Name: \qquad Score:
/100

EXAM 1: Version A

Show your reasoning for full credit.

Some Formulas

Product Rule: If $p(x)=f(x) \cdot g(x)$, then $\quad p^{\prime}(x)=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$.
Quotient Rule: If $q(x)=\frac{f(x)}{g(x)}$, then $\quad q^{\prime}(x)=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{[g(x)]^{2}}$.
Generalized Power Rule: If $h(x)=[g(x)]^{n}$, then $\quad h^{\prime}(x)=n[g(x)]^{n-1} \cdot g^{\prime}(x)$.

1. (10 points) The function f is depicted below.

(a) Find each of the following or state "does not exist" ("dne").

(b) Circle Yes or No for each of the following.
i. Is f continuous at -2 ? Yes No
ii. Is f continuous at 1? Yes No
iii. Is f continuous at 2? Yes No
iv. Is f continuous at 4? Yes No

Multiple Choice: 10 questions at 3 points each.

Circle the letter of the best response
2. Evaluate $\lim _{x \rightarrow 2}\left(3 x^{2}+5\right)$.
(a) 0
(b) 11
(c) 17
(d) 41
(e) none of these
3. Evaluate $\lim _{x \rightarrow 6} \frac{x-6}{x^{2}-36}$.
(a) $\frac{1}{12}$
(b) 12
(c) 0
(d) does not exist
(e) none of these
4. Let $f(x)= \begin{cases}x & \text { if } x \leq 1 ; \\ 2 x & \text { if } x>1\end{cases}$

Is $f(x)$ continuous at $x=1$?
(a) Yes
(b) No, since $f(1)$ is undefined.
(c) No, since $f(x)$ is a piecewise-defined function
(d) No, since $\lim _{x \rightarrow 1} f(x)$ does not exist.
(e) none of these
5. Let $f(x)=x^{3}+2 x+1$. What is the average rate of change in $f(x)$ between the values $x=1$ and $x=5$?
(a) 29 because $f^{\prime}(3)=29$
(b) 41 because $\frac{f^{\prime}(1)+f^{\prime}(5)}{2}=41$
(c) 33 because $\frac{f(5)-f(1)}{4}=33$
(d) 132 because $f(5)-f(1)=132$
(e) none of these
6. Find the instantaneous rate of change of the function $f(x)=10 x^{4}+5$ at $x=-2$.
(a) -80
(b) -320
(c) 320
(d) -315
(e) none of these
7. Find the slope of the tangent line to $f(x)=\frac{1}{x}$ at $x=3$.
(a) -1
(b) $-\frac{1}{3}$
(c) -3
(d) $-\frac{1}{9}$
(e) none of these
8. Find the derivative of $g(x)=5 x^{100}$.
(a) $g^{\prime}(x)=5 x^{99}$
(b) $g^{\prime}(x)=500 x^{99}$
(c) $g^{\prime}(x)=500 x$
(d) $g^{\prime}(x)=500 x^{101}$
(e) none of these
9. Use the product rule to find the derivative of $h(t)=(7 t-3)(2 t+5)$. The answer need not be simplified.
(a) $h^{\prime}(t)=7 t(2 t+5)+2 t(7 t-3)$
(b) $h^{\prime}(t)=7(2 t+5)+2(7 t-3)$
(c) $h^{\prime}(t)=14 t^{2}$
(d) $h^{\prime}(t)=14$
(e) none of these
10. Suppose a company's revenue function is $R(x)=25 x+4 \sqrt{x}$, in dollars, where x is the number of widgets produced. Find and interpret $R(100)$.
(a) The company's revenue from the 100th widget is $\$ 25.40$.
(b) The company's total revenue from the first 100 widgets is $\$ 25.20$.
(c) The company's total revenue from the first 100 widgets is $\$ 2540$.
(d) The company's average revenue from the first 100 widgets is $\$ 25.40$ per widget.
(e) none of these
11. Suppose a company's revenue function is $R(x)=25 x+4 \sqrt{x}$, in dollars, where x is the number of widgets produced. Find and interpret $R^{\prime}(100)$.
(a) The company's revenue from the 100th widget is approximately $\$ 25.20$.
(b) The company's total revenue from the first 100 widgets is $\$ 25.40$.
(c) The company's average revenue from the first 100 widgets is $\$ 25.40$ per widget.
(d) The company's average revenue from the first 100 widgets is $\$ 25.20$ per widget.
(e) none of these

Long Answer

Write all work carefully and neatly for full credit.
12. (15 pts) Find each derivative, simplifying your answer. (You may use short-cuts.)
(a) Find $\frac{d}{d z} \sqrt{9 z^{2}-25}$.
(b) Find $\frac{d y}{d x}$ where $y=x^{2}(3 x-1)^{5}$
(c) Find $g^{\prime}(x)$ where $g(x)=\frac{x^{2}+3}{x^{2}-3}$
13. (10 pts) A rocket rises to a height $h(t)=1.5 t^{2}+4 t$ feet in t seconds. Include units with each of the following.
(a) Find the height of the rocket after 10 seconds.
(b) Find the velocity of the rocket after t seconds.
(c) Find the velocity of the rocket after 10 seconds.
(d) Find the acceleration of the rocket after t seconds.
(e) Find the acceleration of the rocket after 10 seconds.
14. (5 pts) Evaluate $\frac{d^{3}}{d x^{3}} \sqrt[3]{x^{5}}$.
15. (10 points) Find an equation of the line tangent to the graph of the function $f(x)=x^{3}+4 x^{2}-5$ at the point where $x=-1$ by following the given steps. Show your reasoning.
(a) Find the y-coordinate of the point on the curve $y=f(x)$ where $x=-1$.
(b) Find the derivative $f^{\prime}(x)$. You may use short-cuts.
(c) Find the slope of the line tangent to the curve $y=f(x)$ at the point where $x=-1$.
(d) Find the equation of the line tangent to the curve $y=f(x)$ at the point where $x=-1$. Write it in the form " $y=m x+b$."
16. (15 points) Use the definition of derivative to find and simplify the derivative, $f^{\prime}(x)$, for the function $f(x)=6-2 x^{2}$.

Bonus. (10 points) Use the definition of derivative to prove that if f and g are differentiable functions, then

$$
(f-g)^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)
$$

