Name: \qquad .

Rubik's Cube Homework 2

Notation and terminology: $U=\square, F=\square, R=\square \uparrow, L=\square \downarrow, D=\square$, and I is the identity move, the move that leaves every cubie in its original position and orientation.
If X and Y are moves, then a sequence of the form $X Y X^{\prime} Y^{\prime}$ is called a commutator. Note that all of the sequences given in the packet for solving the last layer are commutators. In this exercise set, we will explore why that is the case.

1. (a) Is $U D U^{\prime} D^{\prime}=I$? Why or why not?
(b) Is $R F R^{\prime} F^{\prime}=I$? Why or why not?
2. Suppose X does $\overbrace{\square_{\text {Font }}}^{U_{p}}$, without affecting anything else on the Upper Layer.
(a) What does the commutator $X U X^{\prime} U^{\prime}$ do to a corner cubie in the Down Layer? Explain.
(b) What does the commutator $X U X^{\prime} U^{\prime}$ do to an edge cubie in the Middle Layer? Explain.
(c) What does the commutator $X U X^{\prime} U^{\prime}$ do to the Upper Layer? (Give a diagram.)
(d) What does the commutator $X U^{2} X^{\prime}\left(U^{\prime}\right)^{2}$ do?
3. Suppose Y does
(a) What does the commutator $Y U Y^{\prime} U^{\prime}$ do?
(b) What commutator does

If X is a move, the smallest positive integer n so that $X^{n}=I$ is called the order of X. That is, the order of X is the least number of applications of X required to return all moved cubies to their original positions and orientations. The following exercises explore the idea of order of a move.
4. (a) Find the order of L.
(b) Find the order of U^{2}.
(c) Find the order of F^{3}.
5. Suppose Z moves six corner cubies. One of these corner cubies is back to its original position and orientation after 3 applications of Z (and no fewer), while the other five require 15 applications of Z to return to their original positions and orientations.
(a) What is the least number of applications of Z required to return all of the moved corner cubies to their original positions and orientations?
(b) Suppose Z also moves seven edge cubies. All of these edge cubies require 7 applications of Z to return to their original positions and orientations. Find the order of Z, the least number of applications of Z required to move all edge and corner cubies back to their original positions and orientations.

