Real Analysis Problem Sheet 3.
Due Monday 16th March

1. Let $1 < p < \infty$. Suppose $f \in L^p(\mathbb{R}^n)$ and $g \in L^{p'}(\mathbb{R}^n)$ where $\frac{1}{p} + \frac{1}{p'} = 1$. Show that the convolution $f * g \in C(\mathbb{R}^n)$.

2. For $k \in \mathbb{N}$, define the trigonometric polynomial
 \[P_k(t) = c_k \left(1 + \cos \frac{t}{2} \right)^k, \quad t \in \mathbb{R}. \]
 where c_k has been chosen to ensure that
 \[\int_0^{2\pi} P_k(t) dm_1(t) = 1. \]
 Let $C(\mathbb{T})$ denote the space of 2π-periodic continuous functions on \mathbb{R}.
 (a). Show that $c_k \leq k + 1$.
 (b). For $f \in C(\mathbb{T})$, show that the convolution $P_k * f$ converges uniformly to f as $k \to \infty$.
 As $P_k * f$ is also a trigonometric polynomial, this shows that trigonometric polynomials are dense in $C(\mathbb{T})$.

3. Show that the Sobolev space $W^{1,p}(\mathbb{R}^n)$ is a Banach space. (See “More on L^p spaces” for the definition)

4. Suppose that, for each $j \in \mathbb{N}$, $f_j : [0, 1] \to \mathbb{R}$ is a Lebesgue measurable function satisfying $0 \leq f_j \leq \frac{3}{2}$ and
 \[\int_0^1 f_j dm_1 = 1. \]
 Prove that
 \[m_1 \left(\{ x \in [0, 1] : \limsup_{j \to \infty} f_j(x) \geq \frac{1}{2} \} \right) \geq \frac{1}{2}. \]

5. Suppose that f is a non-negative Lebesgue measurable function on $[0, 1]$ with $f(x) > 0$ for m_1-almost every $x \in [0, 1]$. Suppose that E_k is a sequence of measurable subsets of $[0, 1]$ with
 \[\lim_{k \to \infty} \int_{E_k} f dm_1 = 0. \]
 Prove that $\lim_{k \to \infty} m_1(E_k) = 0$.
