi ()0 (Dhg, A) =C; ()T (D, A(I'), r),
the last equality following from (5 3 iii). Thus, it remains to bound above the last
term on the right of (5.6). If s= P, (g —/), then s satisfies the hypotheses of the

following lemma with M =g — f[]Lw g - LThe results of (5.8)~(5.10) of Lemma 5.4
then establish Theorem 5.1 and §5.3.

Lemma 5.4. Given a positive constant M, and given A€ (a, b) satisfying
(5.2), let seSp(2, A) satisfy:

i) $;_12=0 whenever x;_y,€[a’,b']; s;=0 whenever
x;€[a’,b'] and 7=0 or i=N, (5.7)
i) [s;-yp|=M forall 1=i<N, and [s|=M, [sy|=M.
Then,

45 1 \8/4] |
Il 1 = 5 M(“g) . (5.8)
Moreover, if A€,(a, b), then
— 45 1\0/4)
1Dslewm= 5 oM (3) s (5.9)
and
43 1 \[9/]
105l o = 35 M () (5.10)
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Proof. The values s, at the interior knots x;, 1=<i <N —1, are governed by
the (N —1) linear equations of (2.3), ie.,

BiSio1 T35+ 08 =4a;S; o +46;5; 1) ASI=N 1.
Equivalently, in matrix notation, these equations can be expressed as
As=kF,

where s==(s;, 55, ..., sy_;)7, and where k= (kyy kg, .., ky_1)7, with &, =4a,5,,
T+ 40180 — @15y, By— 4a;5;_yp 4685417, 1<<i <N —1, and ky_y =4ay_1Sy_gp
F4Cy _1Sy_12=Cx_1Sy. As previously noted, 4 is a strictly diagonally dominant
matrix, and is hence nonsingular. Thus, s =41k, and on writing 4= (b, ), then

N-1
j=1

Because of the explicit tridiagonal form of A4, a result of Kershaw [7] gives us
that

[Prjl=§ @, =i, j=N—1. (5.12)

Next, the assumption that 24 < ¢ allows us to deduce that
WXy 1p < Fipgg< e < Figtrrrje =0

with iy>1, =1, and g7 +1/2 <N —1. Because of the hypothesis of (5.71),
it follows that k; =0 forall i, <y <14+ 7. Moreover, ]ki] SS5Miorall1<i< N —1
from (5.71ii) and (2.4). Hence, with the bound of (5.12), we have from (5.11) that

15 1 1 .
fsl= 5D o 3 - piry ASiSN -1,
1<y 3 1> 8y+r 3

In particular, consider any x,¢ [0 —A,B+A]. On summing the above geometric
series, it readily follows that

sl = 757 gy forany xiela—4, 547,

Finally, using an argument similar to that used in the end of the proof of
Theorem 3.1 shows that
45M 1
Ioheoion = 5 iy
which establishes (5.8).
Assume now that A€Z,(a, b). On each subinterval (%i_1 %], 1IN,
the derivative of s is evidently linear, and therefore takes on its extreme values

at the endpoints. By direct computation, it can be shown that
1
|Ds]y.., i3] = Ty Max{[3s;_, —4si_ye 85 [si4 — 4812+ 35}
(xz xz-—l)
Thus, with the inequality of ( 5.8), this gives '

45 1 \[8/4]
D8ty = S Mo (3) ,
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the desired result of (5.9). As the second derivative of s is plecewise constant
on (%;_y, %), direct computation shows that

A{s;_q — 2812 T s;)
(%, — x;1)*

D¥s(x) =

s xe(xi——l’ xi)'

Again, using the inequality of (5.8) gives the result of (5.10):

45 M o® (i)[@/iﬂ

HD%HLw (0f] = ‘(—Z‘)T 3 Q.E.D.

The local interpolating error bounds given in Theorem 5.3 for 1D (f — Byl s
1 <7 <2, requires the assumption that A€, (a,b), and as such are weaker than
the corresponding result of de Boor and Fix [2] (cf. (4.2)). However, because of
the existence of Nord’s well-known counterexample [15] for cubic spline inter-
polation, this assumption, A€ (a, b), seems to be unavoidable.

For partitions 4 € [a, b] which are uniform on [a’, b'], that is, A=2%; —%;_4
whenever both x; and x;_; are in [a’, b'], the above local error bounds can be
improved by a factor of A at various points of [, #]. Similar high-order pointwise
interpolation error bounds have been obtained globally for quadratic splines by
Marsden [13], and for cubic spline interpolants by Birkhoff and de Boor [18],
Swartz [20], and Lucas [9].

Theorem 5.5. Given any f€C[a, b] with feC4[a’, b'], and given any partition
AePa, b] which is uniform of size h on [a’,b'] and satisfies 24 <4, the
quadratic spline interpolant s of / in Sp(2, 4) in the sense of (3.1) satisfies

i) 1f () —s ()| =0 () for x;€la, f
) D (f (g + AB) —s (3 + A1) | =0()  for x;-+Ah€(a B, (5.13)
i) (D2 (F (i -+ 1h) —s(x+30)| =00 for xi+Ehelwpl,

where 1= (3£]/3)/6.

Proof. From (3.2), the errors ¢;=/; —s; at the interior knots x;, 1=<i <N —1,
are seen to satisfy the N —1 linear equations

361 30+ Ciei01 =ifioy —4ifi1jp 3l — 4CiT i +eifin  (514)
for 1=<¢ <N —1. Note that the associated coefficient matrix for the ¢;'s, deter-
mined from the left-hand side of (5.14), is identical to the matrix A defined in
the proof of Lemma 5.4. Furthermore, because A is uniform on [a', '] and

feCa’, b'], Taylor series expansions of f about any x;€[a’'+4, b’ —h] show that
the corresponding equations of (5.14) reduce to

Lo +3eithei =51 —2fi—ue +3f—2fir1e 3l =0 (R, (5.15)

Inequality (5.131) can now be obtained by utilizing, as in the proof of Lemma 5.4,
the exponential damping of the off-diagonal entries of 4L

To establish (5.131i), set x =x; 4-Ah, for x;€la’, b’ —Hh] and O < A1=1. Then,
by direct computations,

Ds (x; -+ A1) = %{(\21, 3) si—22A—1)siap+ (2~ s,;+1},
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and from Taylor series expansions about x = x; + 44,

D i+ %) —s(%+2h) Z%{(Z;{—%)ei_z 2A—1)ei 10+ (24 —1/2) 6¢+1}
-+ %{312—‘37»—9—-%}1)3/‘(% +2h) 0 (h3).

But 342 —3 4§ =0if and only if 1 = (3 4-3)/6. Assigning either of these values
of 7 and making use of (5.131) gives the desired result (5.13ii). Inequality (5.13iii)
follows readily from the identity

h2
D1 —DPsiajp =4h"2e; g — 2610+ o} — 45 1),

for some &€ (x;, %;44), %, ¥;,,€[a’, 0], Q.E.D.
In order to illustrate numerically some of the results of this section, we
interpolate the function f€C-1[0, 1], defined by

sin 2mx, O=x=0.5,

—1, 0.5 <x <1, (5.16)

Hax) = {
by its unique interpolant, B, /, in Sp(2, 4,), using uniform partitions 4 4 of size /
of [0, 1]. Column 2 of Table 5.1 contains the maximum interpolation error over
the subinterval [0, 0.25]. Assuming that |f —F, fllz.0,0.25) behaves, as a function
of h, like Ch?, then one can estimate the exponent B by successively computing

f=In { Vf — P, 1.0, 0.25) }/ln Uigf ).

”f - Ph.f”Loo[o, 0.25]

These computations are contained in column 3 of Table 5.1. Note that Theorem 5.1
gives us that this exponent § theoretically tends to 3, as %—>0. Column 4 of
Table 5.1 contains the interpolation error at x =0.25, a common nodal point, and
column 5 gives the associated observed exponent of % for the numbers in column 4.
From Theorem 5.5, we know that these numbers f in column 5 theoretically tend
to 4, as s—0. Finally, since f takes on the constant value —1 on the interval
(1/2, 1], Corollary 5.2 implies that |[f — B, /], 0.70,1) = K3~ ®"]. The last column
of Table 5.1 shows the interpolation error |f(%) —B,f(x)| at x =0.75 is at least
O (3-0En).

Table 5.1
A If = Bu/ .. 10.25) B [f(0.25) = Bf(0.25)] § [£(0.75) — B, }(0.75]
1/16 0.561 - 1073 — 0.561 1073 — 0.494 - 1073
1/32 0.612- 104 319  0.120-107% 5.50  0.402-107%
1/48 0.180 - 104 3.01  0.230-10°% 4.08  0.340-107°
1/64 0.760 - 1075 3.01  0.726-107% 4.00  0.292-10712
1/128  0.948 - 10~¢ 3.00  0.434-1077 4.00 <107

6. A High-Order Collocation Method

Based on the interpolation scheme of § 3, we now develop a specific collocation
method for nonlinear two-point boundary value problems. For simplicity, consider
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the second-order problem

Dru(x) =] (x, u(x)), a<x<b, (6.1)

with homogeneous boundary conditions
w(a) =u(b) =0. ‘ (6.2)
Recalling the definition of Sp(4, 4) in (2.2), let Spy (4, A) denote the set of all

o0

polynomial splines in Sp (4, 4) which satisfy (6.2), and let {4,};2.; be any set of
partitions of [a, b] for which A, —>0 as n—>co. For each n, an approximate solution
u, in Spo (4, 4,) to (6.1)-(6.2) is then defined by means of

D2u, (%) =B f(x, u,(%)), a<x<b, (6.3)

where B, is the projection operator B : C™{a, b]—Sp(2, 4,), defined in §3.
Because u,, if it exists, necessarily satisfies (6.2), and, from the definition of F,
satisfies the differential Eq. (6.1) at the points @ and b, as well as at the midpoint
of each subinterval [#{, x{,] of 4,, then (6.3) clearly defines a collocation
method. ,

To settle the existence, uniqueness, and convergence properties of these
collocation approximations {u,}, we now make use of results of Lucas and Reddien
[10]. Specifically, since {B} is, from Corollary 3.2, a bounded sequence of projec-
tions, we directly have from Theorem 3 of [10]

Theorem 6.1. Let {4,}3°; be a sequence of partitions of [a,b] such that
A, -0 as n—>oo, and let B,: C{a, b]— Sp(2, 4,) be the associated interpolating
projections defined in § 3. Let 1,€C*[a, b], 2 <k =4, be a solution of (6.1)-(6.2),
and, in some e-neighborhood of the curve &= {(x, uy()): a =¥ <b}C IR?, let
f and f, be defined and continuous. Further, assume that the linear equation
D2u(x) —f, (%, 15(x)) - (%) =0, a< x < b, with boundary conditions (6.2), has
only the trivial solution # (%) =0. Then, in some sphere

P ={ueC?a, b]: [D*u —uo) |10y =0, 0> 0},
the collocation approximations #, of (6.3) exist and are unique for all # sufficiently

large. Moreover,
uDi(uo #‘u’n) “Lm {a,b] =0 ((’-/j.n)k—2w (Dkuo; jn))’ 0 é? §2, (64)

as #—>co.

Corollary 6.2. With the hypotheses of Theorem 6.1, assume that #,€C?[a, b.]
Then,

1Dty — 10 [ ey =0 ((4,)7), OS7=2, (6.5)

as 1 —> oo, ;

We next establish a rather surprising result which improves on Corollary 6.2,
namely if #,€C [a, b] and if the partitions {4, } are all uniform, then [[ug—t, |z, (5]
—0((4,)*). To denote such uniform partitions of [a, b}, we write

4, a =y << .. <x§6‘l:

where x" =a +ih,, 0=i=<N,, and where A, =, =(b—a) /N,n.
To establish this result, we first treat the linear problem

D2u(x) +q(x) - u(x) =g(x), a<x<b, (6.6)
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with boundary conditions (6.2). The collocation approximation u, of (6.6) is, from
(6.3), defined by
Dru, (2) = E{g (%) —q (%) - u,(x)},  a<x<b. 0.7)
Theorem 6.3. Assume that (6.6)—(6.2) has a unique solution u, that the
functions ¢ and g of (6.6) are of class C*[a, ], and that the partitions {4,}3> ; are
all uniform. Then, the collocation approximations u, of (6.7) satisfy
lotg — ), 10y =O(Ry), as n-—=oo. (6.8)
To prove Theorem 6.3, we first establish two lemmas.
Lemma 6.4. With the hypotheses of Theorem 6.3, the functions v, (¥) = D2u,, (x)
+q(x) - u,(x) satisfy
%Wn (xt(’i)l) + 3 Uy, (xg”)) +%Un (xz(j)l) - 2{vn (x§@1/2) + Un (x§’1)1/2)}
+0O(hY), 1=i{<N,—1.
Proof. Using Theorem 6.1, we note that u, of (6.7) is well defined for all
sufficiently large, and that {D’u,}, 0=<j <2, evidently form bounded sets of

functions since they converge. Next, it follows from the case k£ =1 of Theorem 4.2
that

(6.9)

!{D[(g —qu,) — L, (g “qun)]“::w ) =2 C1,1 HD & —qu,) “Lﬁ Ta,b]
so that, from the triangle inequality,

IDB, (g —qu)le,. o = (1+2C, 1) [ D (g —q10,) 1., a,b]"

Because {D'u,}, 0=j=2, are bounded, as are {Dg} and {Dig}, 0=j=<4,
because of the hypothesis g, geC*[a, 4], then from the above inequality, so is
the sequence {DI) (g —qu,)}. However, with the definition of #, in (6.7), this
implies that the sequence {D3u,} is bounded. But, repeating the above argument
and using instead Theorem 4.3 similarly shows that {D%,} is also bounded.
Hence, this implies that sequence {D*(g,)} is necessarily bounded, a fact which
we shall later use.

Returning to the proof of Lemma 6.4, we have u,=D2u, +qu,. Setting
s, =Hh,v,, then by definition

s, =B, (D*u,, +qu,) =D*u, +L, (qu,)
since D?u, €Sp (2, 4,) and B, is a projector on Sp(2, 4,). Thus,
Sp Uy = B’L (‘1%) —(quy).- (6'1 O)

By a careful application of Taylor's Theorem to the right-hand side of (5.15),
(5.131) of Theorem 5.5 can be extended to functions f in C3[a, b] which are of
class C* on each closed subinterval defined by the uniform partition, where the
bound in (5.131) depends on | D*f|;. .. Applying this result to qu, and recalling
that {D*(gu,)} is bounded, then

B (qu) (5) = (qu,) («) =0(h), 0=i=N,

and thus, from (6.10),
S () —u, (49 =0 (), O0<i<N,. (6.11)
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As s, is by definition the quadratic spline interpolant of v, it follows from (2.3),
(2.4), and (3.1) that

n(x(n) _f_ Ssu(x(”)) + 25 (xi’—llzl _2{7) (% ~1/2) +vn(x§’~21/2)}’ 1 S—z §Nn —1.

Substituting (6.11) into the above expression then gives the desired result of
(6.9). Q.E.D.

Lemma 6.5. With the hypotheses of Theorem 6.3, the functions v, (¥) =D?u,, (x)
+g(x) - u, (%) satisfy
lg (&) —u, (x| =0 (HS), 0=<i<N,. (6.12)

Proof. Since wu, satisfies D2?u,, =P, {qu,}=DEg from (6.7), it follows that
U (¥ 0) =g (% +1/2) for 0=4=N,—1, and that v,(a) =g(a) and v,(5) =g(b).
Using (6.9) of Lemma 6.4, then

3o (5f2) +3 2, (x )+ b (i) =2{g (6110) +g (6} +O(RY), 1=i<N, —1.

Then, arguing as in the proof of (5.13i) of Theorem 5.5 gives the desired result
of (6.12). Q.E.D.

Having established Lemma 6.4 and 6.5, we return to the proof of Theorem 6.3.
Let G be the Green's function associated with (6.6)-(6.2), i.e., for any geCla, b],
the unique solution 1, of (6.6)—(6.2) is given by

b

o (%)= [ G(x, s)g(s)ds,

a

where G (%, s) is defined on the closed square a < x, s <b. Since the collocation
approximations #, by definition satisfy D2y, 4-qu, =1,, then similarly

Uy, (%) = be(x, ) v, (s)ds.

a

For any x€la, b], then xe[#l®, x 10*1:} for suitable /. Thus, we can write

To 7

b

(%) =40 (%) = [ G (%, 5) (1, (5) —g(s))ds

a

—_-;; (£G(x, s) (v, (s) —g(s) )ds+(z)+lG (%, 5) (v (s) —g(s))ds  (6.13)

*fo

('n)
+ > f st( (8) —g(s))ds.

>y g

It is known that G is continuous on [a, b] X [a, b], and, because geCifa, b],
there exists a constant K such that

4

J
—(,)—571~G(x, S)

sup [sup a=x<s,; s<x<bH§

asssh {
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Now, recalling that geC%[q, b], and that v, is of class C* on each [2%, i’ﬂl] then
Simpson’s rule implies for 7 =7, that

2
Fi+1

[ 65, 9) (ou(s) —29)ds =2 {6 (x, 2) - (s, () — g (k")

x.(”> 614
! +4G(x, x1+1/2) : ( (x 531/2) —g(x 5’331/2)) ( )
‘ +G(x xy—?l) (vn( «E’—tk)l) 5121 )}+(9 k5
Using Lemma 6.5 and the fact that v, (x,,,) =g (x{",,), it follows that
(n)
41 . 3
(f G(x,8) (v, (5) —g(s))ds|=0(h3), i1, (6.15)
x@‘") :

For the case i =7, it suffices to use the continuity of G and the fact that v, —g
can be expressed as v, —g = D?(u,, —u,) +¢(u,, —u,). Thus, from Corollary 6.2,
[[vn —g”Lm {a,b] =( (ki), so that

{7,
ot {

659 a(5) —g ) ds| =0 (6.16)

Coupling the results of (6.16) and (6.15) with the expression in (6.13) yields the
desired result (6.8) that |u, —ug|r, (o5 =0 (k). Q.E.D.

We next extend the results of Theorem 6.3 to the nonlinear problem of
(6.1)—(6.2). The arguments to be given are based in part upon a similar develop-
ment in de Boor and Swartz [3]. For notation, again let #, be a solution of
(6.1)-(6.2), and let .7 denote the closure of an e-neighborhood of the curve
C={(% uy(7)): a <x<b}C IR

Theeorem 6.6. In addition to the hypotheses of Theorem 6.1, assume that the
solution #, of (6.1)~(6.2) is in C®[a, b], with f,(x, uy(x))€C*[a, b], and with
>t
ou?
partitions of [a, b], then in some sphere

S ={ueC?a, b]: |D*(u—uy)|L,, (00 S0, 0> 0}, (6.17)

(%, u) continuous in .#". If all partitions in the sequence {4,} are uniform

the collocation approximations #, of (6.3) exist and are unique for all » sufficiently
large, and
“Mn — u0||Lw [2,b] 20 (h:), as #-—>o0,

Proof. From Theorem 6.1, we are guaranteed, for all # sufficiently large, of
the existence and uniqueness of the approximations #, near #,. Moreover, for n
sufficiently large, u,€.#, and from Taylor's Theorem,

F(%, ) =1 (%, wo) 1, (%, ) - (s, —49) +E (11,

where E (u,) =0 (|, %()[[LDo a,57) =0 (h3), using Corollary 6.2. Applymg D, to the
above expression and using (6.1) and (6.3), we can write

D?u, — B {f, (%, w) - w,} =B, D%uy — B, {f,(x, uy) - uy} +BE (u,). (6.18)



256 W. J. Kammerer ¢t al.

Now, let 2, (%) be the solution of
D2Zn _Bb{fu(x’ uo) ! zn} :PbezuO h})n{fu(x’ %0) ' %0}’ (619)
and let z(x) be the solution of
D2z —f, (%, uy) - 2=D%uy—f,(x, 1) - 2, (6.20)

both having the boundary conditions (6.2). The hypotheses of Theorem 6.1 imply
that (6.20) has the unique solution z=1,, and that z, exists and is unique for
all » sufficiently large. Because all the hypotheses of Theorem 6.3 are satisfied,
we thus have from (6.8) that [uy—2,|r. (0n =% — 2l 0y =0 (). Next,
subtracting (6.19) from (6.18) yields

D2 (u,, —z,) — Bt{fu (%, ) - (1t,, "‘Zn)} =D E(u,). (6.21)
Now, define w, to be the solution of
D2w, —1,, (%, uy) - w0, =E (u,), (6.22)

with the boundary conditions (6.2). Because E (u,) =0 (hf), a Green's function
argument applied to (6.22) readily establishes that [w,], 15 =0 (h). Then,
write o, —uy ={(u, —2,) —w,} +1w©, +{z, —1y}. The last two terms have both
been shown to be O (/). Thus, if we can show that || (1, —2,) — @, |1, (a0 =0 (i),
we will have established the desired result of (6.17). This, however, will follow
from the next lemma. Note from (6.21) that u, —z, is by definition (cf. (6.3))
the collocation approximation of w, in (6.22).

Lemma 6.7. Let {4,} be a sequence of partitions of [a, b] with 4,0 as # —> oo,
and let B,:Ct[a, b]—Sp(2, 4,) be the interpolation projection of §3. For a
given g€C®[a, b], assume that the homogeneous problem D2 (x) + g (x) - u(x) =0,
a-<<x<b, with #(a) =u (b) =0, has only the trivial solution (%) =0. If {g,} is a
sequence of continuous functions on [a, b] satisfying g, |, z,5 =@ ((4,)*), x>0,
then

“wn —"@n ”Lo.J [a,b] :@((jn)q), (623)
where w, is the solution of

D?w, (x) +q(#)w, (%) =g, (%), a<x<<bh, w,(a)=1w,(b)=0, (6.24)
while @, is the solution of
D2, (x) +B,(q(x) - @, (%)) =B, (&.(%));  @,€Sp(4, 4,). (6.25)

Proof. Let G(x, s) be the spezific Green‘s function associated with D%w (%) =0,
a<<x<bh, and (6.2), ie., given v€C%[q, b], if D?*w=v with w(a)=w(b) =0

b ~ ~
then w(x) == [ G(x, s)v(s)ds= [Gv] (). With this notation, the boundary value
e
problems (6.24) and (6.25) are respectively equivalent to

ot T, =g, Diw,=5, w,(@)=w,(5)=0, (6.26)
and

o+ 5T, =hg, D, = U W, (@) = W, (6) =0, (6.27)
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where Tv=¢G [v] for all veC9[q, b]. Applying B, to (6.26), subtracting the result
from (6.27), and then subtracting v, from both sides leads to the equation

(I +BT)@,—0) = (B —1)s, (6.28)
Now, the bounded linear operator (I -+ T)™ exists, since by hypothesis, (6.26)
has a unique solution for any g,€C°[a, b]. Then, it follows from Theorem 4.1 that
the completely continuous operators B, T converge in norm to 1" as #—>oc, and

thus, there exist an #; and a K> 0 such that for all n=ny, (I +BT)71 exists
and |(I 4-B,T)"| =K. Thus, from (6.28) and Corollary 3.2.

” @n —_— UVL“Lm [2,b] gS K"vn ”L“o [2,b] for a,].l n ; %0.

But, the hypothesis that |g,| =0((4,)*) coupled with (I +1)3, =g, from (6.26)
implies that |v,|=0((4,)*). Hence, the above inequality becomes 120 — vz, 1

=0((4,)*). But, by definition, &, (x) —w, (%) = fb@(x, $) + (9u(s) —v,(s))ds, and

the desired inequality of (6.23) immediately follows. Q.E.D.

The collocation method described in this section for second-order two-point
boundary value problems is intermediate to those usuallystudied. Inusingsmooth
quadratic splines, the collocation equations are as easy to define, and their
accuracy is moreover comparable (0 (#%) to that obtained from collocation for
smooth cubic splines. When B-splines are used as a basis for quadratic splines,
the resulting matrix problem generated by the collocation method of (6.3) will
be essentially five-diagonal.

To give concrete illustrations of Theorems 6.3 and 6.6, consider the numerical
approximations of the following two-point boundary value problems

D2*u(x) —4u(x) =4 cosh(1), O0<x<1, (6.29)
and
D2y (x) =e*™,  0<x<1, (6.30)
both subject to the homogeneous boundary conditions
% (0) =u (1) =0. (6.31)

The function % (x) =cosh (2x —1) — cosh (1) is the unique solution of (6.29)~(6.31),
while % (x) = —In2 +2In{esec [0.5¢ (v — 0.5)1} with c=]/2 cos (¢/4) = 1.336055 6949
is the unique solution of (6.30)—(6.31). Both solutions are of class C® [0,1], so
that the error bounds (6.17) of Theorem 6.6 are applicable. Observed numerical
errors and observed rates of convergence for these two problems for uniform
partitions of [0, 1] are given in Tables 6.1 and 6.2, respectively. For comparison,
we remark that the solutions of these two problems have also been approximated
numerically by collocation with piecewise quintics in de Boor and Swartz [3].

Table 6.1. Observed errors and rates associated with (6.29)—(6.31)

h luo—le 0,07 B

1/5 0.355-107% —
1/7 0.926 - 1075 3.99
1/9 0.339 1075 3.99
1/18 0.212-107¢ 3.99
1/36 0.132- 1077 4.005

19  Numer, Math,, Bd. 22
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Table 6.2. Observed errors and rates associated with (6.30)—(6.31)

z o=l 0,1 F
1/4 0.550- 107 —
1/8 0.341 - 1076 4.01
1/16 0.213 - 1077 4.00
1/32 0.134-1078 3.99
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