## Homework 2: Due Wednesday, December 3, 2014

1. You are given the following information from a life table:

| $\boldsymbol{x}$ | $\boldsymbol{l}_{\boldsymbol{x}}$ | $\boldsymbol{d}_{\boldsymbol{x}}$ | $\boldsymbol{p}_{\boldsymbol{x}}$ | $\boldsymbol{q}_{\boldsymbol{x}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 95 |  |  |  | 0.40 |
| 96 |  |  | 0.20 |  |
| 97 |  | 72 |  | 1.00 |

- $l_{90}=1000$ and $l_{93}=825$
- Deaths are uniformly distributed over each year of age.

Calculate the probability that (90) dies between ages 93 and 95.5.
2. A special temporary (term) life annuity-due on (30) provides payments of $t$ in year $t=1,2,3$. You are given

- $q_{30}=0.01$
- $q_{31}=0.015$
- $q_{32}=0.02$
- $i=0.04$

Compute the actuarial present value of this annuity.
3. You are given

- $\bar{A}_{x}=0.3$
- $\bar{A}_{x: \overline{20}}=0.4$
- $i=0.05$
- ${ }_{20} p_{x}=0.7$

Calculate $\overline{a_{x: 20 \mid}}$.
4. You are given

- $\delta= \begin{cases}0.04, & \text { for } 0 \leq t \leq 5 \\ 0.03, & \text { for } t>5\end{cases}$
- $\mu=0.01$

Calculate $\bar{a}_{x: 101}$.
5. You are given

| $k$ | $\ddot{a}_{\bar{k}}$ | $k-1 \mid q_{x}$ |
| :---: | :---: | :---: |
| 1 | 1.00 | 0.33 |
| 2 | 1.93 | 0.24 |
| 3 | 2.80 | 0.16 |
| 4 | 3.62 | 0.11 |

Calculate $\ddot{a}_{x: 4]}$.
6. Suppose that the force of mortality and the force of interest are both constant, say $\mu_{x+t}=\mu$ and $\delta_{t}=\delta$, for all $t \geq 0$. Find an expression for $\bar{a}_{x: 11}$ in terms of $\mu$ and $\delta$.
7. You are given

- ${ }^{2} \bar{A}_{x}=0.08$
- $\delta=0.10$
- $\operatorname{Var}\left[\bar{a}_{\bar{T}_{x}}\right]=4$

Determine the actuarial present value of a continuous whole life annuity of 1 payable while $(x)$ survives.
8. You are given

- Deaths are uniformly distributed over each year of age.
- ${ }_{5 \mid} \ddot{a}_{x: \overline{10}}=5.3$
- ${ }_{5} E_{x}=0.60$
- ${ }_{15} E_{x}=0.20$
- $i=0.10$

Calculate ${ }_{5 \mid} \ddot{a}_{x: 120}^{(12)}$.

