MATH 11008

Explorations in Modern Mathematics

Fall 2014

Circle one: 9:55 / 12:05

Dr. Kracht

Print Name: KEY

\_ Exam Score:

/100

(105 pts available)

## Exam 2: Version B

 $F_n$  refers to the  $n^{th}$  Fibonacci number and  $\Phi = \frac{1+\sqrt{5}}{2} \approx 1.618$  is the golden ratio.

## Part I: Long Answer.

No credit for answers without sufficient justification. Use standard mathematical notation correctly.

1. (7 pts) Write out the first fifteen terms of the Fibonacci Sequence  $(F_1, F_2, F_3, \ldots, F_{15})$ .

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610

2. (14 pts) Compute the value of each of the following. HINT: You should be able to use your answer to the previous question for all of these.

(a) 
$$F_2 + F_4 + F_5 = 1 + 3 + 5 = 9$$

(b) 
$$F_{2+4+5} = F_{11} = 89$$

(c) 
$$F_2 \times F_5 = (1)(5) = 5$$

(d) 
$$F_{2\times 5} = F_{10} = 55$$

(e) 
$$F_{F_3} = F_2 = 1$$

(f) 
$$3F_{10}-3 = 3(55)-3 = 162$$

(g) 
$$3F_{10-3} = 3F_7 = 3(13) = 39$$

3. (4 pts) Given that  $F_{32}=2{,}178{,}309$  and  $F_{33}=3{,}524{,}578{,}$  find  $F_{31}.$ 

$$F_{33} = F_{31} + F_{32}$$
  
So  $F_{31} = F_{33} - F_{32}$ 

$$= 3,524,578 - 2,178,309$$
$$= 1,346,269$$

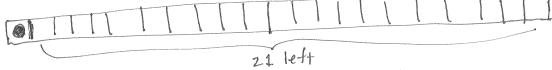
4. (15 pts) Recall that  $\Phi$  satisfies the Golden Property,  $\Phi^2=\Phi+1$ . It is also true that  $\Phi^7=13\Phi+8$ . Use only these facts and algebra to express  $\Phi^8$  in terms of  $\Phi$ . Show your reasoning clearly.

- 5. (15 points) Recall that  $T_n$  represents the number of tilings by pennies and paperclips of an n-board, where each penny occupies one square and each paperclip occupies two adjacent squares.
  - (a) Find each of the following.

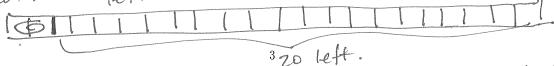
$$T_1 = 4$$

$$T_2 = 2$$

$$T_3 = 1 + 2 = 3$$


$$T_3 = 1 + 2 = 3$$
  $T_4 = 2 + 3 = 5$ 






(b) Given that  $T_{20} = 10{,}946$  and  $T_{21} = 17{,}711$ , find  $T_{22}$ , explaining your answer in terms of pennies, paperclips,

Every tiling of the 22-board must start with either a penny or a paperclip. If it starts with a penny, then it leaves a 21-board to tile. There are 17,711 ways to do that.



If it starts with a paperclip, then there is a 20-board left to tile. There are 10,946 ways to do that.



Hence, there are a total of T21+T20=17,711+10,946 = 28,657 ways to tile a 22-board.

## Part II: Multiple Choice (5 points each)

Circle the letter of the best answer.

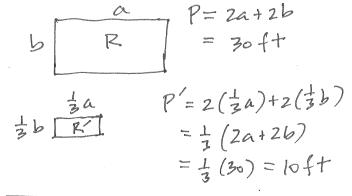
6. Kent State started with one male-female pair of baby immortal black squirrels. Immortal black squirrels begin to breed their second month. Each month, each adult pair gives birth to another male-female pair. If there were 2584 pairs in month n and 4181 pairs in month n+1, how many pairs of immortal black squirrels were there at month n+2?

- (b) 1597
- (c) 8341
- (d) 7333
- (e) None of the above
- (a) 6765

7. The golden ratio  $\Phi$  is the positive solution of which of the following equations?

(a) 
$$x^2 = \frac{1}{x}$$
  
(b)  $x = 1 + x^2$   
(c)  $x^2 = 1 + x$   
(d)  $x^2 = 1 - x$ 

- (e) None of the above
- 8. For large values of n, the ratio  $\frac{F_n}{F_{n-1}}$  is approximately equal to what?




- (b)  $\Phi^2$
- (c)  $\pi$
- $\Phi(\mathsf{(b)})$ 
  - (e) None of the above

9. Suppose that R and R' are similar rectangles. The longest side of R has length a ft and the longest side of R' has length  $\frac{1}{3}a$  ft. If the perimeter of R is 30A ft, find the perimeter of R'.

(a)) 10 ft

- (b) 30 ft
- (c) 15 ft
- (d) 90 ft
- (e) None of the above



- 10. Suppose that R and R' are similar rectangles. The longest side of R has length a ft and the longest side of R' has length  $\frac{1}{3}a$  ft. If the area of R is 36 ft<sup>2</sup>, find the area of R'.
  - (a)  $108 \text{ ft}^2$
  - (b) 324 ft<sup>2</sup>
  - (c)  $4 \text{ ft}^2$
  - (d) 12 ft<sup>2</sup>
  - (e) None of the above

See Signre above:

$$A' = (\frac{1}{3}a)(\frac{1}{3}b)$$
 $= \frac{1}{4}(ab)$ 
 $= \frac{1}{4}(36)$ 
 $= \frac{1}{4}(36)$ 

11. The Lucas Numbers are defined recursively by  $L_1 = 1$ ,  $L_2 = 3$ ,  $L_N = L_{N-1} + L_{N-2}$ .

What is  $L_7$ ?

(a) 7 (b))29

(d) 18

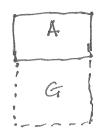
(e) None of the above

L2 = 3 L3=4

4=1

L4=7 L5=11

Lh=18


L7=29

- 12. The circular ring G has an inner radius of 10 and an outer radius of 16. Figure G is a gnomon to which of the following?
  - (a) A circular disk of radius 10.
  - (b) A circular disk of radius 16.
  - (c) A circular ring with inner radius 16 and outer radius 20.
  - (d) A circular ring with inner radius 10 and outer radius 32.
  - (e) None of the above





- 13. If A is a golden rectangle, then which of the following is a gnomon to A?
  - (a) Another golden rectangle whose longer side equals the shorter side of A.
  - (b) Another golden rectangle whose shorter side equals the longer side of A.
  - (c) A square of sides equal to the longer side of A.
  - (d) A square of sides equal to the shorter side of
  - (e) None of the above



14. Find the value of y so that the shaded figure G is a gnomon to the white triangle T.

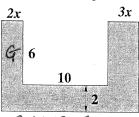
8  $\boldsymbol{G}$ A

base hypotenuse

(a))44

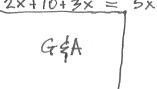
(b) 55

y= 2.4.5.11


(d)

y = 4.11

(e) None of the above


15. Find the value of x so that the shaded U-shaped region is a gnomon to the white rectangle.

10 6



(a)

6+2=8



(c)

5

(e) None of the above  $\frac{5x+10}{8} = \frac{10}{6}$ 

$$24.\left(\frac{5x+10}{8}\right) = \frac{5}{3}.24$$

$$3(5\times10) = 5.8$$
  
 $16\times10 = 40$   
 $16\times = 10$   
 $16\times = 10$   
 $16\times = 10$