Name: ____

Review Assignment II due Friday, April 29, 2005

Show all your work.

For each problem completed (with all work), you will receive 1 point (for a possible 10 points). I will randomly choose one problem to grade for a possible 10 additional points.

- 1. A rocket is traveling with velocity $v(t) = 3t^2 + t$ feet per second at time t seconds after take-off. Include appropriate units with your answers.
 - (a) Find the acceleration a(t) of the rocket after t seconds.
 - (b) Find the acceleration of the rocket after 10 seconds.
 - (c) If the rocket took off from a platform 12 feet above the ground, find the height h(t) of the rocket above the ground at t seconds.

(d) Find the height of the rocket after 10 seconds.

2. Suppose the function f has the following properties.

$$f(0) = 5 f'(-4) = 0 f''(-2) = 0$$

$$f'(0) = 0 f''(2) = 0$$

$$f'(4) = 0 f''(4) = 0$$

(a) Complete the sign chart for f' with the phrases "increasing", "decreasing", "concave up", or "concave down".

interval	$(-\infty, -4)$	(-4, 0)	(0, 4)	$(4,\infty)$
f'(x)	_	+	_	—
f is				

(b) Complete the sign chart for f'' with the phrases "increasing", "decreasing", "concave up", or "concave down".

interval	$(-\infty, -2)$	(-2,2)	(2,4)	$(4,\infty)$
f''(x)	+	_	+	_
f is				

(c) Give the <u>x-coordinates</u> for all of the following. (Write "none" if there aren't any.)

critical points of f: x = _____ relative maximum points of f: x = _____

- inflection points of f: x = ______ relative minimum points of f: x = ______
- (d) Sketch a possible graph of the function f. Indicate all critical points and inflection points as well as other important behavior very clearly. (You are not given the y-coordinates of most points. Label these points as (2, f(2)), for example.)

						. ,						:	
)		 					 						
				:	:	:		:	:	:		:	
					:	:			:	:		:	
)		 					 						
				:	:	:		:	:	:		:	
					:	:			:	:		:	
;		 					 						
:					:	:			:	:		:	
;		 					 						
:					:	:			:	:		:	
;		 					 						
:				:	:	:		:	:	:		:	
)		 					 						
					:	:			:	:		:	
;		 					 						
						:				:		:	
:				:	:	:		:	:	:		:	
												•	
;		 					 						
			:	:	:	:		:	:	:	:		
:									:				
		 				; ;	 						
	· · · · · · ·						 						
		 					 · · · · · ·						
							 · · · · · ·						
							 · · · · · ·						
	· · · · · ·						 · · · · · · · · · · · · · · · · · · ·						
		 					 · · · · · · · · · · · · · · · · · · ·						
							 · · · · · · · · · · · · · · · · · · ·						
							 · · · · · · · · · · · · · · · · · · ·						

3. Let
$$f(x) = \frac{1}{(x+2)(x-100)}$$
. Then $f'(x) = \frac{-2(x-49)}{(x+2)^2(x-100)^2}$.

Answer each of the following. You must show all your steps carefully so that I know you are using calculus rather than relying on your grapher. When performing a computation, start with the mathematical symbol for the quantity you are computing. When solving an equation, write the complete equation at each step.

(a) Give the ordered pairs for all x - and y -intercepts of f .	(b) Give the equations of all vertical asymptotes of f .	(c) Find the x -coordinates of all critical points of f .

(d) Construct a sign chart for f' indicating the sign of f' and the corresponding behavior of f. Justify your answer.

(e) Give the <u>x-coordinates</u> of all relative maximum points of f. (Write "none" if there aren't any.)

(f) Give the <u>x-coordinates</u> of all relative minimum points of f. (Write "none" if there aren't any.)

4. Let $f(x) = \sqrt[5]{x+1} - 2$. Find $f'(x) =$	and $f''(x) =$.
(a) Find the domain of <i>f</i> .	(f) Find the x-coordinates of all possible inflection points of f .
(b) Give the ordered pairs for all y -intercepts of f .	(g) Construct a sign chart for f'' indicating the sign of f'' and the corresponding behavior of f . Justify your answer.
(c) Find the x -coordinates of all critical points of f .	
(d) Find the y-coordinates of all critical points of f .	(h) Sketch the graph of the function f. Indicate all in- tercepts, critical points, and inflection points as well as other important behavior very clearly.
(e) Construct a sign chart for f' indicating the sign of f' and the corresponding behavior of f. Justify your answer.	$ \begin{array}{c}3 \\3 \\2 \\1 \\3 \\2 \\1 \\3 \\1 \\3 $

. Let $f(x) = 3e^{-2x^2}$. Find $f'(x) =$	and $f''(x) =$.
(a) Find the domain of f .	(g) Find the y-coordinates of all possible inflection points of f .
(b) Give the ordered pairs for all y -intercepts of f .	
(c) Find the x-coordinates of all critical points of f .	(h) Construct a sign chart for f'' indicating the sign of f'' and the corresponding behavior of f . Justify your answer.
(d) Find the y-coordinates of all critical points of f .	
(e) Construct a sign chart for f' indicating the sign of f' and the corresponding behavior of f. Justify your answer.	(i) Sketch the graph of the function f . Indicate all intercepts, critical points, and inflection points as well as other important behavior very clearly. Hint: The line $y = 0$ is an asymptote.
(f) Find the x-coordinates of all possible inflection points of f.	

5.

- 6. A store can sell 20 HDTV sets per week at a price of \$400 each. The manager estimates that for each \$10 price reduction, she will sell 2 more HDTV's each week. The HDTV's cost the store \$200 each. Let x represent the number of \$10 price reductions. (All of the following questions refer to weekly sales of HDTV's.)
 - (a) Express the price p of an HDTV as a function of x.
 - (b) Express the quantity q of HDTV's sold weekly as a function of x.
 - (c) Express revenue R as a function of x.

- (d) Express cost C as a function of x.
- (e) Express profit P as a function of x.

(f) Find P'(x).

(g) Use calculus to find the value of x for which the store's profits are **maximal**. Show your reasoning carefully. Verify that you have indeed found the absolute maximum point of the function.

- (h) What price should the store set to maximize profits?
- (i) What quantity will the store sell at this price?
- (j) What is the maximal profit?

- 7. Using calculus, show that of all rectangles whose area is 1000 ft², the one with minimal perimeter is a square. Show your reasoning. Be sure to:
 - Introduce all variables with "Let" statements. Include the units.
 - Draw and label a diagram.
 - Verify that you have indeed found the maximum or minimum point (on the appropriate domain).
 - Answer the question posed in the problem in a complete sentence, using appropriate units.

- 8. An automobile dealer expects to sell 400 cars a year. The cars cost \$11,000 each plus a fixed charge of \$500 per delivery. It costs \$1000 to store a car for a year. Find the order size and the number of orders per year that minimize inventory costs. *Show your reasoning. Be sure to:*
 - Introduce all variables with "Let" statements. Include the units.
 - Verify that you have indeed found the maximum or minimum point (on the appropriate domain).
 - Answer the question posed in the problem in a complete sentence, using appropriate units.

- 9. The reproduction function for the Canadian snowshoe hare is estimated to be $f(p) = -0.025p^2 + 4p$, where p and f(p) are in thousands. Find the population that gives the maximum sustainable yield, and the size of the yield. Show your reasoning. Be sure to:
 - Introduce all variables with "Let" statements. Include the units.
 - Verify that you have indeed found the maximum or minimum point (on the appropriate domain).
 - Answer the question posed in the problem in a complete sentence, using appropriate units.

- 10. Do this without a calculator.
 - Let $f(x) = 4^x$.
 - (a) Give the ordered pairs for all intercepts of *f*. *Indicate "none" if there aren't any. Show the algebra explicitly.*
 - i. y-intercepts:

ii. *x*-intercepts:

(b) Complete the table of values.

x	f(x)
-2	
-1	
-1/2	
0	
1/2	
1	
2	

(c) Evaluate each limit. Additional work not needed here.

i.
$$\lim_{x \to -\infty} 4^x =$$

ii.
$$\lim_{x \to \infty} 4^x =$$

- (d) Give the equations of all asymptotes of *f*. Indicate "none" if there aren't any. Additional work not needed here.
 - i. vertical asymptotes:
 - ii. horizontal asymptotes:
- (e) Sketch the graph y = f(x). Label all points computed above with their ordered pairs and all asymptotes with their equations.
- (f) Sketch the graph $y = \log_4 x$ on the same coordinate system. Label at least six points with their ordered pairs and all asymptotes with their equations.

