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Géometric Convergence of Rational Approximations
to e~ in Infinite Sectors
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Summary. In this paper, we study the geometric convergence of rational approxi-
mations to ¢7* in infinite sectors symmetric about the positive real axis.

1. Introduction

The study of the convergence of Padé and non-Padé rational approximations
of ¢7% on finite and infinite sets has received much recent interest, both for its
applications in numerical analysis, as in the solution of systems of ordinary or
partial differential equations (cf. [1-4, 16]), as well as for its pure approximation-
theoretic interest (cf. [6, 8, 9, 12, 13, 15, 17]).

In particular, we have previously shown (cf. [9, 10]) that certain Padé ap-
proximants of ¢™* can exhibit geometric convergence to ¢~ in infinite parabolic
regions of the complex plane, symmetric about the positive real axis. Because of
this, it is natural to ask if certain Padé approximants of ¢~* actually converge
geometrically to e on infinite secfors, symmetric about the positive real axis.
Armed with facts (cf. [12]) about the location of the poles of particular Padé
approximants of ¢~ we shall show here that such geometric convergence in in-
finite sectors is indeed possible. In establishing this, we also give precise conver-
gence rates for Padé approximation to ¢™* on [0, +o0). We also show that a
sequence of rational functions can be found which both converges geometrically
to ¢7F on [0, 4-o0), and has all its poles in the left half-plane.

The outline of the paper is as follows. The remainder of this section gives the
necessary background and notation needed. Then, in §2, we state and discuss
the new results of this paper. The proofs of the stated results in §2 are then
collected in §3.

Let 7,, denote the collection of all polynomials in the variable z having degree
at most m, and let 7, , be the collection of all complex rational functions 7y 1 (2)
of the form

@)= 220 here g, ,(em, b0 ()€, punl0)=1.
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Then, the (», #)-th Padé approximant of ¢~* is defined as that element R, ,(2)
in =z, , for which

e"’ﬂRv,n(z):@(‘z‘”‘L”“) as|z|—0. ‘
In explicit form, it is known (cf. Perron 17, p- 433]) that

R, (2)=0. (@) (),

where
v ) ol (=)
Qo= 2" lj o= 1)
B = 3 s 1.2)

& ntnim—iY

Note that in the case v==0, B, ,(2) reduces to s,(2)= S Aff1, the familiar #-th

=0
partial sum of ¢, so that Ry ,(2)=1 [s,(z). Also, the error in the (v, n)-th Padé
approximation of ¢—* has the following useful representation (cf. Perron [7, p- 43 61):

1
(—1) vl ot (1 —2)" dl
0

e, @) =Ro &) —¢ =" ui)leh, C (13)
for any finite z. For additional notation, we set

nv,n:: Sup{lev,n(x)‘ : xgo}:\\Rv,n(x)——e‘”u[o’+oo). (14)

For the study of either the uniform or geometric convergence of a sequence
{R,(n)m(x)}‘,’;l of Padé approximants of ¢—* on the nonnegative real axis [0, + o),
sharp bounds for 7, , are required. In Saff and Varga [9], the following upper
bounds for 7, , Were obtained:

i =1 for all 2 Z0; (1.5)
n—v ’U+] 1
<\ =7 = ; :
Nyon = 1=1(3”+27) = S for all 0 Zv <n; (1.6)
A Al
_zl émﬂ,né"}{’n—’ foralln>1, (1.7)

where A, and 4, are positive constants, independent of 7. From the above ine-
qualities, it easily follows [9, Thm. 3.1] that a necessary and sufficient condition
for the umiform convergence of a sequence of Padé approximants {R,,(nm(x)};,”=1
of e~ *on [0, + o°), 1e.,

EE::O nv(n),nsoi (1.8)

is that v (n) < for all # sufficiently large. The analogous situation for finding
necessary and sufficient conditions for the geometric convergence of a sequence
of Padé approximants {Rymy 1 (0) o1 of e=% on [0, +00), 1.e.,

ﬁrn (nv(n),n)“" <4, (1 9)
n—>e0
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was also studied in [9], and it was shown there in [9, Thm. 3.2] that

fim 2 <1 (1.10)

n—sw N

1s a sufficient condition for geometric convergence. Based on new sharper estimates
of 7, ,, to be described in § 2, one of our results here, Theorem 2. 5, is that (1.10)
is both necessary and sufficient for the geometric convergence of Ry n (%)}
toe™"on [0, -+ o).

As the title suggests, we are primarily interested here in the geometric con-
vergence of rational approximations to ¢~ in infinite sectors, symmetric about
the positive real axis. To deduce such geometric convergence in infinite sectors,
we need the following results and notation. First, for any 6 with 0<0 < 7,

S(0):={z:|arg 2| < 6} (1.11)

denotes an open infinite sector in the complex plane, symmetric about the positive
real axis. Next, for an arbitrary set 4 in the complex plane, we denote by
the supremum norm on 4, i.e., for / defined on 4,

[la:= sup{[f(2)]: ze4}. (1.12)

°

We now quote

Theorem 1.1, (Saff and Varga [12, Thm. 2.1]). For every # =2 and » =0, the
Padé approximant R, ,(2) of ¢7* has no poles in the infinite sector

Sy pi= {z: |argz| <cos? ( n;:_?)} (1.13)

Consequently, if the sequence of Padé approximants {R, ) n(2)}ory satisfies
lim »(n)/n =0 where 0 <o <1, then for each &> 0 sufficiently small, no poles of
R, (2) lie in the infinite sector S <005‘1 (—:—_E%)- ) (defined in (1.11)), for all
n large.

The next result is a consequence of Saff and Varga [10, Thm. 2.4].

Theorem 1.2. Assume that the sequence of Padé approximants { Ry (2) oy
of ¢™* satisfies

TSP — n 1
ig";‘o{“e - v(n),n(x)”{(l,—i-oo)}” é? <t (1'14)

Assume further that for some 6, with 0 < 8, <z, no poles of R, ,, ,(2) lie in S (6,)
for all n sufficiently large. Then, for every 0 satisfying the inequality

0<b<4tan? {(%ﬁ) -tan (%)}, - (1.15)

there holds on the closure S (6),

1 [ sin[4(6,4-6)] |2
{Sin[i(eo“gﬂ} <1

E {”e—-z_ Rv(n),n (Z) ”—S-(G)}Un é ;
We remark that the above result is a specialized form of Theorem 2.4 of [10],

which makes use of the added fact that any sequence {R,, ,(2)}s>, of Padé

(1.16)
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approximants of ¢™* converges uniformly and faster than geometrically to ¢™*

any compact subset T of the complex plane, i.e.,

3 A
Jim Ry =" =0

on

This follows easily from the integral representation of (1.3), and the fact (cf.
[7, p. 434]) that {R,,) ,(2) % , converges for every finite z to e7*.

Combining Theorems 1.1 and 1.2, a result, Theorem 2.7, concerning the geo-
metric convergence of a sequence of Padé approximants {R, ) . (2)}pes of €7 in
infinite sectors will then be deduced.

Finally, we pose the following natural question. Isit possible to find a sequence
{Rv(n)m(z)};,”ﬂ of (not necessarily Padé) rational functions with f{v(n)’ne Ty imy,n a0
0 <v(n) =n for all n =1, such that all the poles of {f?,,(n),n(z) ® | lie in the left-
half plane Re z<<0, and such that

73_1.?; {ne—x_va),n(x) H[O,-{— oo)}”n<ll’ (117)
ie., {ﬁv(n),n (2)}o, converges geometrically toe™*on [0, + o0). In view of the sharp-
ness of the numerical results of [12], which in turn tend to indicate the sharpness
of Theorem 1.1, this appears not to be possible for Padé rational approximations
of ¢—* However, we will show that certain non-Padé rational functions do have
this property. To prove this, we need the following result of

Theorem 1.3. (Saff and Varga [12, Thm. 2.47). f 1 <n<3v+4, then all the
poles of the Padé approximant R, ,(z) of e7* lie in the half-plane

Rez<n—v—2. (1.18)

2. Statements of New Results

We now list and discuss our main results, deferring their proofs to the next

"' denotes the familiar binomial coefficient.

. . n
section. For notation, =
v pi(n—v)!

Theorem 2.1. For any nonnegative integers v and # with 0=y =9,

Qv,m) - - 1

TN == k)
s (n) s (n) (2.1)
4 v

where there exists a positive constant y, independent of » and #, such that

Qw,n) = @—_‘%}W for all v and #%. (2.2)

Tt is interesting to compare the upper bound for 7, , in (2,.1) with those of
(1.5)=(1.7). First, as is directly verified,
v < ﬁ (ﬁﬁil_) for ally and #» with 0 =v <,
n—p <’)’L> 1 \3v +27
2 i *
v

so that the upper bound of (2.1) for 7, » in these cases improves the corresponding
upper bounds of (1.6). Moreover, since the case y=mn gives in (2.1) the upper
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bound 7, , <1, we see from (1.5) that the upper bound of (2.1) is sharp in this
case.
For the special case y=#x—1, we also have from (2.1) that

1=~ foralln=1,

which improves the corresponding upper bound of (1.7). More generally, we have
as an immediate consequence of the upper bound of (2.1) the

Corollary 2.2. For any fixed positive integer u,

1
77n~ﬂ,n:(ﬁ(%7) as #—>co, (2.3)
We state now some further consequences of Theorem 2.1. First, define
g(B):=p (1—B)"P12'"  foro<p<1, (2.4)

and extend g by continuity to the closed interval [0,1], so that g(0)=1/2, and
g(1)=1. In what is to follow, { (n)}51 will denote a sequence of nonnegative
Integers with 0 <»(n) <# for all n=> 1, and { (n,)}$2; will denote a subsequence.

Theorem 2.3. If lim iﬁ;ﬂ =8, then
Lim 7%, =2 (B). (25)

Conversely, if 11“191110 M =1, then every convergent subsequence of {y(n;)/n,}% |,

ie., lim lgi =, has the property that &(B) =7. Moreover, if ?} <7t=1, then
J—>00 /
the subsequjence (1) [n;}24 itself converges:
lim 20" =p, and g(B)=-=.

i—>c0 Wy
Direct examination of the function g of (2.4) shows that

min{g (f): 0= <1}=3%=g(%). (2.6)
This observation, coupled with Theorem 2.3, gives directly

Corollary 2.4. For any sequence {» (1)}32 ,,

Im =113, (2.7)
with equality being possible.

To couple the results of Theorem 2.3 and Corollary 2.4 with numerical experi-

ments, we give in Table 1 the computed values for {1, smfre—y, along with the

values {nym % | Because 7,4 18 given from (1.4) by

Myn=max{|R, ,(x)—e *|: =0}, O0=v<un,

a standard search procedure can be used to compute ), ,. Note then from The’érém
2.3 that

lim 73%0,=1/3. (2.8)

15%
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Because the values {1}/’ }1%_, in Table 1 appear to be converging, though rather
slowly, to 1/3, we have added in columns 4 and 5 of Table 1 two applications
of Shanks’ extrapolation (cf. [14]) to speed convergence, ie., if the original
sequence is {a!}, then these extrapolations are defined recursively by

G+1) . “gii—l oy — (0‘2>)2
ol TV i=

B g "
a1+ ol g — 205

It is interesting to note here that this extrapolation technique is itself directly
connected with Padé approximation (cf. [4, 14]). Similarly, in Table 2, we give
the computed values of {1g, amime1, along with {yem 22 | and two Shanks’

Table 1. {7, glim=1

1/3m 1/3m (1) 1/3m(2)
w Mm, 3m Non,3m M, 3m T, 3m
1 0.23920775 (—1) 0.28813217
2 0.84062479 (—3) 0.30720883 0.32037478
3 0.30533569 (—4) 0.314 99860 0.32421092 0.32879485
4 0.11196202 (—35) 0.31921936 0.32629932 0.32983115
5 0.41217332 (—7) 0.321 86369 0.32761173 0.33048299
6 0.15204101 (—8) 0.32367483 0.328 51242 0.33092623
7 0.56149131(— 10) ©0.32499260 0.32916836 0.33126026
8 0.20751025(—11) 0.32599428 0.32966775 0.33148892
9 0.76726558(—13) 0.326 78134 0.33005966 0.33168144
10 0.28379098 (— 14) 0.32741604 0.33037528 0.33193514
11 0.10499246(— 15) 0.32793870 0.33063778 0.33193044
12 0.38850582(—17) 0.32837656 0.33085597 0.33213704
13 0.14377996(—18) 0.328 74871 0.33104242 0.33219469
14 0.53216633(—20) 0.32906890 0.33120288 0.33229190
15 0.19698581 (—21) 0.32934730 0.33134275
16 0.72921213 (— 23) 0.329 39159
Table 2. {n2m’4m}},§=1
1/4m 1/4 m (1) 1/4m(2)
m Nam, am Nam, am Tom, 4m Mo, am
1 0.11766464 (—1) 0.32935290
2 0.17865435 (—3) 0.34001784 0.34679534
3 0.27615481 (—5) 0.34416185 0.34886191 0.35120926
4 0.42906830 (—7) 0.34636412 0.34996092 0.35175856
5 0.66810489 (—9) 0.347 73006 0.35064296 0.35209889
6 0.104147 61 (— 10) 0.34865994 0.35110741 0.35233286
7 0.16245652(—12) 0.34933380 0.35144420 0.35249899
8 0.25351536(— 14) 0.349844 57 0.351 699 52 0.35262045
9 0.39572369 (— 16) 0.35024505 0.35189945 0 0.35275971
10 0.61782415(— 18) 0.35056748 0.35206161 . 0.35285895
11 0.964 71697 (— 20) 0.35083265 0.35219631
12 0.15065586(— 21) 0.35105463
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extrapolations. In this case, Theorem 2.3 gives that

‘ " 1 1

which again is consistent with the numerical results of Table 2.

Next, as another consequence of Theorem 2.3 which settles the question of a
necessary and sufficient condition for the geometric convergence in the uniform
norm of a sequence of Padé approximants {Rypny, (%) }o21 to e™* on [0, ~+o0), we
have

Theorem 2.5. A necessary and sufficient condition that a sequence of Padé
approximants {R,, ,(%)}:>, converges geometrically in the uniform norm to ¢~*
on [0, 4o0) (cf. (1.9)) is that '

fim v(n)
n—o0 N

<1. (2.9)

As a consequence of Theorems 2.1 and 2.3, we also have

Theorem 2.6. For every n =1,

(&)
Z_ =3, (2.10)

#
=0 ,n

" 1 i/n
lim (Z ) =3. (2.11)

#n—>00 \, 75 77,,’,,

and

It seems appropriate to comment on the many ways the particular constant
3 enters into the discussion of rational approximations of ¢=* in the uniform
norm on [0, +oo). It was first shown by Schénhage [13] for Chebyshev rational
approximation to ¢™* on [0, + o) that if

1
A :='f{ i 1P, € }
0ne = MY Pal®) 0,4 o) P27
then
lim Agn=1. (2.12)
H—>00

Next, we see that this constant 3 appears explicitly in Corollary 2.4, and in Theorem
2.6. Furthermore, from (2.5) and (2.6), we have that

Hm o™ — Ry 0 (9) o, 4 00} " =14, (2.13)

where [«] denotes as usual the integer part of . This incidentally shows that the
degree of convergence of best Chebyshev rational approximation toe~*on [0, + oo)
by reciprocals of polynomials is identical with the best degree of convergence of
Padé rational approximation to e™* on [0, +00) in the uniform norm. As a final
example of the occurrence of the number 3, Theorem 1.1 shows that the associated
Padé approximants {Rija).n (2)}o2y of ¢™* have no poles in the closed infinite
sector S (n/3).
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z

Having investigated the geometric convergence of {R, () n(®)}n1 to e on
[0, 4 o0), this geometric convergence can be extended, by means of Theorems 1.1
and 1.2, to infinite sectors.

Theorem 2.7. Assume that the sequence of Padé approximants {R,,, ,(?)}ne1
: P
of ¢~* satisfies lim »(n)/n=0 where 0<<c <1, and set fy=cos™ (——~—(—f->. It g (o)
H—r00 1+0

is defined by (2.4), then for every 0 satisfying

L [(1=V80) ) : (_91)}
0<f<dtan {( AT AT/ (244)
there holds on the closure S (6),

- 2
S_ln[«x(eo_i“e)_]} < 1. (2.15)

Bm {J™" = Ry (350} = 0) { sin 4 (6,—0)]
Actually, a sufficient condition for the convergence of a sequence {R, ), (2)}a=1

of Padé approximants to ¢~ in some infinite sector S (0) with §>0, can also be
deduced.

Theorem 2.8. A sufficient condition that the sequence of Padé approximants
{R,s),n(2) a1 of e™* converges geometrically to e~ * in some infinite sector S ()=
{z:| arg z| < 0} is that

0< lim v(%)/%éflin—oio v (n)n<1. (2.16)

n—>0o0
To complete this section, we state a result which answers affirmatively the
question posed in §1.

Theorem 2.9. There exists a sequence {&,, , (2)}nzs of rational functions with
Rm),ne Tymy,n and 0=w(n) <n such that all the poles of {f?,,(n),n(z) o le in
Rez < 0,andsuchthat {R,, ,(2)}s_.convergesgeometrically to e~ *on [0, +o0),1.e.,

ﬁo {He_z“kv(n),n () o, + oo)}lln <1. (2.17)

3. Proofs of New Results

In proving Theorem 2.1 of §2, we find it convenient to first establish
Lemma 3.1, For any nonnegative integers m and # with 0=m =n+1,

(m+1—m)lx™

i) for any ¥ =0. (3.1)

x
[eretdt<
0

Proof. As previously notedin §1, R, , () =1/s,(x) wheres, (x) = > x¥|k!, and
in this case, the expression (1.3) directly implies that k=0

x o0 )
e [ et dt=mn!(c"—s,(x))=n! 2 Aj! (3.2)
0 j=n+1
for all x =0, all #=0. Then, because

(n+1—m)!
(n+1)1G—m)!

IA

1 .
T foranyj=n-+1=m=0,
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it follows from (3.2) that

(n1—m)lam xk/k’< (n+1—m)ix™e*

(n+41) k:,;;"m o (n+1)

for all ¥ =0 and all #-+1 = m =0, which gives the desired inequality of (3.1). ®
With Lemma 3.1, we now give the

x
er f et dt <
[1]

Proof of Theorem 2.1. With the change of variables {=1—wu in the integral of
(1.3), we have from (1.3) that

1
qntr+1 f g™ FU ym (1 ——-u,)” du
0

Igv,n(x)l = CETIANE for all x =o0.

Now, the numerator of the above fraction is positive for all 0 << x <Ceo, so that we
can write with the definition of 2 , () in (1.2),

1

l&,n(2)| =—5——— forallx>0, (3.3)
2 {1/fy(#)}
k=0
where
(,n k) antyt1— kf o XU gyt (1 - )v du
Fol(x) == .(n—}—v— B , 0=ZkZm, x=0. (3.4)

Expressing e~* in the above integrand in Maclaurin series form and integrating

termwise (because of the uniform convergence), gives ,after multiplication by «*,

k' n k o . x"+”+1+7 (n_]_”
)= 1) ; Y i)

nl(n-tv—

Then, differentiating termwise v--1 times yields

AT () Rl(n—R)I! i ;A Rl m—R)plar e
dar+i T onlntv—k) SN ) it wl(ndv—k)!

Thus, on integrating,

El E)lv! 4
» (xkfk(x)):’%—"(%:ﬁ;ﬁ_—ft" ._édﬁ

Foatr d
S @ hm)ar=

and, coupling this with the inequality (3.1) of Lemma 3.1 for the choice m=%—w,
gives
a? Bl n—R) vl (m+v41—Fk) sk~
d;\f" ( fk( )) ("+1)

for all x =0,

provided that % satisfies v < % < #. Integrating this inequality » times and dividing
through by «* then gives the upper bound

(n—R) 1w (e —) | (v 1 — &)
fk (x) é (%+ 1) [
For the remaining cases, i.e., when 0 <k <, we use the trivial upper bound
fr{x) < +oo  forallx=0,if0=k<w.

forall x =20, ally <k Z#.
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These upper bounds, when inserted in (3.3), give

1
le, n(®)] == )] } for all x >0,

,év{ m—R) Wl (k—v) (ntr+1—Fh)
which implies, from the definition of #, , in (1.4), that

1
nu,né ” (n+1)! } (35)

ké,{(n—k)!v!(k—v)!(n+v+1—k)
However, since (n+v+1—£k) < (n+41) for all v <k <#, then

1 . _: e —— 1 ) _
m’néév{(n—k)f:;(k—_vﬁ} P I >

which thus establishes the upper bound of (2.1) of Theorem 2.1.

We remark that the upper bound for %, , of (3.5) is always sharper (ie., not
bigger) than the upper bound of (3.6), but the upper bound of (3.6) is, for our
purposes, easier to work with.

We now establish the lower bound of (2.1) of Theorem 2.1. First, we know
from (1.5) that 1, ,=1 for all # =0, so that the lower bound of (2.1) is valid for
Q(n, n):= p/(n+1)? with any 1 >+ >0. Thus, it suffices to establish the lower
bound of (2.1) only for the cases 0 <y <<#n, n=1.

From the definition of F, , (%) in (1.2), we have that

— BV 4F }
{(n+v ku} forall x =0.

(149)! B () = (n4-1)1 max (=

0<k=n
Thus, there is a fe=1F (%, v, #) satisfying 0 < k <# for which

(1)1 (n+v—Fe) 1 4
(n+9)!E ,(v) = Y

for all x = 0. (3.7)

Next, consider the integral of (1.3). For any ¢€[0, 1), this integral can be express-
ed as the sum

ofl P t”(1—t)"dt:0fde"’ #(1—8)"di+ fle"‘t”(&—t)”dt.
Hence, as the integrand is positive on 0 < ¢<C1, then for ¥ >0 and ¢€[0, 1),
fle"’ t(1—t)dt= fle”‘ P(1—8)"dt > o” f1(1 —t)"dt,
whence ’ ’ ’ ’
Ofl (1 —8)"dt>e"* 6" (1—ao)" T [(n+1), (3.8)

where the factor ¢” is understood to be unity when »=0. Then, combining the

inequalities of (3.7) and (3.8) with the expression for ¢, ,(x) in(1.3) yields

l(n—F)lor (1 — gyrtt ambrbi—fe '
(m+1)2n! (n+v— k) le(-0)%

le, (%) > for any ¢€[0, 1), any x>0,
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so that from (1.4),

(
el (n— o) 1o? (1— gyntt grori—ie

= - i €[0, 1), x>0. (3.
T (4 1)2n! (n4v— k) led =% or any 0€[0, 1), any 6-9)

It remains to select appropriate x and ¢ for use in (3.9). Suggested by com-
puter computations of 7, ,, the value of x for which |e, ()] =7, is ap-
proximately given by

K=, (3.10)
Our choice for o is then the corresponding value of ¢ which maximizes the integrand
of the integral in (1.3) on [0, 1], with x chosen as in (3.10):
2y
e

With the choice of x of (3.10), it can be shown that the value of k for which (3.7)
is valid is given by

(3-11)

mifnt+v=2m;
h—=lmif n+v=2m-+1 and v < 2m?-+3m—+1)/(4m—+3); (3.12)
m-+1intrv=2m-+1 and v = (2m2-+3m—+1)/(4m—+3).

Then, inserting in (3.9) the values of x, o, and k, as given respectively by (3.10)-
(3.12), determines a general lower bound for 7, ,. As a specific example, if =0
and if n=2m with m =1, this lower bound from (3.9)-(3.12) is just
m Tl em ™
No,2m = (2wl (2m+ 1) °
and, as

m —m oo s ! =M =
m™” e ]/2nwz(1+ im >ml>m"e ]/Zazm for all m =1,

this lower bound for 7 ,,, becomes

0(0,2m) . m v
Hoan> 22 withQ(0, 2m)i= — | Z G

5 2 #.L_ - (27%—}—1)
V2 (2m+1) <1+ 8m)

for all m =1, where y>0 is independent of m. But this then establishes the
lower bound (2.1), as well as (2.2), for the special case y=0, n= 2m. The remaining
cases which establish the lower bound (2.1), as well as (2.2) of Theorem 2.1, are
proved in a similar (but more tedious) manner, thus completing the proof of
Theorem 2.1. ®

Before proving Theorem 2.3, we list some properties of the functiong, as defined
in (2.4). First, ¢ maps [0, 1] into [0, 1], and, as is readily verified, g is strictly
decreasing on (0, %), strictly increasing on (,1), and g™* is moreover single-valued
on (4, 1]. This then brings us to the

Proof of Theorem 2.3. To establish the first part, assume that lim —v—(;?i

i—00
Clearly, since by convention here, 0 = (n;) =m;, then 0 =B =1. Assuming ‘further
that 0<<f <1, then all the numbers #;, v (n;), and n;—v (n;), tend to infinity. But
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with the upper bounds for 7, ,, from (2.1) of Theorem 2.1 and with Stirling’s
approximation of m!, we directly determine that

Tm i, <2 (B),

and use of the lower bounds of (2.1) and (2.2), of Theorem 2.1 similarly gives us
that

tim 7202, 28 (6),
whence

Lim 7,0 =¢ (), (3.14)

the desired result of (2.5) of Theorem 2.3 when 0 << <<1. When f=0 or f=1, the
proof is similar.

Conversely, assume that hm 1m .= 7. Since the sequence {v(n;)[n;};2; lies
y 771'(”

in [0, 1], consider any convergent subsequence, ie.,

lim —~ =

j—>00 %1 /3
But, the result above of (3.13) is then directly applicable ,whence g (f)=17. Final-
ly, assume that 1<C7=1, and consider the two convergent subsequences
{r(n;)[n;}321 and {v )jm; ¥, for which

gim "7 gy 0% =B, < By =lim i) g v

> Wy j—>00 %7 i~>00 M 00 Wy
From what has been established, it follows that } <<z=g(f;)=g(f,) =1. But,
as previously remarked, g is single valued on (4, 1], whence f;=p, and
{v(n,)[n;}32, is itself convergent. =

Proof of Theorem 2.5. As previously remarked in §1, it is known [9] that
v(n)

fim —" <1 is sufficient for the geometric convergence of the sequence
n—roe
{R, ), (¥)}7, in the uniform norm to ¢™* on [0, +oo). Conversely, if
hm nv(n),n < 1, (3’1 4)
00
assume on the contrary that this sufficient condition fails, i.e., lim l%l =1,

Then, there is a convergent subsequence with lim 2" — 1. For this subsequence,

(2.5) of Theorem 2.3 gives us that hm ni{;’; :;—o-fg( )1_'1, whence lim 2, , =1,
contradicting (3.14). ® ‘ o

Proof of Theorem 2.6. Using the upper bound of (2.1) of Theorem 2.1, we see
that 1/y, ,=2""" (:L), while use of the lower bounds of (2.1) and (2.2} similarly

give that 1/n, ,=2""" Cf) *(n+1)2/y, for all »=1. Summing on »,

<®+1)%23"y foralln=1.
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Thus, on taking »-th roots, it follows that

which establishes (2.10) and (2.11). =&

Proof of Theorem 2.7. If the sequence of Padé approximants {R,,) ,(2)}re1
of ¢~ satisfies lim v (#)/n =0 with 0 <o <1, then from Theorem 2.5, this sequence

converges geometrically to e™* on the set [0, + o). Moreover, from (2.5) of Theorem
2.3, we also have that

jl—g}o {He—x~ Rv(n),n (x)

where the function g is defined in (2.4), so that (1.14) of Theorem 1.2 is satisfied
with ¢g=1/g(0). Next, from Theorem 1.1, for each ¢>0 sufficiently small, no

o, +oo)}1/" =¢(0)

poles of R, ,(2) lie in the open infinite sector S (f,—¢) with 0 1= cos™ (:*%}
for all # large. Thus, Theorem 1.2 can be applied, for each £>0, and letting
&¢—0 then establishes Theorem 2.7. &

Proof of Theorem 2.8. Suppose that the sequence of Padé approximants
{Rypy,n (2}, of e7" satisfies 0<01=’1_i_>r% y(n)/n = 7}1)_11; v(n)/n=0,<1. Since
0, <1, then from Theorem 2.5, this sequence converges geometrically to ¢™ on
[0, + o). Next, because o; >0, then Theorem 1.1 gives us that the poles of
{R, ), »(2)}2, omit some infinite sector S (0,), 6 > 0. Then, applying Theorem 1.2,
we see that there is an infinitesector S (), 8 > 0, on which{R,,, , (2)};>1 converges
geometrically to e™*. ®

It remains an open question if (2.16) is also a mecessary condition that
{R, s, (2)}2, converges geometrically to e™* in some infinite sector.

In answer to the question posed in §1, we now give the

Proof of Theorem 2.9. If [m] denotes the integer part of , consider the par-
ticular sequence {Ry,s , ()}, of Padé approximants of ¢™*. Because y (n):= [n/3]
satisfies lim »(n)/n=1/3, it follows from Theorem 2.3 that

>0

Jim {le™"— Ry, () |, roof =% (3.15)
Since [le™*— Rpyay,n (%) Jin, +oo) = €™ — Rpusap () |0, +c0)» it is evident from (3.15)
that L

m {[e™"— Rey)n(®) o, +00} " =5
Now, writing x=n-¢ with 0 <¢<Coco, the above becomes

im {[e™"—¢" Rpyap,n (0+1) o, 100y} =

n—>c0

€

3 <1.

Thus, the sequence {f@[n/a] 2 (2)1=¢" Rpa1 , (0-+2) 132, converges geometrically to e™*
on [0, o). Next, because v (#):= [n/3] and becausen =2,then 1 <n <3 (n)+4,
and Theorem 1.3 can be applied, i.e., all the poles of the Padé approximants
Ry, 51.(2) lie in the half-plane

Rez<n—y(n)—2, foreveryn=2.
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But this implies that ¢” Ry, g , (#--2) has all its poles in
Rez<—v(n)—2<0 foreveryn =2,

whence {ZA?'WSM (2)}2° 5 has all its poles in Re 2<<0. ®

We remark that the proof of Theorem 2.9 can be used to generate ofher se-
quences {f?v(n)’n(z)}ff’:z of rational functions, with INQMME Tpmy,n @A 0 = (1) <,
converging geometrically to ¢™* on [0, +oc) and having all poles in Re z<C0.
Indeed, choose any sequence {» (7)}32 5 of positive integers such that

3p(n)-+4>n forn=2; lim »(n)ln=p whereg(ﬁ)<—:-.

Then, the sequence {¢" Ry, ,(n-+2)};2, of rational functions also satisfies the
requirements in Theorem 2.9. Note, moreover, that any sequence of rational
functions having these properties will necessarily converge geometrically to e™*
in some infinite sector S () with 6>0.

Added in Proof. With regard to Theorem 2.9, it is proven in "’ Geometric con-
vergence to e~% by rational functions with real poles’’ by E. B. Saff, A. Schonhage,
and R. S. Varga, in Numer. Math. 25, 307-322 (1975), that there is a sequence of rational
functions satisfying (2.17) for which the poles of the rational functions are all on the
negative real axis.
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