Name: \qquad

Homework 1: Due Thursday, January 15, 2015

This is a little review from the first semester to help you clear those cobwebs out of your brain!

1. Suppose the lifetime distribution function for a turtle in the pond in my front yard is given by

$$
F_{0}(t)= \begin{cases}1-\left(1-\frac{t}{20}\right)^{1 / 4} & \text { for } 0 \leq t \leq 20 \\ 1 & \text { for } t \geq 20\end{cases}
$$

(a) Find and simplify an expression for $S_{0}(t)$, the survival function for a newly hatched turtle.
(b) Calculate the probability (rounded to two decimal places) that
i. a newly hatched turtle survives beyond age 10
ii. a turtle aged 8 dies before age 11
iii. a turtle aged 5 survives beyond age 12
(c) Derive and simplify an expression for the force of mortality, μ_{x}, for a turtle aged x.
(d) Find and simplify an expression for ${ }_{t} p_{x}$, the probability that a turtle aged x survives to at least age $x+t$.
(e) Find and simplify a formula for \dot{e}_{x}, the complete expectation of life for a turtle aged x.
2. Recall that $e_{x: \bar{n}}=E\left[\min \left(K_{x}, n\right)\right]=\sum_{k=1}^{n}{ }_{k} p_{x}$. (See Exercise 2.16 in the text or Problem 4 on Homework 1 from last semester.)
(a) Show that $e_{x}=e_{x: n}+{ }_{n} p_{x} e_{x+n}$.
(b) You are given the following extract from a table with a 3-year select period.
i.

x	$q_{[x]}$	$q_{[x]+1}$	$q_{[x]+2}$	q_{x+3}	$x+3$
60	0.09	0.11	0.13	0.15	63
61	0.10	0.12	0.14	0.16	64
62	0.11	0.13	0.15	0.17	65
63	0.12	0.14	0.16	0.18	66
64	0.13	0.15	0.17	0.19	67

ii. $e_{64}=5.10$

Calculate $e_{[61]}$. Hint: Use a select version of the formula above.
3. For a whole life insurance of $\$ 1000$ on (50), you are given

- The death benefit is payable at the end of the year of death.
- Mortality follows the Illustrative Life Table (attached or posted on class web page).
- $i=0.05$ the first year, and $i=0.06$ in subsequent years.

Calculate the actuarial present value of this insurance.
4. Consider the insurance benefit with the present value given by

$$
Z= \begin{cases}0 & \text { if } T_{x} \leq 5, \\ 100 v^{T_{x}} & \text { if } 5<T_{x} \leq 25, \\ 100 v^{25} & \text { if } T_{x}>25 .\end{cases}
$$

(a) Write down a formula for the expected value for Z in integral or summation form.
(b) Write down an expression in terms of standard actuarial functions for the expected value for Z.
5. Consider the following excerpt from a life table.

\boldsymbol{x}	$\boldsymbol{l}_{\boldsymbol{x}}$	$\boldsymbol{A} \boldsymbol{A}_{\boldsymbol{x}}$
35	$100,000.00$	0.151375
36	$99,737.15$	0.158245
37	$99,455.91$	0.165386
38	$99,154.72$	0.172804
39	$98,831.91$	0.180505
40	$98,485.68$	0.188492

Compute each of the following given an effective interest rate of 6% per year.
(a) ${ }_{3} E_{35}$
(b) ${ }_{3 \mid} A_{35}$
(c) $A_{35: 31}^{1}$
(d) $\bar{A}_{35: 31}$ assuming UDD
6. Bob, currently exact age 40, joined a defined benefit pension plan at exact age 35 . His current salary is $\$ 50,000$ per year. He will retire at exact age 65 .

You are given:

- Bob's salary will increase at the rate of 2% each year on his future birthdays.
- The annual retirement benefit is 0.5% of the final three-year average salary for each year of service.
- Bob wants to supplement this annual retirement benefit with an annuity, so that the total annual benefit is $\$ 42,000$.
- Retirement benefits will commence at exact age 65 and are payable at the beginning of each year of life.
- $\ddot{a}_{65}=9.9$

Calculate the amount Bob needs at age 65 to purchase the annuity to receive his desired annual retirement benefit.

