ZERO SETS OF POLYNOMIALS IN SEVERAL VARIABLES

R.M. Aron and P. Hajek

The following statement is well known, see e.g. [R].

Lemma 1. Given k; n 2 IN

obvious that a system of ordered partitions of rank k for f_1 ; ...; $2^n g$ also works for f_1 ; ...; Ig:

Theorem 4. Let $n \ge N$, $n \ne odd$, and let Q(x) be n-homogeneous polynomial on \mathbb{R}^N . Provided $N > k! (\log_2(N))^k \overset{k+n_j}{k_j} \overset{1}{1}$, there exists a linear subspace $X \not! \mathbb{R}^N$, dim X = k such that $Q \leq 0$ on X.

PROOF. Write $Q = Q_1 + Q_3 + \ell \ell \ell + Q_{2m+1}$

From the asymptotical point of view, it follows from the prime number theorem (see, e.g., [Ru, p.230]) that $\lim_{x!} \frac{4(2x)}{24(x)} = 1$, so certainly $p(N) > \frac{N}{2}$ for N large enough. Thus for n large enough it su ces to choose N, 4n in Proposition 5. On the other hand, it i2401(nothe)n[lhs