1. (20 points) The function g is depicted below.

(a) Find each of the following (or state “does not exist”).

$$\lim_{x \to -2^-} g(x) = \quad \lim_{x \to -2^+} g(x) = \quad \lim_{x \to 1^-} g(x) = \quad \lim_{x \to 2^-} g(x) = \quad \lim_{x \to 4^-} g(x) = \quad \lim_{x \to 4^+} g(x) =$$

$$g(-2) = \quad g(1) = \quad g(2) = \quad g(4) =$$

(b) Circle Yes or No for each of the following.

i. Is g continuous at -2? Yes No

ii. Is g continuous at 1? Yes No

iii. Is g continuous at 2? Yes No

iv. Is g continuous at 4? Yes No
2. (20 points) Find each limit algebraically, if it exists or is infinite. If the limit does not exist, explain why not. Show all work.

(a) \(\lim_{w \to 3} \sqrt[3]{1 - w^2} \)

(b) \(\lim_{x \to 1} \frac{\sqrt{3x - 2} - 1}{x - 1} \)

(c) \(\lim_{x \to 10} \frac{x - 10}{x - 10} \)

(d) \(\lim_{x \to 5^+} \left(\frac{1}{|5 - x|} + \frac{1}{5 - x} \right) \)
3. (15 points)

(a) Complete the statement of the formal definition of continuity.

A function f is continuous at a number a provided

(b) Let $f(x) = \begin{cases}
1 - x & \text{for } x < 1 \\
\sqrt{x - 1} & \text{for } x \geq 1
\end{cases}$.

Use the definition of continuity to prove that f is continuous at $x = 1$.

4. (15 points) Use the Intermediate Value Theorem (IVT) to prove that the equation $\sin x = 1 - x$ has a root (solution) on the interval $(0, \pi)$. (Hint: Verify all hypotheses of IVT.)
5. (15 points) An arrow is shot straight up on the moon at a velocity of 58 meters per second. Then its height \(h \) (in meters) above the ground at \(t \) seconds is given by
\[
h(t) = 58t - 0.83t^2.
\]
(a) Find the average velocity, \(v_{\text{avg}} \), of the arrow over the given time intervals. Show your reasoning. Round your answers to two decimal places.

i. \([0.9, 1]\)

ii. \([1, 1.1]\)

(b) Explain how average velocity is used to find the instantaneous velocity of the arrow at \(t = 1 \) second exactly.

6. (15 points) Suppose the tangent line to \(y = f(x) \) at the point \((2, -5)\) passes through the point \((1, 4)\).

(a) Find \(f(2) \).

(b) Find \(f'(2) \). Show your reasoning.
7. (15 points) Find the derivative $f'(x)$ using the definition of derivative where $f(x) = \frac{2}{3x}$.