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Summary. In this paper, we study the location of the zeros and poles of general
Padé approximants to e?. The location of these zeros and poles is useful in the analysis
of stability for related numerical methods for solving systems of ordinary differential
equadtions. ‘

1. Introduction

The study of the location of zeros and poles of the Padé approximants to ¢* has
proved to be of much significance because of its application to the analysis of
stability of numerical methods used in solving certain systems of ordinary differ-
ential equations (cf. [1, 3, 12]). Indeed, the essence of Ehle’s paper [3], concerning
A-stability, was in showing that the entries in the first and second superdiagonals
of the Padé table for ¢” have all their zeros in the open left half-plane.

In the present paper, we substantially improve upon Ehle’s results by studying
the behavior of the zeros of approximants along all (super-as well as sub-) diag-
onals of the Padé table for ¢*. In particular, we show that the approximants from
the first four superdiagonals have all zeros in the open left half-plane, and this
result is best possible. Furthermore, we obtain “‘close to sharp” zero-free infinite
sectors for every Padé approximant. These new results and others are stated
explicitly in § 2, with their proofs being given in § 3. For the remainder of this
section, we introduce necessary notation and cite existing results.

Let 7, denote the collection of all polynomials in the variable z having degree
at most m, and let 7, , be the set of all complex rational functions 7, ,(z) of the
form
_ pn,v(z)
O

?/n,v(z) Where ﬁn,renn! gr.,veyzw g

e (0) =1,

Then, the (#, »)-th Padé approximant to ¢* is defined as that element R, ,(z)€mx, ,
for which

e'—R, ,(2) =0(z]""") as |z]—=0.
In explicit form, it is known [8, p. 245] that
R, ,(z) =P, (2)]0,, (2),
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where
\ P :%‘( (n4+v—7q)inla
(1.1 "’”<z) 74:0 (’n—l—vlyi(’ﬂ——])!
2ty — )t (=2
1.2 ny"Z:‘—“—-‘(‘nTv 7-)‘”
1.2 0ust) = 2 Tt — !

We shall refer respectively to the polynomials P, ,(z) and Q,.,(z) as the Padé
numerator and denomainator of type (#, v) for ¢
Generally, one is interested in both the zeros and the poles of the Padé approx-

imants R, ,(z). However, since the polynomials of (1.1) and (1.2) are related by
the obvious identity

(13) Qn,v(z> =F, (—Z):

it suffices then to investigate only the zeros of the Padé approximants R, ,(2);
we leave it to the reader to supply all corresponding theorems for the poles.

The approximants R, ,(z) are typically displayed in the following doubly
infinite array, known as the Padé table:

~Ro 0(2) R; o(2) Roo(2)

Ry 1(2) Ry 1(2) Ry 1(2)
(1.4) Ro,.2 (2) Rl,‘z (2) Rz.,z(z)

L

Note that the entries R, ¢(z), #=0,1,2, ..., in the first row are simply the partial
sums of the Maclaurin expansion for ¢, i.e.,

P n,o(z) CEP
R, o) =m=;z’/i‘-: n Z0.
The convergence properties of sequences from table (1.4) were studied by Padé
(cf. [8, § 75]). In particular, he showed that as n 4-»—> oo, all the zeros (poles) of

R, () approach infinity. A more Tecent result concerning the zeros of R, ,{2) 1s
the following:

Theorem 1.1. (Ehle [3], Van Rossum [131). lf n <v +2, the Padé approximant
R, ,(z) for ¢" has all its zeros in the open left hali-plane. .

Theorem 1.1 includes as a special case the result of Birkhoff and Varga 1]
concerning the main diagonal entries {R, ,.(2)}n=o.0f the Padé table for ¢/, and the
result of Wimp [15] concerning the first superdiagonal entries {Ry p—1 &) fne1-

Essential to the proof of the main theorems given in § 2 is the following result
of the authors concerning zero-free parabolic regions.

Theorem 1.2. (Saff and Varga [9]). For each fixed ¥ =0, and every # =0, the
Padé approximant R, ,(z) for & has no zeros in the parabolic region
(1.3) B fpmn iy S (xr ), w> )
Consequently, every Padé approximant to ¢’ is zero-free in

97";:{2:::1:—1—1'}':yz_é_ii{:x:—%é}j o> —1t
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In the context of table (1.4), the above theorem asserts that along every row
of the Padé table the zeros omit a parabolic region, and the size of the region
increases with the row number. As discussed in [9], Theorem 1.2 Improves upon
the work of Newman and Rivlin (cf. [6, 7]) and Docev [2], the last author having
established that R, ,(2) is zero-free in |z <» 1.

2. Statéments of New Results

We now list and discuss our main results, deferring their proofs to the next
section.

Theorem 2.1. For every # =2,» 20, the Padé approximant R, ,(z) for ¢ has
no zeros in the infinite sector

(2.1) R :{z: |arg z| §c05‘1(n;:3£>}.

Consequently, for any (fixed) ¢>>0, the sequence of Padé approximants
{R, [0"](2)}s%1, where [-] denotes the greatest integer function, is zero-free in the
infinite sector

(2.2) %:z{z:]argz]§c05‘1( 1~0)}.

140

Note that if #» <v» 42, then the sector 9;,',, in (2.1) contains the closed right
half-plane, and thus Theorem 2.1 includes as a special case the known Theorem 1.1.

The second part of Theorem 2.1 has the following (informal) geometric inter-
pretation: If one proceeds down the table (1.4) along a line from R, o which makes
an angle ¢, 0 <¢ <=/2, with the first row, then all entries encountered will be
zero-free in the infinite sector
(2.3) | arg z| < cos™ (—:—}gg%)
Note that as ¢ increases from 0 to 7/2, the right hand member of (2.3) increases
from 0 to 7. We remark that with this interpretation, the case ¢ =0 corresponds
to the sequence of Taylor sections {R, ,(2) Jerofor &, and it is well known [11] that
this sequence is not zero-free in any proper sector with vertex at the origin. Simi-
larly, the case ¢ = z/2 corresponds to the first column {R,,,(2)}320 of the Padé
table for ¢, and, as these rational functions all have numerators unity (cf. (1.1)),
1t is evident that this sequence is zero-free in the whole plane, ie, in |arg z| < m.
Hence, Theorem 2.1 is sharp at the endpoints ¢ =0 + and ¢ = -+ co.

To graphically illustrate the contents of the second part of Theorem 2.1, we

have plotted in Figure 1 the zeros of {R, (s (2)}2%, in the upper half-plane,
corresponding to the choice ¢ =1/3. In this case, the sector s ={z: |arg 2| <
cos™? ( : ; :g) = 60°} contains no zeros from this sequence, and Hsisalsoindicated

in Fig. 1. Similarly, we have plotted in Fig. 2 the zeros of {R,wn(z)},z,l=1 in the

upper half-plane, corresponding to the choice ¢ =3, along with the sector F=

{z: |arg z| __<__COS‘1( ; _—;3) :120"}.

To give some indication as to how sharp Theorem 2.1 is in determining a
zero-free sector for Padé approximants for ¢*, the following computations were

1=

3
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Fig. 2. Zeros of R 4, (z), n=1,2, ..., 21, and zero-free sector
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performed. First, let 0, , be defined as the minimum (positive) argument of all
the zeros of the Padé numerator P, ,(2), i.e.,

6, ,:=min{|arg z|: P, ,(z) =0}.

fnyv"

In the second column of Table 1, the values of {0, (s;; 7 :3771}3,}:11 are given.
Because these values were apparently converging, though very slowly, repeated
applications (5 in all) of Shanks’ extrapolation (cf. [10]) were made to speed
convergence, i.e., if the original sequence is {o{?}, these extrapolations are defined
successively by
QUL “(rz.)ﬁ—l ) aff)_} - (‘ZSZ))'Z
T g el —2a)

Table 1. {0, [,,/a; # = 3m}a_y; and Shanks’ Extrapolations

n O, 131 0% nys) S/ 0o 0 )y 0 )3
33 72.089492°

36 71.370532° 66.707901°

39 70.747621° 66.344 545° 63.754270°

42 70.201913° 66.025889° 63.567382° 62.116535°

45 69.719275° 65.743796° 63.401820°  62.018951° 61.200693°

48 69.288887° 65.492029° 63.253961° 61.931765° 61.149062° 60.685213°
51 68.902318° 65.265720° 63.120973° 61.853318° 61.102603°

54 68.552893°  65.061011°  63.000613°  61.782292°

57 68.235254° 64.874803° 62.801074°

60 67.945045° 64.704 574° :

63 67.678691°

Note that the number appearing in the last column of Table 1 agrees rather

closely with the value, namely 60° = cos™ (

1—1/3
1+1/3

) , given by (2.2) of Theorem 2.1

for the case 0 =1/3. Table 2 gives the analogous results for the case ¢ =3.

Table 2. {0, 5,}2; and Shanks’ Extrapolations

n en, 3n 99:)375 6512, 3n eﬁz):in 95;1,)3n 65;5,)3,‘
11 132.965855°

12 132.241924°  127.358009°

13 131.611448° 126.979700° 124.194874°

14 131.056510° 126.646637° 123.994906° 122.401052°

15 130.563599° 126.350738° 123.817230° 122.294286° 121.379223°

16 130.122319° 126.085785° 123.658117° 122.198675° 121.3241687° 120.797293°
17 129.724527° 125.846903° 123.514645° 122.112464° 121.269840°

18 129.363745° 125.630216° 123.384491° 122.034254°

19 129.034755° 125.432596° 123.265780°

20 128.733298°  125.251404°

21 128.455861°

ing two results.

Concerning entries along diagonals of the table (1.4), we establish the follow-
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Theorem 2.2. If n <y -4, then the Padé approximant R, ,(z) for ¢* has all
its zeros in the open left half-plane.
As stated in the introduction, this theorem extends Ehle’s results [3] from

the first two to the first four superdiagonals of table (1.4). Moreover, we remark
5
that the first entry of the fifth superdiagonal, i.e., Ry o(z) =2, i1, for which
i=0
n=v--5, does in fact have a zero in the right half-plane (cf. [Table 3]}). Hence,
Theorem 2.2 is sharp in this sense.

Table 3

Pn’v(z) Zeros of Pn,v(z) P, .2 Zeros of P, (2)
P, o(2) —1.729444 + 1 - 0.888974 Py o(2) —2.180607

—0.270556 41 - 2.504 776 —1.649503 +7 - 1.693933

+0.239806 41 - 3.128335, :

P i(s) —3.237113 Py 1 (2) —3.424888 +1 - 1.047551 ;\

—2.678150 £ ¢ - 2.181221 —2.458301 44 - 3.102173

—0.703293 + 1 - 4.260145 —0.116811 47 - 5.006 586

Py ,(2) —4.454039 41 - 1.217795
—3.464309 £ 1 - 3.639366
—1.081651 = 7 - 6.023443

The next result states that on proceeding.‘ sufficiently far enough along any
diagonal of the table (1.4), the entries have all zeros in the left half-plane. More f\
precisely, we shall establish )

Theorem 2.3. Given any integer 7, there exists an integer m =m(7) such that ! oo
the Padé approximants {R,, ,_.(2)}s% to ¢” have all their zeros in the open left '
half-plane.

The final two results concern half-planes and disks containing all the zeros

of R, ,(2).
Theorem 2.4. If
(2.4) 1<n<3v-+4,
then all the zeros of the Padé approximant R, ,(z) for ¢” lie in the half-plane
(2.5) Re z<n—v—2.

Theorem 2.5. For any # =3, v =0, all the zeros of R, ,(z) lie in the disk

2n+v)(n+v—1)
(2.6) 2| = (n+2v+1)
Furthermore, all those zeros of R, ,(z) in Re 2 =0 satisly the inequality
2.7) 2| <2(n—3).
3. Proofs of New Results r\

In proving the theorems of §2, we shall make use of the following lemma
which is in the spirit of Wall [14].
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Lemma 3.1. Let 4,: =1, and let the real numbers A,, 2 =1, 2, ..., n, satisfy
the inequalities

(3.1) O< A<, 1ZksEn—1, 0=1,<1,

for any fixed # =1. Ther, the Padé numerator P, ,(z) of (1.1) 1s different from

-zero at any point z which satisfies the inequalities

Rez ([2(k+v) Ay_y —k +1] (& —1)
(3-2) |2+ |z { 224 1 (1 —2) } 20, (1 —2)°
foreveryk=1,2,'...,n.

Proof. Let z #=0 be any fixed complex number satisfying (3.2) forall1 <2<,
and define (in terms of the Padé numerators F, , of (1.1)) the quantity

3.3) Moo =ta () =By (@ By, (), E=1,2,..,m
We shall show inductively that
(3.4) Re py > Af(k +v), for k=1,2,..., %

For £ =1, we have from (3.3) and (1.1) that

1
- ‘Pl,v(z) o (v+1) ____:1_ 1
'ul"’“zB,,,,(z)_' z - _'z+v+1’

from which it follows that Re g, ,> 4;/(v 4-1) if and only if

Rez 1 Ay
(3-5) TR T eEn T i1
Since by hypothesis 4; <1, inequality (3.5) can be written in the equivalent form
Rez ( (v+1) }
-+ et o

which is the same as the case £ =1 of inequality (3.2). Hence, Re gy , > 2,/(1 +v),
the case £ =1 of (3.4).

Now, assume inductively that Reu, ; ,>A;_,/(k—1-+») for some % with
2 <k =<u. From the following known three-term recurrence relation of Frobenius
[4] (which can be directly verified from (1.1)):

b —
66  Bnd)=|5rs +1]Besn O~ s =iy Bl

we can express 4 ,, using (3.3), as

z (£ —1)
_ R.,&@ [k+v+1} B1,5(2) — Y pr— 2B _, ,(2)
b= 2R ,@ 2B, ()
—.1 1 (k — 1) '2%——2,9(2)
SEiy T T RNy =1 B,

R 1 (B —1) o
SR g T TR GTr—1) i

£
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In other words, we can write

(3.7) Py =T, (ta—r,,),
where T, , (w) is the bilinear transformation defined by

. S T (B —1)
(3-8) B A e N (Y (e

Since Repuy_; ,> 2, _4/(k—1+») by hypothesis, Mg,, lies in the image of the
half-plane Re w > 4,_,/(k—1 -+») under the transformation I ,.

Now, as the pole of T}, is at w=0, and as 4,_,>0 from (3. 1), T, , maps
Rew>,_,/(k—1 +) onto an open disk D, in the &-plane. The center &, of this
disk is, by the symmetry principle, the image, under T, ,, of the point in the
w-plane, viz. 22, _,/(k—1 —{-v) which is the reflection of the pole w =0 in the line
Rew=2,_,/(k—1+v), i

fk—Tk,v(k_.1 +V)— k4w +—,'z__ 2(4v)zhy_ -

Furthermore, since the point
1

. 1
Tk,v(oo) = k +v +?

evidently lies on the boundary of D,, the radius 7, of this disk is given by

(E—1)
=&~y () = s

Consequently, the real part of any point in D, must exceed the quantity

1 Rez (B —1)
Re &— =%1s T 22 ( “m:)
(3.9 (= —1) |

2(k+v)|z] 4y’

which one can directly verify is greater than 1,/(k 4») because z satisfies (3.2)
and 2, satisfies (3.1). This then establishes (3.4) for everr k=1, 2, ..., n

In particular, when & =, we have

‘Pn,v(z) "
(3.10) Re t,,, =Re LB;—},,(Z)J> ( +9) =0

Finally, since B, ,(2) and E,_, ,(z) have no zeros in common (cf. [9]), it follows
from (3.10) that £, , (z) =0 for any z satisfying the inequalities (3.2). =

Now, if 2z =7¢%is any nonreal point in the plane, the constants
(3.11) Api=% (1 +cos ), k=1,2,.

obviously satisfy the inequalities (3.1). Furthermore, on substituting cos § for
Re z[|z|, and on substituting (3.11) for 4,, the inequalities (3.2) become, after
some algebraic manipulations,

2(v+1)

(3.12) |z >2(k+v)— (—cosfy F=12 ., m

As the strongest of the inequalities (3.12) occurs when % =#, Lemma 3.1 yields
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Corollary 3.2. The Padé numerator B, ,(z) of (1.1) is different from zero at any
nonreal point z which satisfies the mequahtw

2(v+1)

(3.13) |z] >2(n +v)— (T —cos 0] § =arg z.

Using Corollary 3.2 and Theorem 1.2, we now give the

Proof of Theorem 2.1. We first show that I,  (z) is zero-free in that portion
of the sector &, , (cf. (2.1)) defined by

—2
fﬁn,v:;—{z:re r>n o, O<[6‘<COS‘1(n ? )}

+v
Indeed, if 2z =rew€%,v, then 1 >cos 0 = (n—v—2)/(n +v), and thus
2 1
2(n +4v)— T—Sv—c—_%é%—ygﬂn +v)—(n+v) =n-+v<<|z|,

i.e., inequality (3.13) holds. Hence, by Corollary 3.2, B, ,(z) 0 for any 2€9, ,
Now, according to Theorem 1.2, B, ,(z) is also zero- free in the parabolic reg10n
2, defined in (1.5). This region can be written in the equivalent form

Py ={2=7re" r<2(v+1)](1 —cos 0), 0 = 7}

But, forn =2, it is easy to verify that (¥, \¥9, ,) C(Z,,. Consequently, I, ,(z) &0
for any 2€4%, \9, ,, and hence, E, ,(z) =0 for any z€%, ,. Since the zeros of
the Padé approximant R, ,(z) are the same as the zeros of F, ,(z) then R, ,(z)
has no zeros in &, ,, which establishes the first part of Theorem 2.1.

Finally, applying the above part of Theorem 2.1 to R, (4,;(2) where ¢>0,

then R, (,n;(2) has no zeros in &, ,,;- But, it is readily verified that
n—{on] —2 1—0
n -+ [on] < 1+a
whence (cf. (2.2)) (S, (on for all w=1. Thus, {R, (4n(2)}ney is zero-free in &,
completing the proof of Theorem 2.1. =«

It is interesting to note that Theorem 2.1, as stated, fails for the case n =1,
since the sector & , of (2.1) in this case is the entire complex plane. On the other
hand, since R, ,(z) has its sole zero in the point z =— (1 +»), Theorem 2.1 is valid
for the case # =1 if the inequality in the definition (2.1) of & , is replaced by a
strict inequality, i.e., if

Ly -—{ :|arg z] < cos™ 1( 11_{:;1’):7:}.

Proof of Theorem 2.2. Because of Theorem1 1 (or 2.1), we need only show
that the two sequences {£, ,,_5(z)}nzs and {£, ,_,(z)}nrs are zero-free in the closed
right half-plane.

To deal with the first sequence, let # =3 and v =0 be ﬁxed and define
lpi=%, for k=1,2,...,n—1,4,:=0

for all # =1,

Then, the inequalities (3.2) become

2] + l?eiz {‘2(v+1)}>2(k‘1)’ fork=1,2,..., n—1,

| z [+ Rez —(4+1)>m—1), fork=mn.
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Thus, when Ré’z;o, all of these inequalities are satisfied for |z| >2(n—2).

Hence, by Lemma 3.1, B, ,(z) &0 for all z in the set
%, ={z:Re2=0,|z| >2(n—2)},n=13,v=0.

In particular, B, ,_4(z) is zero-free in &%,. On the other hand, by Theorem 1.2,
£, w—3(2) #=0 for any z in the parabolic region 2 _, of (1.5), and this region contains
the half-disk |z[ =2(n—2), Rez=0. Thus, B, _4(2) is zero-frec in the entire
closed right half-plane for every % =3. ‘

To deal with the fourth superdiagonal, we proceed in an analogous fashion.
Let n =7 and v =1 be fixed, and define

n—4
2(n—3)

n -7

Ak:: ::*5‘(;;?_7)

1=kh=n—2,4, ;= , Ay

1

2 b
Then, the constants 4, satisfy (3.1), and, as can be directly verified, the associated
inequalities (3.2) will all be satisfied for z in the set

.. ={2:Rez=0,|z| >2(n—3)}.

Hence, for n =7, v 21, E, ,(2) is zero-free in %,. In particular, this is true for the
polynomial E, ,_,(z), provided that » =7. Again, as a consequence of Theorem
1.2, B, ,_4(2) is also zero-free in the half-disk |z] £2(n—3), Re z=0. Thus, the
polynomials {E, ,_,(z)}s; are zero-free in the entire closed right half-plane.
Finally, computer computations verify that the same is true of the polynomials
Py,0(2), Ps,1(2), and F, ,(2). (For the reader’s convenience, we have listed the zeros
of these polynomials in Table 3.) Hence, the entire sequence {B, .—a}ory is zero-
free in the closed right half-plane. =
The method used in the above proof is generalized in

Lemma 3.3. Given any integer v =4, there exists integers N =N () and
M =M (z) such that for all #=N(z), v =M (z), the Padé numerator B, ,(z) of
(1.1) is zero-free in the region :

(3.14) 2. ={z: Rez=0, |z] >2(m—7+1)}.

Proof. From the inequalities (3.2) of Lemma 3.1, it is sufficient to show that
there exist constants 4,, k=1, 2, ..., n, which satisfy the inequalities (3.1) and
have the following additional properties:

(B —1) .
(315) m§2(%—1+1), fOl’k———'I,Z,...,%,
(3.16) 0=2(k+v)lh_1—k+1, fork=1,2,..., %
For this purpose, we let a: =n—1 and define recursively for o > —1

a-+s—1
o 42159 (+1)
We shall show that, for # and v sufficiently large, the constants of (3.1 7) satisfy
(3.1), (3.15), and (3.16).
This is obviously the case for 1 <k <« +2, so we deal only with the constants
Jats for 3 <s < 7. From the recursive definition of the Agissin (3.17), we see that

(3.17) Xk:=%,1§k§oc+2,2a+s:=1 ,3<Ss <.

o o« —3

hats =TT Fere= g
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and in general, by induction,
— W=l p o (a) . )
Aoctoj—1 = 2 (e +1) {Otf“2]+9f~a(oc)} o 1=23 - )

il o 0 ) :
R RNETCE s o) S A E

(3-18)

[z/2],

where p; and ¢; are polynomials in « of degree at most 7, whose coefficients are ~
absolute constants (independent of 7), with ¢_; («): =0 and p,(): =0. Next, as
the polynomials

ol +p;2(e) and o/ +qi—a(c),

for each 2 <7 <[(v+1)/2], are evidently both positive for all sufficiently large
values «, it follows from (3.18) that there exists an o, =0 (z) >0 such that
Agrs>0 for all 3 <s =< and all « =«,. Moreover, from the second definition of
(3.17), we further see that the inequalities (3.1) hold forall 3 <s <7, « = «,. Also,
direct substitution of (3.17) shows that (3.15) holds with equality forall 3 <s <7.
Thus, it only remains to verify (3.16) for k=« 45,3 <s <7, i.e.,

o-+s—
(3-19) “7;i;§t;;y-—la+s —1-

For this purpose, we first use (3.17) to write (3.19) in the equivalent form

(s +v) (o +5s—2)
(3.20) ﬂm+ﬂm+s+mw4)—%+5%

J=s=r,

and then we consider separately the cases when s is even, and when s is odd.
When s is even, i.e., s—2 =27, inequality (3.20) becomes

(e +27 +2+v) («+279) 2
2(a 1) (e +27 +2v+3) =" =t2s

which, using the representation (3.18), can be written after some minor mani-
pulations in the equivalent form

(3.21) 0=(»r—27+¢) Yol + Zoa(”(v

where c; is an absolute constant, and where the coefficients a{’ (¥) are polynomials

of degree at most unity in». Now, as§ < [(z 4-1)/2], there exists a positive constant

vo = (7) such that for » =, the coefficient, (v—27 +4-¢;), of o/ in (3.21) is positive

for every 2=j=[(r+1)/2]. Thus, on dividing by the positive quantlty (v—27+
¢c;)o’, (3.21) becomes

a(? )
(v—27+c¢)

(3.22) 0=1+ Z o,y =,

and since a?(v) is a polynomial of degree at most unity in », the ratios al (»)/

(»—27 +¢;) are uniformly bounded below for all ¥ =v,. Consequently, there exists

a positive constant o; =o, (v) (with oy =) such that for all « =y, all ¥ =y,
and for all 2 =7 = [(v +1)/2], inequality (3.22) is satisfied. In other words, (3.20)

holds for all # 2¢; +7 and all ¥ =, when s is even. Similar reasoning applies in

- the case when sisodd, so that (3.20) is valid foralln = N (7), v = M (7),3 <s <7. «
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Proof of Theorem 2.3. From Theorem 2.2, we know that Theorem 2.3 1s true
for each v =4 with m(z) =min (7, 0). For 7> 4, it follows from Lemma 3.3 that
the Padé numerator £, ,_,(z) of (1.1) has no zeros in the region 2.7 of (3.14) for
every # =m(r): =max (N (), M (v) + 7). Furthermore, the result of Theorem 1.2
implies that B, , _(z) is zero-free in the half-disk |z] =2(n—7+1), Rez=0.
Therefore, £, ,_.(2) is zero-free in the entire closed right half-plane for every
n=m(r). =

If we call m(7) the least nonnegative integer for which the sequence
1B iz ()}l i) Is zero-free in the closed right half-plane, then numerical com-
putations indicate that

m(5) =6; m(6) =9, m(7) =14; m(8) =19, 7 (9) =26,
so that m(z) appears to be a monotone increasing function of 7.

Proof of Theorem 2.4. With the assumption of (2.4), we consider first the case
when #>v»-+2, and show that FE, ,(z) is zero-free for Re z=#—»—2. From
Theorem 2.1, it suffices to deal with only those z which satisfy
n—y—

2
n—{—T)’ f =arg z.

(3.23) Rez=zn—v—2,0< cos 0<(

Since

Re z >(n—v—2)’

[z]: cos O = cos 6

the inequality (3.13) of Corollary 3.2 will hold if

s e ) > 20— G
le.,i
(3.24) (cos 6——%) {cos 9—(%:_:2)}>0_

Now, the second inequality of (3.23) gives us that the second factor above is
negative, while the assumption of (2.4) coupled with the second inequality of
(3.23) gives us that

6 ("‘”?_2) 1
cos U <C nt <2,

Le., the first factor of (3.24) is also negative, whence (3.24) is valid. Thus, by
Corollary 3.2, B, ,(2) ==0 for all z satisfying (3.23), and therefore E, ,(2) is zero-free
for Rez=2n—y—2.

Now if # =» 42, then the assertion of Theorem 2.4 follows immediately from
Theorem 2.1. Finally, if 1 <#» <v 42, then again from Theorem 2.1 we need only
show that E, ,(z) =0 for all z satisfying

n—y—2
(3.25) n—y—2=<Rez<0, —«1§cos€<(——n—+—v—),6=argz.
But, any such z lies in the parabolic region £, of (1.5), which is free of zeros of
E, ,(2) from Theorem 1.2. Hence, F, ,(z2) is zero-free for Re 2= n—vp—2.

Proof of Theorem 2.5. The first part of this result follows by defining

k

A < 4 [pp— bl [pp—
)‘k'w 2(/’5"}‘1’“{*’1) ,1=k_£_% 1,2.0. '1,/Ln O,
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and applying Lemma 3.1. Indeed, for these values of J,, the inequalities of (3.2)
of Lemma 3.1 reduce to

(2v+3)
.. 2(k ) (k +v+1)
iii) |z| >n 4 k=

Now, it is easily verified that, when 7 =3, the inequality of 11) for k=n—1
implies the remaining inequalities above. Thus, from Lemma 3.1, |z| >2(m~4v—1)-
(n —+v)[(n +2v 1) contains no zeros of L, ,(z), which gives (2.6) of Theorem 2.5.

To establish (2.7) of Theorem 2.5, we know from the proof of Theorem 2.2
that £, () is zero-free in €,: ={z: Re 220, |z]| >2(n—3)}, for all # =7 and all
v =1. Similarly, from Theorem 2.2, E, ,(z) has all its zeros in the open left half-
plane for all # =<»+4. Thus, it remains to consider the following three cases:
E, o(2) for n =6, Fj 4(2), and F, ; (z). For any % =1, it is well known (cf. [5]) that
all the zeros {z{"}}_; of B, ,(2) satisfy [2{"| <x. Hence, E, +(2) has no zeros in €,
for any # =6. That P; ,(z) and Py 1(z) have no zeros in %, follows directly from
Table3. = ‘

It is interesting to note that (2.6) of Theorem 2.5 fails for the excluded cases
n =1 and # =2, because, using (1.1), F, ,(2) has its sole zero in —(» + 1), while the
zeros of B, , (z) are —(v +1) 4- 2 (v -+ 1), which have moduli (»® +3v +42)"2 On the
other hand, since the zeros for B, , (z) and F, ,(z) are all in the open left half-plane,
(2.7) of Theorem 2.5 vacuously holds for the cases # =1 and % — 2.

There are two consequences of Theorem 2.5 worthy of mention. For # =v 44,
the half-disk {z: Rez=0 and [z| <2(n—3)} of (2.7) of Theorem 2.5 intersects

- the parabolic region 2, of (1.5) in the point (%, ), where

(3.26) x=2(n—v—4); y=2[r-+1) 2n—y—7)]"2
As a consequence of Theorem 2.5 and Theorem 1.2, we easily deduce

Corollary 3.3. For every n and » with # =>v + 4, the Padé approximant R, ()
for ¢* has no zeros in the infinite sector

~

(3.27) R ={z: |arg z| <cost (%124)}

of the right half-plane. Moreover (cf. (2.1)),
(3.28) %2,

only when # <y -+ 6.
Finally, from the point of intersection of (3.20), it evidently follows that all
the zeros of £, ,(2) lie in the half-plane
Rez<2(n—y —~4) when #n =y +4.
On the other hand, with the result of Theorem 2.2, we deduce the following result
which complements Theorem 2.4.

Corollary 3.4. For any #n =0 and » 20, the Padé approximant R, ,(z) for &*
has all its zeros in the left half-plane defined by

(3.29) Re z<max{2(n—v—4); 0}.
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