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MATHEMATICAL
REASONING

Introduction: Early Mathematics

Mathematics in one form or another has probably existed in every civilization.
Many cultures flourished in the area of the Tigris and Euphrates rivers known
as Mesopotamia in what is now Iraq. The Babylonian civilization of that
area has left us records of mathematical activity as far back as the years
1800-1600 B.c. Writing on clay tablets, they recorded solutions of algebraic
problems and compiled tables of squares, cubes, square roots, and cube
roots, even some logarithms. They also listed Pythagorean triples, numbers
such as 3, 4, 5 and 5, 12, 13, which make up the sides of a right triangle
(using of course their own symbols and number system). So the Babylonians
knew the Pythagorean Theorem more than a thousand years before the
time of Pythagoras! Even earlier than the Babylonians, the so-called Middle
Kingdom of Egypt (2000-1800 B.c.) produced some sophisticated calculations
of areas and volumes. One of their great achievements was the calculation
of the volume of a truncated pyramid with square base and square top. (See
Exercise D4 of Section 1.3.)

‘Beginning in about the sixth century B.C. in Greece, an extraordinary
new chapter in the history of mathematics began. For the first time (at least
as far as we know) the methods .of reasoring and logical deduction, as
opposed to trial and error calculations, were employed to arrive at new
mathematical truths. Prior to the Greeks, in Egypt and Babylonia for exam-
ple, geometric results and algebraic formulas were discovered by empirical
methods; that is, by trying special cases and then extrapolating to the general
case. This empirical method, called inductive reasoning, has been used by
mathematicians throughout history. It is not merely a perfectly acceptable
method of making new discoveries but i1s really an indispensable way to
arrive at new results. But the Greeks insisted that any new results had to
be proved and that meant using the rules of logic. This method is called
deductive reasoning. In this chapter we introduce some of the important
ideas of logic that are frequently used in mathematics.
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STATEMENTS

The Notion of Proof

Contrary to popular opinion, mathematics is not just computations and equa-
tions. It might be better described as an attempt to determine which state-
ments are true and which are not. The subject matter may vary from numbers
to geometric figures to just about anything, but the form is always the same.

The process of discovery in mathematics is twofold. First comes the
formulation of a mathematical statement or conjecture. This formulation
often comes after much hard work that usually includes a trial-and-error
process, many false starts, and sometimes extensive calculation. The second
part of the process is the verification or proof that the statement that we
have formulated is true or false. This part too can involve much trial and
error and long, hard work. It is this part of the process that we will study
in this text.

To begin to prove a mathematical statement it is necessary to begin with
certain statements that we accept as given, called axioms, and try to logically
deduce other statements from them. These deductions are called proposi-
tions, or, if they’re particularly important, theorems. The arguments, the
logic we use to make the deductions, are called proofs.

The beauty of mathematics often comes from the fact that propositions
are not always obvious, and can in fact be surprising. Moreover, proofs may
not be easy to construct, and may require insight and cleverness. They
certainly require a little experience, especially some familiarity with the most
commonly used logical methods. This “sophistication” won’t come overnight;
it’s one of the major goals of this book.

Let’s begin with an example.

Suppose that the following question were posed to you: Is the square of an
even integer itself an even integer? You might start by trying some calcula-
tions:

22 =4, 4% = 16, 6> = 36, 8 = 64, 10* = 100.

Each one of these examples gives a positive answer to the question. Do
these answers constitute a proof? ,

If the problem asked us to show that the squares of some even integers
are even, we would be done. But that is not the question. There is an implied
universality about the question. Is the square of every even integer even?
Clearly, more must be done than trying a few examples. In fact just working
out examples will not suffice, because no matter how many we do, there will
always be an infinite number of cases that we haven’t done.

So-how do we proceed? The first step might be to reword the question
as a statement.
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“The square of every even integer is even.”
Now let’s reword the statement using symbols:
“If n is an integer and n is even, then n? is even.”

In order to begin a proof, we have to ask ourselves: What does it mean
for an integer to be even? Well, we know that an integer is even if it is two
~ times an integer. That is the definition of even integer.

Now we need to translate this definition into symbols:

“n is an even integer if n = 2m for some integer m.”

Now let’s think about what we're trying to prove. We want to show that
the square of the even integer n is even. So we start by letting n be an even
integer and try to show that n” is twice an integer. We do the obvious algebra
step; we write n = 2m and square both sides.

We get n* = 4m? = 2(2m?). Since 2m? is an integer, this shows that 72 is
twice an integer and therefore n? is even.

The proof is now complete.

This is an example, admittedly not a complicated one, of the proof of a
mathematical statement.

Note that in this last example, we made some assumptions about multipli-
cation of integers; namely, that multiplication satisfies a commutative law
and an associative law and that the product of integers is still an integer.
These laws make up some of the axioms of the integers and will be discussed
in Chapter 5. For the purpose of examples in this and later chapters, we
will assume the well-known arithmetic properties of the integers and real
numbers. (See Section 5.1 for properties of the integers and Section 7.1 for
properties of the real numbers.)

The notion of multiples of an integer is used in some examples. An
integer x is called a multiple of an integer n if x = kn for some integer k.
So the even integers are the multiples of 2. The multiples of 3 consist of the
integers 0, =3, =6, =9, and so on.

Statements

~In the course of this chapter, we will discuss many of the rules of logic and
inference needed in the previous example and others like it in mathematics.
In the previous example, we used the word “statement” several times.

In this text, the word will have a specific meaning.

_ Definition 1.1.1 A statement is any declarative sentence that is either
~ true or false. ‘ . - G : ~
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A statement then will have a truth value. It is either true or false. It
cannot be neither true nor false and it cannot be both true and false.
Some examples of statements are given next:

John Fitzgerald Kennedy was the 35th president of the United States.
Marie Curie did not win the Nobel Prize.
3+1=4

The fourth example is a mathematical statement, which of course is true.
We commonly write mathematical statements with symbols for convenience,
although you should think of them not as “formulas,” but as full-fledged
sentences, with a subject, a verb, and possibly other parts of speech.

In the rest of this chapter, we examine what mathematical statements
can look like and some methods that can be used to prove them. For conve-
nience, we often use letters, most often P or Q, to denote statements.

Some sentences, even some mathematical ones, are not statements. For
example, consider a typical sentence from algebra: x + 1 = 2. Here, x is a
variable; it’s a symbol that stands for an undetermined number. The sentence
is a statement if we specify what number x stands for. It’s a true statement
if x stands for 1, and it’s false for any other x. We could label this sentence
P(x) because it depends on the variable x. So P(1) is a true statement and
P(x) is a false statement if x = 1.
Note, however, that if x is not specified, then P(x) is not a statement.

We will call any sentence like the one from the previous example an
open sentence.

Definition 1.1.2 An open sentence is any declarative sentence con-
taining one or more variables that is not a statement but becomes a -
statement when the variables are assigned values: : S

The values that can be assigned to the variables of an open sentence will
depend on the context. They may come from the real numbers as in the
example x + 1 = 2 or from the complex numbers or even just the positive
integers. The values do not even have to be mathematical. For example, the
sentence ‘“‘He was the 16th president of the United States” is an open
sentence containing the variable “he’ and is therefore a true statement when
“he” is assigned the value “Abraham Lincoln” and is false otherwise.
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An open sentence is usually written P(x), P(x, y), P(x, y, z), and so on,
depending on the number of variables used.

Quantifiers

An open sentence like x + 1 = 2 can, as we have seen, be made into a
statement by substituting a value for the variable or, in the case of an open
sentence with more than one variable, by substituting a value for each of
the variables.

Another way an open sentence can be made into a statement is by
introducing quantifiers. For example, for the open sentence x + 1 = 2, we
could say: For every real number x, x + 1 = 2. This sentence is now a
mathematical statement that happens to be false. The quantifier introduced
here is the phrase “for every real number x” and is called a universal
quantifier. Another way to modify P(x) is to write: there is a real number
x such that x + 1 = 2. Note that this statement is true. The quantifier in
this example, “there is a real number x,” is called existential.

Once a quantifier is applied to a variable, then the variable is called a
bound variable. In the example “For every real number x, x + 1 = 2” of
the previous paragraph, then, the variable x is a bound variable. A variable
that is not bound is called a free variable.

If P(x) is an open sentence, then the statement: “For all x, P(x)” means
that for every assigned value a of the variable x, the statement P(a) is true.

The statement “For some x, P(x)” means that for some assigned value
of the variable x, say x = a, the statement P(a) is true. This statement may
also be worded: “There exists a value of x such that P(x).”

Sometimes, in a statement containing universal quantifiers, the words
“for all” or “for every” are not actually in the sentence but are implied by
the meaning of the words. Here are some examples.

If n is an even integer, then n? is even.

On the surface, this sentence might seem to be an open sentence rather
than a statement since it contains the variable 7. However, implicit in the
wording is the meaning: for every integer n, if n is even, then n? is even. So
the variable 7 has been modified by a universal quantifier and is now a
bound variable, making the sentence a statement. As we saw in Example 1,
it is actually a true statement.

A triangle has three sides.

This statement contains a universal quantifier since it is really asserting
that every triangle has three sides. Another way to word this statement is
“For every plane figure 7, if Tis a triangle, then 7 has three sides,” or more
simply “If T'is a triangle, then T has three sides.”
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EXAMPLE 8 The square of a real number is nonnegative.

Again this statement has a universal quantifier since it is saying that the
square of every real number is nonnegative. It could also be written as:

“If x is a real number, then x* = 0.”
EXAMPLE 9 All triangles are isosceles.
This statement has a universal quantifier as well. It just happens to be false.

We will sometimes use the symbol ¥V to mean “for all” or “for every.”
Example 8 can be rewritten: “V x, if x is real, then x* = 0.

The following examples give some of the forms that a statement with an
existential quantifier can take.

EXAMPLE 10 Some even numbers are multiples of 3.

First note that even though this statement is written in plural form (“some
even numbers”’), it may be phrased: “There exists an even integer that is a
multiple of 3.” To prove this statement, one need only find one even number
that is a multiple of 3. Since 6 is such a number, the proof is complete.

EXAMPLE | I Some real numbers are irrational.

~ This statement asserts something about some, but not all, real numbers.
It may be reworded as: “There exists a real number x such that x is irrational.”
It is a true statement provided that there is at least one real number that is
not rational. In Section 1.4, we will prove this statement by showing that
V2 is irrational.

EXAMPLE 12 There is a real number whose square is negative.

This statement also makes an assertion about some real numbers. Note
that it is a false statement.

The symbol 3 is used to mean “there exists” or “there is.”” The symbol
3 is read ‘‘such that.” Example 11 then can be expressed as: 3 x, x real,
3 x is irrational.

A statement of course may have more than one quantifier.

EXAMPLE 13 For every real number x, there is an integer n such that n > x.

This statement contains both a universal and an existential quantifier.
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The following statement, which is a definition from calculus, also has both
a universal and an existential quantifier: A real-valued function f(x) is
bounded on the closed interval [a, b] if f(x) is defined on [a, b] and there
exists a positive real number M such that |f(x)| = M for all x € [a, b].

For example, the function f(x) = x* + 1 is bounded on [0, 2] because
|f(x)| = 5 for all x € [0, 2].

The order in which quantifiers appear in a statement is important. If
P(x, y) is an open sentence in the variables x and y, then the statement

Vx, 3y 3 P(x, y)

does not always mean the same as the statement
dy 3 Vx, P(x, y).
To see this, consider the following example.

The statement “Every real number has a cube root” can be written in
the form:

VxER, JyeER3Y =x

This statement is true and is a consequence of the Intermediate Value
Theorem of Calculus. However, the statement

JyERSIVXER, Yy =

means that every real number x is the cube of a single number y and is
clearly false.

Negations

Two of the statements just given, “All triangles are isosceles” and ““There
is a real number whose square is negative,” were noted to be false. To
prove that they are false it is necessary to prove that the negations of these

statements are true.

There are several alternative ways to express —P. For example, “P is not
true” and ““It is not true that P> are the same as our definition. In addition,
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P There is a real number whose square is negative.

Statement P says that we can find a real number whose square is negative.
The negation of P means that we cannot find such a number. In other words,
the negation of P is

The square of every real number is not negative.
To negate P by saying “There is a real number whose square is nonnega-
tive” would not be correct because this statement and P could, theoretically

at least, both be true.

P. Some real-valued functions are not integrable.
_P.  Every real-valued function is integrable.

As Examples 2227 show, there are thus two basic rules about negating
statements with quantifiers.

{ Rule 1: The negation of the statement “For all x, P(x)” is the statement l
] “For some x, —=P(x).” ‘

Rule 2: The negation of the statement “For some x, P(x)” is the state-
ment “For all x, =P(x).”

Of course, if a statement contains both universal and existential quantifi-
ers, then in order to negate the statement, it is necessary to apply both of
these rules.

If a statement S has the form “For all x, 3y 2 P(x, y)” then the negation
of § is “For some x, —(3y 3 P(x, y))” by Rule 1. Since Rule 2 tells us that
the negation of “3y 3 P(x, y)” is “For all y, —(P(x, y)),” then the negation
of S becomes ‘“For some x, for all y, =(P(x,y))” or “Ix 3 forall y, —(P(x,y)).”

Similarly, the negation of “3x 3 Vy, P(x, y)” is “Vx, Ay 3 =(P(x, y)).”

P:  For every real number x, there is an integer n such that n > x.
_P:  There is a real number x such that for every integer n, n = X.

The statement in this last example is known as the Archimedean Principle.
See the Historical Comments at the end of Section 1.2.

P- There is a continuous real-valued function f(x) such that f(x) is
not differentiable at any real number c.
—P:  For every continuous real-valued function f(x), there is a real
number ¢ such that f(x) is differentiable at c.
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Surprisingly, statement P of Example 29 is true. There are continuous
functions that are not differentiable at any point! An example, due to K.
Weierstrass, is

flx) = 2%008 (15" 7x).

This is a function that is continuous everywhere but differentiable nowhere.

_* ‘/Writing Proofs

As you start to read and write proofs, you will see that they require a certain
writing style to ensure clarity and readability. Take, for example, the proof
in Example 1, that if n is an even integer, then n’ is even. Suppose that a
proof were written as follows:

n = even = 2t
n* = 42 = even.

This rather brief proof has the correct mathematical steps, but is lacking
in explanation and hence in clarity and also suffers from poor notation. One ;
should begin by clearly stating the assumption: “Let n be an integer and o
suppose that » is even.” Then it can be noted that this means that “n = 2t il
for some integer +.”” But writing “a = even” is sloppy notation. The word
“even” is an adjective and should precede a noun; in this case, the word
“number.” But even the expression ‘7 = even number” is not appropriate.
The phrase “even number” does not belong in an equation. Equations should
only contain numbers and symbols. '

After writing “‘n = 2¢ for some integer ¢ an explanation should be given
for the next step: “Squaring both sides, we get n* = 412 = 2(2¢%).” Then
finally, one should note that ““since 2¢*is an integer, it follows that n?is even.”

)

@ HISTORICAL COMMENTS: EARLY GREEK MATHEMATICS

A history of early Greek mathematics was written by Eudemus in the fourth
century B.C. Although this book is now lost, a summary of it was written by
Proclus in the fifth century Ap. According to Proclus’s work, the earliest
known mathematician to use the deductive method was Thales of Miletus.
Thales founded the earliest Greek school of mathematics and philosophy.
Among the results attributed to Thales are: the base angles of an isosceles
triangle are congruent; triangles with corresponding angles equal have pro-
portional sides; and an angle inscribed in a semicircle is a right angle. Each
of these results was proven by deductive methods.

About sixty to eighty years after Thales, an important school of mathe-
matics and philosophy was founded in southern Italy by Pythagoras (ca.
585-497 B.c.). One of the great contributions of the Pythagoreans, as the




