Chapter 4 Sample Exam Solutions

1. (a) $f' (x)$ is always -1 or 1, so no such c exists.
 (b) There is no contradiction, because f is not differentiable in the relevant interval.

2. $f'' (x) = 0$ at a, $f'' (x)$ does not exist at b (vertical tangent), $f'' (x)$ does not exist at c (cusp)

3. $F (x) = \begin{cases} \cos x & \text{if } -\pi \leq x \leq 0 \\ -\cos x + 2 & \text{if } 0 < x \leq \pi \end{cases}$

4. (a) Vertical: $x = -3, x = 1$. Horizontal: $y = 0$
 (b) Vertical: $x = 3, x = -2$. Horizontal: $y = -4$
 (c) The numerator factors as $(x - 1) (x + 2) (x + 1)$. Vertical: $x = 2$. Slant: $y = x + 2$
 (d) Vertical: $x = 1$. Horizontal: $y = 1$
 (e) Vertical: $x = \pm \sqrt{2}$. Slant: $y = x$ (as $x \to \infty$) and $y = -x$ (as $x \to -\infty$)

5. Let m be the slope of the line. Then the equation of the line is $y = mx - 3m + 2$ and the area of the triangle is $\frac{1}{2}bh = \frac{1}{2} \left(3 - \frac{2}{m} \right) (-3m + 2) = -\frac{1}{2} \frac{(3m - 2)^2}{m}$. The minimum area occurs when $m = -\frac{2}{3}$, giving an area of 12. There is no maximum area, because the area increases without bound as m gets close to zero.

6. (a) Always true, by the Mean Value Theorem
 (b) Never true, since f'' is never zero or undefined.
 (c) Sometimes true. For example, it is true for $f (x) = -(x - 5)^2$, but false for $f (x) = -(x - 2)^2$.
 (d) Always true, because f' is always decreasing.

7. (a) With an initial approximation of $x = -0.5$, the successive approximations x_n will approach the root at $x = -1$.
 (b) The horizontal tangent near $x = 0.5$ will result in successive approximations x_n which oscillate about the minimum at $x \approx 1.2$.

8. (a) f must be continuous on $[1, 3]$ and differentiable on $(1, 3)$.
 (b) (i) $\lim_{x \to 0^+} \frac{f(x + h) - f(x)}{h} = 0$ and $\lim_{x \to 0^-} \frac{f(x + h) - f(x)}{h} = 0$. Because the left- and right-hand derivatives exist and are equal, the derivative exists.
 (ii) The Mean Value Theorem states that there exists $c \in (-10, 1)$ for which
 $$f'(c) = \frac{f(1) - f(-10)}{1 - (-10)} = \frac{1}{11} - \frac{0}{11} = \frac{1}{11}.$$ Now for $x > 0$, $f'(x) = 2x$. So we set $2c = \frac{1}{11} \iff c = \frac{1}{22}$
9. The first can’t be the derivative, because it is zero for \([-1, 0]\), whereas \(g'(0) > g'(-1)\). The second can’t be the derivative, because the MVT guarantees a \(c\) in \((-1, 0)\) such that \(g'(c) = 1\). (This answer works for the first graph too.)

10. \(f(x) = x^3 + ax^2 + bx + c \Rightarrow f'(x) = 3x^2 + 2ax + b \Rightarrow f''(x) = 6x + 2a\)

(a) Concave up on \((-\frac{1}{3}a, \infty)\); concave down on \((-\infty, -\frac{1}{3}a)\)

(b) \(x = -\frac{1}{3}a\) is the only candidate, and the concavity does change there.

(c) We have \(0 = -\frac{1}{3}a\), giving that \(a = 0\). We have \(-2 = c\) from the first equation. \(f'(x) = 3x^2 + b\). Since \(b > 0\), there is no critical point.

11. (a) Answers will vary. Look for a graph that is increasing and concave up until \(x = \frac{1}{2}\), and then increasing and concave down.

(b) Answers will vary. Look for a graph with a local minimum at \(x = 0\) and concave up until \(x = \frac{1}{2}\), and then concave down.

(c) Answers will vary. Look for a graph that is decreasing and concave up until \(x = \frac{1}{2}\), and then decreasing and concave down.

12. (a) \(\frac{dL}{dt} = \frac{2}{3\sqrt{h}} \cdot \frac{dh}{dt}\). If \(t\) is in years, \(\frac{dh}{dt} = 5\), so \(\frac{dL}{dt} = \frac{10}{3\sqrt{h}}\) in yr. If \(t\) is in days, \(\frac{dh}{dt} = \frac{5}{365} = \frac{1}{73}\) in/yr,

\(\frac{dL}{dt} = \frac{2}{219\sqrt{h}}\) in/day.

(b) \(\frac{dL}{dt}\) decreases with time, so the fastest rate of growth occurs when \(t = 0\), and that rate is \(\frac{5}{12}\) in/year or \(\frac{1}{876}\) in/day.

13. \(F'(x) = \frac{1}{1 + x^4} + A\), so to find critical points we need to solve the equation \(\frac{1}{1 + x^4} + A = 0\).

(a) If \(A = 2\), then the equation \(\frac{1}{1 + x^4} + A = 0\) has no real solution.

(b) If \(A = -1\), then the equation \(\frac{1}{1 + x^4} + A = 0\) has one real solution, namely \(x = 0\).

(c) If \(A\) is any number between \(-1\) and \(0\), then the equation \(\frac{1}{1 + x^4} + A = 0\) has the two real solutions \(x = \pm \sqrt[4]{-1 - \frac{1}{A}}\).
14. (a) \(x_{n+1} = x_n - \frac{x_n^3 - a}{3x_n^2} \)

(b) \(x_{n+1} = x_n - \frac{x_n^3 - a}{3x_n^2} = \frac{3x_n^2}{3x_n^2} - \frac{x_n^3 - a}{3x_n^2} = \frac{2x_n^3 + a}{3x_n^2} - \frac{1}{3} (2x_n^2 + a) \)

(c) \(x_0 = 3 \Rightarrow x_1 \approx 3.074074074 \Rightarrow x_2 \approx 3.072317830 \Rightarrow x_3 \approx 3.072316826 \)

(d) \(3.072316826 - \sqrt{29} \approx 3.141527067 \times 10^{-10} \) (answers may vary)

15. The volume of the conical part is \(\frac{1}{3} \pi 10^2 (20) - \frac{1}{3} \pi 5^2 (10) = \frac{1750}{3} \pi \). The volume of liquid when the height is \(h > 10 \) is \(\frac{1750}{3} \pi + 25 \pi (h - 10) \).

(a) \(2 = 25 \pi \frac{dh}{dt} \Rightarrow \frac{dh}{dt} = \frac{2}{25 \pi} \) cm/s

(b) \(\frac{1750}{3} \pi \) cm\(^3\) \cdot \frac{1}{3} \) s/cm\(^3\) \cdot \frac{875}{3} \) s

(c) For \(h < 10 \), the volume is \(V = \frac{1}{3} \pi 10^2 (20) - \frac{1}{3} \pi (10 - \frac{1}{2}h)^2 (20 - h) = 100 \pi h - 5 \pi h^2 + \frac{1}{12} \pi h^3 \).

Taking derivatives with respect to time, we get \(2 = \frac{dV}{dt} = 100 \pi \frac{dh}{dt} - 10 \pi h \frac{dh}{dt} + \frac{1}{4} \pi h^2 \frac{dh}{dt} \). When \(h = 5 \), \(\frac{dh}{dt} (100 \pi - 50 \pi + \frac{25}{4} \pi) = 2 \Rightarrow \frac{dh}{dt} = \frac{2}{100 \pi - 50 \pi + \frac{25}{4} \pi} \approx 1.132 \times 10^{-2} \).

16. (a) Answers will vary. Look for a smooth graph going through the indicated points.

(b) Apply the Mean Value Theorem to the interval \((0, 5)\) to show the existence of \(a \), and then again to \((5, 10)\) to show the existence of \(b \).

(c) Apply the Intermediate Value Theorem to \(f' \) using \(a \) and \(b \) to show the existence of \(c \). For another solution, use the Intermediate Value Theorem to show that \(f (\ell) = 3 \) for some \(\ell \) with \(5 < \ell < 10 \), and then \(f' (c) = 0 \) using the Mean Value Theorem on the interval \([0, \ell]\).

17. (a) Minima at \(x = -5 \), 0, and 5; maxima at \(x = -4 \) and 4

(b) \(g \) is concave up when its derivative is increasing; that is, on \((-6, 4.5)\), \((2, 2)\), and \((4.5, 6)\).

(c) \(g \) is larger than \(g \) (2), because the function is increasing on \((2, 4)\).

18. (a) The numerator of \(f \) doesn’t contain a factor of \(x - 2 \), so there is a vertical asymptote at \(x = 2 \). There is a slant asymptote at \(y = 2x - 1 \).

(b) \(2x^2 - 5x + 5 = 0 \) has no real solution, so \(f \) has no root.

(c) Solve \(2x^2 - 8x + 5 = 0 \) to find critical points at \(x = 2 + \frac{1}{2} \sqrt{6} \) and at \(x = 2 - \frac{1}{2} \sqrt{6} \). The Second Derivative Test gives that the first is a minimum, the second a maximum.

(d) There is no inflection point, but the concavity changes at \(x = 2 \), where the function is undefined.)

(e) [Diagram]
19. No, it does not. There is a second vertical asymptote at $x = 100$.

20. (a) Yes. f' can be negative, and $f(0) = 0$, so f can decrease for $x \geq 0$.

(b) Yes. f' can be positive, and $f(0) = 0$, so f can be negative at $x = -3$.

(c) $f(3)$ will have its largest possible value if $f'(x) = 5$ for $0 < x < 3$. So $f(3) \leq 15$. $f(-3)$ will have its largest possible value if $f'(x) = -1$ for $0 < x < 3$. So $f(-3) \leq 3$.

(d) No, it need not have a critical point. For example, let $f(x) = x$.

21. (a) $g'(x) = 2 \sin \frac{x}{2} \cos \frac{x}{2}$

(b) $g'(x) = \sin x$

(c) $g(x) = -\cos x$

22. Answers will vary; the following are samples only.

(a) $f(x) = x^2$, $g(x) = x$

(b) $f(x) = 6x$, $g(x) = x$

(c) $f(x) = x$, $g(x) = x^2$

(d) This is not possible. For $\lim_{x \to \infty} \frac{f(x)}{g(x)} = -1$, either f or g would have to be negative for large x. This contradicts the assumption that $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = \infty$.

256