MATH 11008 Circle one: 9:55 / 12:05

Print Name: ____

Exam 2 Version A

Friday, October 3, 2014

Academic Honesty Pledge

Your signature at the bottom indicates your agreement to abide by the following rules.

- 1. All purses, bags, books, notes, and other papers are placed in the designated area of the classroom.
- 2. Cell phones and other electronic devices (except calculators) are placed in the designated area of the classroom.
- 3. I will not share a calculator with another student.
- 4. I will not communicate with other students during the exam.
- 5. I will not seek help from or give help to others during the exam.
- 6. I will turn my exam in and will not take it from the classroom.
- 7. I will not discuss the exam outside of class with another student who has not yet taken the exam.
- 8. I will not cheat in any other way.
- 9. I will follow any other instructions from my professor.

Signature: _____

Good Luck!

MATH 11008 Circle one: 9:55 / 12:05 Explorations in Modern Mathematics

Fall 2014 Dr. Kracht

Print Name: _

Exam Score: /100 (105 pts available)

Exam 2: Version A

 F_n refers to the n^{th} Fibonacci number and $\Phi = \frac{1+\sqrt{5}}{2} \approx 1.618$ is the golden ratio.

Part I: Long Answer.

No credit for answers without sufficient justification. Use standard mathematical notation correctly.

1. (7 pts) Write out the first fifteen terms of the Fibonacci Sequence $(F_1, F_2, F_3, \ldots, F_{15})$.

2. (14 pts) Compute the value of each of the following. *HINT: You should be able to use your answer to the previous question for all of these.*

(a) $F_1 + F_2 + F_3$	(e) F_{F_4}
(b) F_{1+2+3}	(f) $2 F_{12} - 5$
(c) $F_3 \times F_5$	
(d) $F_{3 \times 5}$	(g) 2 F ₁₂₋₅

3. (4 pts) Given that $F_{32} = 2,178,309$ and $F_{33} = 3,524,578$, find F_{31} .

4. (15 pts) Recall that Φ satisfies the Golden Property, $\Phi^2 = \Phi + 1$. It is also true that $\Phi^5 = 5\Phi + 3$. Use only these facts and algebra to express Φ^6 in terms of Φ . Show your reasoning clearly.

- 5. (15 points) Recall that T_n represents the number of tilings by pennies and paperclips of an *n*-board, where each penny occupies one square and each paperclip occupies two adjacent squares.
 - (a) Find each of the following.

(b) Given that $T_{20} = 10,946$ and $T_{21} = 17,711$, find T_{22} , explaining your answer in terms of pennies, paperclips, and 22-boards.

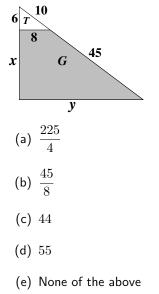
Part II: Multiple Choice (5 points each)

Circle the letter of the best answer.

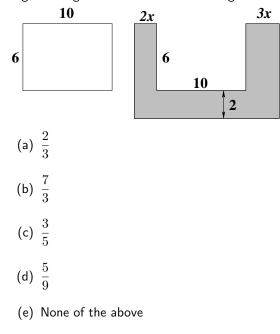
- 6. Kent State started with one male-female pair of baby immortal black squirrels. Immortal black squirrels begin to breed their second month. Each month, each adult pair gives birth to another male-female pair. If there were 2584 pairs in month n and 4181 pairs in month n + 1, how many pairs of immortal black squirrels were there at month n + 2?
 - (a) 1597
 - (b) 8341
 - (c) 7333
 - (d) 6765
 - (e) None of the above
- 7. The golden ratio Φ is the positive solution of which of the following equations?
 - (a) $x^2 = \frac{1}{x}$
 - (b) $x = 1 + x^2$
 - (c) $x^2 = 1 x$
 - (d) $x^2 = 1 + x$
 - (e) None of the above
- 8. For large values of n, the ratio $\frac{F_n}{F_{n-1}}$ is approximately equal to what?
 - (a) Φ
 - (b) Φ^2
 - (c) π
 - (d) F_{n+1}
 - (e) None of the above

- 9. Suppose that R and R' are similar rectangles. The longest side of R has length a ft and the longest side of R' has length ¹/₃a ft. If the perimeter of R is 30 ft, find the perimeter of R'.
 - (a) 15 ft
 - (b) 90 ft
 - (c) 10 ft
 - (d) 30 ft
 - (e) None of the above

- 10. Suppose that R and R' are similar rectangles. The longest side of R has length a ft and the longest side of R' has length $\frac{1}{3}a$ ft. If the area of R is 36 ft², find the area of R'.
 - (a) 4 ft²
 - (b) 12 ft²
 - (c) 108 ft²
 - (d) 324 ft²
 - (e) None of the above


11. The Lucas Numbers are defined recursively by $L_1 = 1$, $L_2 = 3$, $L_N = L_{N-1} + L_{N-2}$.

What is L_7 ?


- (a) 18
- (b) 7
- (c) 29
- (d) 31
- (e) None of the above

- 12. The circular ring G has an inner radius of 10 and an outer radius of 16. Figure G is a gnomon to which of the following?
 - (a) A circular ring with inner radius 16 and outer radius 20.
 - (b) A circular ring with inner radius 10 and outer radius 32.
 - (c) A circular disk of radius 10.
 - (d) A circular disk of radius 16.
 - (e) None of the above
- 13. If A is a **golden rectangle**, then which of the following is a gnomon to A?
 - (a) A square of sides equal to the shorter side of A.
 - (b) Another golden rectangle whose longer side equals the shorter side of A.
 - (c) Another golden rectangle whose shorter side equals the longer side of A.
 - (d) A square of sides equal to the longer side of A.
 - (e) None of the above

14. Find the value of y so that the shaded figure G is a gnomon to the white triangle T.

15. Find the value of x so that the shaded U-shaped region is a gnomon to the white rectangle.

