Consider the function \(f(x) = x^3 + x - 1 \).

1. Verify that \(f \) satisfies both hypothesis of the Mean Value Theorem on the interval \([0, 2]\).

 Since \(f \) is a polynomial, it is continuous and differentiable on \(\mathbb{R} \). In particular,

 (a) \(f \) is continuous on \([0, 2]\) and

 (b) \(f \) is differentiable on \((0, 2)\).

2. Find all numbers \(c \) in the interval \([0, 2]\) that satisfy the conclusion of the Mean Value Theorem.

 We want all \(c \in (0, 2) \) such that

 \[
 f'(c) = \frac{f(2) - f(0)}{2 - 0} = \frac{(2^3 + 2 - 1) - (0^3 + 0 - 1)}{2} = \frac{9 + 1}{2} = 5.
 \]

 \[
 f'(x) = 3x^2 + 1
 \]

 Solve \(f'(x) = 5 \) for \(x \).

 \[
 3x^2 + 1 = 5
 \]

 \[
 3x^2 = 4
 \]

 \[
 x^2 = \frac{4}{3}
 \]

 \[
 x = \pm \frac{2}{\sqrt{3}}
 \]

 Now \(x = \frac{2}{\sqrt{3}} \in (0, 2) \)

 \[
 \text{and} \quad f'(\frac{2}{\sqrt{3}}) = 5
 \]