1. (10 points) Find the exact value of each expression or else indicate “does not exist.”
 (a) \(\log_4 8 \)
 (b) \(e^{2 \ln 5} \)
 (c) \(\sin^{-1} \left(-\frac{1}{2} \right) \)
 (d) \(\tan^{-1} (1) \)
 (e) \(\sin^{-1} \left(\sin \left(\frac{2\pi}{3} \right) \right) \)

2. (10 points) Let \(y = \ln x \). Show that \(\frac{dy}{dx} = \frac{1}{x} \) by using the fact that \(\frac{d}{dx} e^x = e^x \).

3. (10 points) Evaluate each limit. Show your reasoning.
 (a) \(\lim_{x \to 0} \frac{e^x - 1}{\sin x} \)
 (b) \(\lim_{x \to 0^+} \sqrt{x} \ln x \)
4. (10 points)

(a) Complete the statement of the Mean Value Theorem.

Suppose \(f \) is a function satisfying the following hypotheses.

\(i. \) \(f \) is continuous on the closed interval \([a, b]\);

\(ii. \) \(f \) is differentiable on the open interval \((a, b)\);

Then

(b) Explain (in complete sentences) what the Mean Value Theorem means geometrically. You might also wish to illustrate with a sketch.

5. (10 points) Use calculus to find the absolute minimum and absolute maximum values of the function

\(f(x) = x^3 - 3x + 1 \) on the interval \([-2, 3]\). Give exact values. Show your reasoning clearly.

The absolute minimum value of \(f \) on \([-2, 3]\) is ________ and it occurs at \(x = \) ________________.

The absolute maximum value of \(f \) on \([-2, 3]\) is ________ and it occurs at \(x = \) ________________.
6. (20 points) Let \(f(x) = \frac{x^2 + x + 1}{x} = x + 1 + \frac{1}{x} \).

(a) Give the equations for all vertical asymptotes of the graph of \(f \).

(b) Give the equation for the slant asymptote of the graph of \(f \).

(c) Verify that your slant asymptote is correct. *You may show just one limit.*

(d) Use the fact that \(f'(x) = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2} \) to find all critical numbers of \(f \) and to make a sign chart showing all intervals of increase/decrease of \(f \).

(e) Use the fact that \(f''(x) = -\frac{2}{x^3} \) to find all possible inflection points of \(f \) and to make a sign chart showing all intervals of concavity of the graph of \(f \).
7. (20 points) Let \(f \) be continuous on \(\mathbb{R} \) with \(f'(-1) \) undefined, \(f'(0) = 0 \), \(f'(2) \) undefined, and \(f''(0) = 0 \).

(a) Fill in the blanks in the sign charts with the terms “increasing,” “decreasing,” “concave up,” or “concave down.”

\[
\begin{array}{c|cccc}
\text{interval} & (-\infty,-1) & (-1,0) & (0,2) & (2,\infty) \\
\hline
\text{sign of } f'(x) & - & - & - & + \\
\text{behavior of } f & \\
\end{array}
\]

\[
\begin{array}{c|cccc}
\text{interval} & (-\infty,-1) & (-1,0) & (0,2) & (2,\infty) \\
\hline
\text{sign of } f''(x) & - & + & - & - \\
\text{behavior of } f & \\
\end{array}
\]

(b) Give the \(x \)-coordinates of all of the following (or indicate “none”).

i. critical points of \(f \): \(x = \) ___________

ii. inflection points of \(f \): \(x = \) ___________

iii. local maximum points of \(f \): \(x = \) ___________

iv. local minimum points of \(f \): \(x = \) ___________

(c) Sketch a possible graph of \(f \) labeling all important points (with ordered pairs) and indicating all behavior clearly.
EXAM 3—Take-Home Question
Due Wednesday, November 2, 2005 at the beginning of class

8. (15 points) Prove that the equation \(x^5 + 3x - 2 = 0 \) has exactly one real solution.

Give a formal mathematical proof. Use complete sentences. Explain your reasoning clearly. In particular, be explicit about which theorems you are using and how you are using them.

Proof.