An airline finds that if it prices a cross-country ticket at $800, it will sell 100 tickets per day. It estimates that each $10 price reduction will result in 10 more tickets sold per day. Find the ticket price (and the number of tickets sold) that will maximize the airline’s revenue.

Hint: Let \(x \) = the number of price reductions.

1. **Calculate** \(p(x) \), the price per ticket with \(x \) price reductions.
 \[
 p(x) = 800 - 10x \quad \text{(dollars)}
 \]

2. **Calculate** \(q(x) \), the number of tickets that are sold with \(x \) price reductions.
 \[
 q(x) = 100 + 10x \quad \text{(tickets)}
 \]

3. The total revenue, with \(x \) price reductions, is \(R(x) = p(x) \cdot q(x) \). Use calculus to find the maximum value of \(R(x) \). Use the second derivative test to prove that your maximum really is a maximum.

 \[
 R(x) = (800-10x)(100+10x) = 80000 - 10000x + 8000x - 100x^2
 \]
 \[
 = 80000 + 7000x - 100x^2.
 \]
 \[
 R'(x) = 7000 - 200x.
 \]
 Set \(R'(x) = 0 \), solve for \(x \).
 Get \(x = 3.5 \).
 \[
 R''(x) = -200, \quad \text{so max since } R'' < 0.
 \]

 *Ticket price: \(800 - 10 \cdot 3.5 = 800 - 35 = 765 \)

 *Number of tickets: \(100 + 10 \cdot 3.5 = 100 + 35 = 135 \) tickets.
An automobile dealer expects to sell 512 cars a year. The cars cost $9000 plus a fixed charge of $1000 per delivery. If it costs $1000 to store a car for a year, find the order size and the number of orders that minimize inventory costs.

Hint: Let $x =$ the order size each time.

1. Calculate $N(x)$, the number of orders that the dealer will place in a year.
 \[N(x) = \frac{512}{x}\text{ orders} \]

2. Calculate $C(x)$, the storage cost in a year.
 \[C(x) = \frac{x}{2} \cdot 1000 = 500x\text{ dollars} \]

3. Calculate $R(x)$, the reorder cost each time.
 \[R(x) = 9000x + 1000\text{ dollars} \]

4. The total inventory cost is $T(x) = C(x) + N(x)R(x)$. Use calculus to find the minimum value of $T(x)$. Use the second derivative test to prove that your minimum really is a minimum.
 \[T(x) = 500x + \frac{512}{x} \left[9000x + 1000 \right] = 500x + 4600000 + \frac{512000}{x} \]
 \[T'(x) = 500 - \frac{512000}{x^2}, \text{ solve for } x, \text{ getting } x = 32 \]
 \[T''(x) = \frac{2 \cdot 512000}{x^3}, \text{ } 0, \text{ } T''(32) > 0, \text{ } \text{Min} \]

Order size that minimizes total cost:

Order size $= 32 \text{ order size}$

Number of orders that minimize total cost:

Number of orders $= \frac{512}{32} = 16 \text{ orders}$