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CHAPTER ZERO

A FEW PRELIMINARIES

L4

It is our experience that spending two or three weeks on background material
at the start of an abstract algebra course may destroy interest in the subject.
Accordingly, we introduce mathematical tools as they are needed, provided
that their presentation can be kept short so that the flow of the text is not
interrupted. Since they need longer discussion, we present equivalence
relations and partitions of sets in Section 0.2 and proof by mathematical
induction in Section 0.3. Section 0.1, which well might be left for students to
read on their own, attempts to prepare students for this axiomatic, definition-
theorem-proof treatment of algebra. Section 0.4 summarizes some of the
algebra of complex numbers and matrices for students who may not be
familiar with it.

0.1

Mathematics and Proofs

You have probably never had a laboratory course in mathematics. Mathema-
tics is not considered to be an experimental science, whereas physics,
chemistry, and biology are. Research for a chemist can consist of a laboratory
experiment designed to validate a conjecture or simply to see what happens.
There is little comparable activity in mathematics.

The main business of mathematics is proving theorems.

Just examine any research journal. Few meaningful theorems can be proved
by experimentation. In mathematics, experimentation might lead to a con-
jecture which may or may not be correct. If the conjecture is later proved,
then 1t i1s clevated to the status of a theorem. Exercise 10 illustrates
experimentation leading to conjecture.

In theory, all of mathematics is an axiomatic study, consisting of chains of
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valid conclusions (theorems) deduced by valid reasoning (proofs) from the
axioms of set theory. This is the current view of mathematical logicians who
wrestle valiantly with the foundations of mathematics. Probably most
research mathematicians would be unable to write down the axioms of set
theory or describe all the rules of valid reasoning in a way. that would satisfy
logicians. In spite of this, logicians would agree that the results in the great
majority of mathematical research papers are valid. In case an assertion is not
valid, the author of the paper would probably admit to a mistake when the
difficulty is pointed out. With perhaps no formal training in mathematical
logic, the research mathematician learned as a student the rules of the game
and can contribute successfully to the subject.

Keeping in mind the preceding paragraphs, we can try to put one feature
of abstract algebra in perspective. Abstract algebra is the most axiomatic
study undertaken by the typical mathematics major. It gives a lot of exposure
to the rules of the game, mathematics. However, it would be absurd to
pretend that this text is a totally axiomatic study. For example, we shall feel
free to use familiar properties of the real numbers without any axiomatic
verification. An abstract algebra course does represent a big step from the
typical freshman-sophomore calculus course toward the modern mathemati-
cal method.

Courses in linear algebra vary widely in axiomatic approach. If you used a
text that gave axioms for a vector space in the first chapter and then
developed the subject from them, your study of linear algebra was similar to
the study of abstract algebra in this text. On the other hand, if vector-space
axioms did not appear at all or were relegated to an appendix of your linear
algebra text, the orientation of the course was probably close to that of the
typical first course in calculus.

An axiomatic approach is not used merely to expose students to proofs,
although it does serve that function quite well. It is the most efficient way we
have found to present algebra. Once a body of theorems has been deduced
from axioms, we know that the theorems hold for every structure that satisfies
the axioms. For example, we will start our study by examining structures
called groups, which satisfy three axioms. If we were to prove a theorem in
terms of one particular group, perhaps involving addition of real numbers, it
might not be clear whether the theorem holds for all groups. We would have
to reexamine the proof, doing the same work all over again if we change the
group. But if we prove a theorem just in terms of the axioms of a group,
without using any other properties, then this single proof allows us to use the
theorem freely for any group. This is a virtue of the axiomatic approach, and
our study of abstract aigebra will illustrate this technique. The adjective
abstract indicates that algebra is being studied by properties that have been
abstracted from the subject.

Abstract algebra is often considered an ideal subject for drill in proofs
since the lists of axioms used are quite short. However, devising a proof in
algebra often amounts to finding just the right method of attack, perhaps
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considering just the right algebraic expression. If the right method is found, a
proof may fall out easily. Otherwise we may struggle a long time without
finding a proof. Geometric pictures are usually no help in finding a proof in
algebra. For this reason point-set topology might be a better course for
training students in proofs, for pictures can often be used in topology as an
aid in understanding why a theorem must be true. Emphasis can then be
placed on writing a correct proof. '

It is not possible for us to give any meaningful outline on how to prove
theorems; experience is the best guide. For the remainder of this section we
make a few general observations. We will start by pointing out that it is
essential to know what we are talking about, that is, to understand definitions
of the terms we are using.

Definitions

Many students do not realize the great importance of definitions to

mathematics. This importance stems partly from the need for mathematicians

o communicate with each other about their work. If two people are trying to

communicate about some subject, they must have the same understanding of
its technical terms.

A very important ingredient of mathematical creativity is the ability to
formulate useful definitions, ones that will lead to interesting results. A
mathematics student commencing graduate study may find that he or she
spends a great deal of time discussing definitions with other graduate
students. When I was in graduate school, a physics graduate student once
complained to me that at the evening meal the mathematics students always
sat together and argued, and that the subject of their argument was always a
definition. Graduate students are usually asked to give several definitions on
oral examinations. If they cannot explain the meaning of a term, they
probably cannot give sensible answers to questions involving that concept.

Every definition is understood to be an if and only if type of statement,

even though it is customary to suppress the only if. Thus we may define an
fsosceles triangle as follows: ~ A triangle is isosceles if it has two sides of equal
length,” when we really mean that a triangle is isosceles if and only if it has
two sides of equal length.

Do not feel that you have to memorize a definition word for word. The
important thing is to understand the concept, so that you can define precisely
the same concept in your own words. Thus the definition *““An isosceles
triangle is one having two equal sides™ is perfectly correct.

Throughout the text, a term that appears in boldface type is being defined
at that point. Specifically labeled definitions are used for the main algebraic
concepts with which we are concerned. Many other terms are defined, using
the boldface convention, outside a labeled definition. You will find ideas
defined in this fashion in text paragraphs, theorems, and exercises.
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Observations on Proofs

Observation 1 If some concept has just been defined and we are asked to
prove something concerning the concept, we must use the definition as an
integral part of the proof.

Immediately after a concept is defined, the definition is the only
information one has available regarding the concept.

EXAMPLE 1 An integer n is defined to be even if n = 2m for some
integer m. It is a theorem that the sum of two even integers is even. The
definition of an even integer must be used to prove this theorem. We leave
the proof to Exercise 5. a

Observation 2 The statement of a theorem consists of two parts: the
hypotheses and the conclusion. If all the hypotheses are needed to prove the
theorem, that is, if no hypothesis is redundant, then each hypothesis must be
cited somewhere in the proof.

EXAMPLE 2 [Itisatheorem that the sum of an even integer r and an odd
integer s is an odd integer. In proving this theorem, which we leave to
Exercise 7, it is essential to use both hypotheses, namely, that r is even and
that s is odd. &

Observation 3 If even one example can be found for which a statement is
not true, then the statement is not a theorem. In fact, the standard way to
show that a statement is not a theorem is to provide such a counterexample.

EXAMPLE 3 Is the statement “The square of every real number is
positive”” a theorem? The answer is no, since 0° = 0 and 0 is a real number
but is not positive. This is the only counterexample that can be given, but one
such example is all that is needed to show that a statement is not a
theorem. a

Observation 4 Never tacitly assume any hypothesis that is not explicitly
stated. Never take for granted any quantifying words or phrases such as only,
for all; for every, or for some that do not actually appear.

EXAMPLE 4 The statement “There are four real numbers whose squares
are less than 27 is true (a theorem). As a proof, we need only observe that
(=1)% 0% 17, and (3)° are all less than 2. The statement “There are only four
real numbers whose squares are less than 27 is false (not a theorem). We
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0.1 Mathematics and Proofs 5

need only observe that (—1/2)* <2 also. The word only makes all the
difference. &

Observation 5 A theorem of the form
If hypotheses then conclusion

cannot be proved by giving a specific example where the hypotheses and
conclusion all are true. We must show that for all examples where the
hypotheses are true, the conclusion is true also.

EXAMPLE 5 Consider the statement “If f(x) is continuous, then f(x) is
differentiable.” Now f(x) = x> is continuous and is also differentiable, for
f'(x) = 2x at every point in the domain of f(x). However, the statement is
not a theorem. A counterexample is given by f(x) = |x|, which is continuous
but not differentiable since f'(0) does not exist. Of course, in classifying this
statement as a theorem or not a theorem, we had to know the definitions of a
continuous function and of a differentiable function. a

There are a few types of theorems for which the method of attack for a
proof is fairly standard. As our final observation, we mention one type that
appears a few times in the text.

Observation 6 Suppose we wish to show that an element having some
property exists and is unique, that is, that there is one and only one such
element. First, show that there is such an element. To show unigueness,
assume that there are two such elements, say r and s, and try to show that r
and s must be equal (the same).

EXAMPLE 6 Show that there is a unique real number r such that rx = r
for all real numbers x.

Solution We know that Ox = 0 for all real numbers x, so that 0 has the
property described for the number 7. Suppose that a number s also has this
property, so that sx = s for all real numbers s. We use the fact that ab = ba
for all real numbers a and b and proceed to use an algebraic trick, namely, we
consider Os. Since both 0 and s have the required property, we see that

0s =0 and also Os = s0 =s.

Thus 0 = s since each is equal to Os. &

The exercises that follow are designed to illustrate the preceding observa-
tions further, with special emphasis on the use of the quantifying words and
phrases only, there exists, for all, for every, for each, and for some.




