MATH 11012

Circle one: 8:50 5:30

Intuitive Calculus

Spring 2011 Ms. Kracht

/100

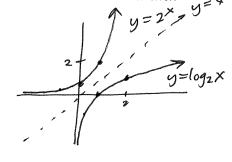
Score:

(110 pts available)

EXAM 2: Version A

NO CALCULATORS.

Multiple Choice: 10 questions at 3 points each.


Circle the letter of the best response.

Although your work will not be graded, you should write out complete and careful solutions to reduce the chance of error.

- 1. The graph $y=\log_2 x$ may be obtained by reflecting the graph $y=2^x$ across
 - (a) the y-axis.
 - (b) the x-axis.
 - (c) the line y = x.

 - (e) none of these

These functions are inverses of one unother. (This is how we defined the log functions.)

- 2. Express as a power of e: $\frac{e e^{-5}}{e^{-2}e^4} = \frac{e^{-4}}{e^2} = e^{-4}e^{-2} = e^{-6}$
 - (a) e^{0}
 - (b) e^{-2}
 - (c) e^{6}
 - (d) e^{-6}
 - (e) none of these
- 3. True or False: If A,B>0, then $\ln(A+B)=\ln A+\ln B$.
 - (a) True
 - (b) False

ln(AB)= ln A + ln B

froduct sum

- 4. What is $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$?
 - (a) 0
 - (b) ∞

This was our definition of e.

- (d) does not exist
- (e) none of these

5. Find an expression for the value of \$300 deposited in a bank at 2.75% interest for 8 years compounded quarterly.

(a)
$$300\left(1+\frac{0.0275}{4}\right)^8$$

(b)
$$300\left(1+\frac{0.0275}{4}\right)^{32}$$

(c)
$$300\left(1+\frac{2.75}{4}\right)^{32}$$

(d)
$$300(1+0.0275)^{32}$$

(e) none of these

- 6. A rich uncle wants to give you a nice graduation present. How much money must he deposit in a trust fund paying 5.75% compounded monthly at the time you enter college to yield \$5,000 when you graduate exactly 4 years later?

(a)
$$5000e^{-0.0575\times4}$$

(b)
$$5000(1.0575)^{-48}$$

$$(c) = 000 \left(1 + \frac{0.0575}{12}\right)^{-48}$$

(d)
$$5000 \left(1 - \frac{0.0575}{12}\right)^{48}$$

here
$$FV = 5000$$

 $r = 0.0575$
 $n = 12$

$$n = 12$$

7. Evaluate: $\ln(\ln e)$. = $\ln 1 = 0$

8. An investment grows by 3.5% compounded continuously. How many years will it take to increase by 50%?

what is t when
$$A(t) = 1.5P$$
?

 $\ln 1.5$ 0.035

P=0.035t = 1.5 P

(b)
$$\frac{\ln 0.5}{0.035}$$

e0.035t = 1.5

(c)
$$\frac{\ln 1.5}{3.5}$$

lne0.035t = ln1.5

(d)
$$\ln \left(\frac{1.5}{0.035} \right)$$

0.035t = ln1.5

 $t = \frac{\ln 1.5}{0.035}$

9. Suppose that at a price of \$4.50 per widget, elasticity of demand for Slimy Green Widgets is 1.2. If the price is increased, then demand should

1.2 >1,50 demand is

(a) increase weakly. (b) increase strongly.

(c) decrease weakly.

elastic (reacts Strongly to price changes)

- (d) decrease strongly.
- (e) none of these
- 10. Suppose that at a price of \$137 per widget, elasticity of demand for Prickly Pink Widgets is 0.75. To increase revenue, the producer should
 - (a) paise the price.
 - (b) lower the price.
 - (c) leave the price alone; revenue is maximal for the current price.
 - (d) none of these

0<0.75<1, so demand
is inelastic (reacts
weakly to price
changes)

Long Answer

Write all work carefully and neatly for full credit.

11. (20 pts) Find the derivative of each function, simplifying your answer.

(a)
$$f(x) = \ln(1-x^3)$$
. Charn Rule
$$f'(x) = \frac{1}{1-x^3} \frac{d}{dx} (1-x^3)$$

$$= \frac{3x^2}{1-x^3}$$

$$= \frac{3x^2}{x^3-1}$$

$$\frac{1}{(b) K(u) = \sqrt{\ln u}} = (\ln u)^{\frac{1}{2}} \text{ pairel}$$

$$K'(u) = \frac{1}{2} (\ln u)^{-\frac{1}{2}} \frac{d}{du} (\ln u)$$

$$= \frac{1}{2} (\ln u)^{-\frac{1}{2}} (\frac{1}{u})$$

$$= \frac{1}{2} (\ln u)^{-\frac{1}{2}} (\frac{1}{u})$$

(c)
$$y = x \ln x$$
 Product Rule
$$\frac{dy}{dx} = 1 \cdot \ln x + x \left(\frac{1}{x}\right)$$

$$= \ln x + 1$$

$$\frac{\int_{0}^{a} e^{-t}}{\int_{0}^{b} (u)} = \frac{\int_{0}^{b} (u)^{\frac{1}{2}} e^{-t}}{\int_{0}^{b} (u)^{\frac{1}{2}} e^{-t}} = \frac{\int_{0}^{b} e^{-t}}{\int_{0}^{b} (u)^{\frac{1}{2}} e^{-t}} = \frac{\int_$$

12. (5 pts) Find the **second** derivative of
$$f(x) = e^{x^2}$$
.

$$f(x)=e^{x^2}\frac{d}{dx}(x^2)$$
 Chain Rnle
$$= 2xe^{x^2}$$

$$f'(x) = \left(\frac{d}{dx}2x\right)e^{x^{2}} + 2x\frac{d}{dx}e^{x^{2}}$$

$$= 2e^{x^{2}} + (2x)\left[e^{x^{2}}2x\right]_{chain}$$

$$= 2e^{x^{2}} + 4x^{2}e^{x^{2}}$$

$$= 2e^{x^{2}}(1+2x^{2})$$

13. (5 pts) Let $f(t) = \sqrt{t-3}$, where t represents time in years. Find the relative rate of change of f at time $\widetilde{t}=8$ years. (Express it as a percentage.)

$$f(t) = (t-3)^{1/2}$$

 $f'(t) = \frac{1}{2}(t-3)^{-1/2}(1)$ Chain Rule

Relative Rate of Change:

$$\frac{f(t)}{f(t)} = \frac{\frac{1}{2}(t-3)^{-1/2}}{(t-3)^{1/2}}$$

$$= \frac{1}{2(t-3)^{1}}$$

$$\frac{f'(8)}{f(8)} = \frac{1}{2(8-3)} = \frac{1}{10} = \frac{10\%}{10} =$$

14. (5 pts) Suppose the demand function for Sparkling Purple Widgets is
$$D(p)=5000e^{-0.03p}$$
 widgets at price p dollars per widget. Find the elasticity of demand, $E(p)$, at a price of \$10 per widget.

$$D(p) = 5000e^{-0.03p} (-0.03)$$

$$E(p) = -p D'(p)$$

$$= -p 5000e^{-0.03p}(-0.03)$$

$$= 0.03p$$

$$E(10) = 0.03(10)$$

$$= 0.3 (there are no units here)$$

15. (5 pts) An investment of P dollars is made with an annual rate r compounded annually. After 1 year, the amount in the account is

$$P + rP = P(1+r).$$

DERIVE the formula for the amount in the account after 2 years. (That is, show where this formula comes from.)

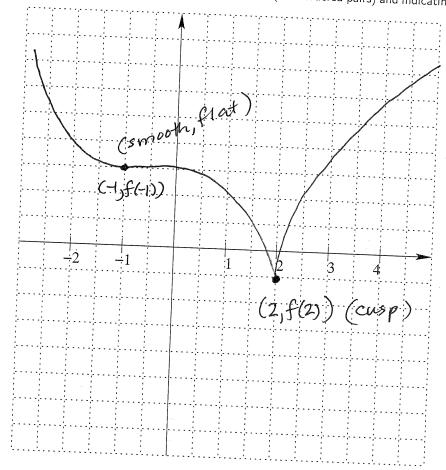
16. (15 points) Let f be **continuous** on $\mathbb R$ with f'(-1)=0, f'(2) undefined, f''(-1)=0, and f''(2) undefined.

(a) Fill in the blanks in the sign charts with the terms "increasing," "decreasing," "concave up," or "concave down" Write them out!

down. vviile them out!			concave up,"
interval	$(-\infty, -1)$	(-1, 2)	(0)
sign of $f'(x)$			$(2,\infty)$
behavior of f	decreasing	4 00 0	+
4	- Casting	decreasing	ncreasing

		•	
interval	$(-\infty, -1)$	(-1,2)	
sign of $f''(x)$		(-1, 2)	$(2,\infty)$
	+		
behavior of f	concave up		
		concave down	concare down
Give the x -coor	dinates of all of the cu		

(b) Give the x-coordinates of all of the following (or indicate "none").


i. critical points of f: x = -1, 2

iii. relative maximum points of $f: x = \underline{\textit{none}}$

ii. inflection points of f: $x = \underline{ 1}$

iv. relative minimum points of f: x = 2

(c) Sketch a possible graph of f labeling all important points (with ordered pairs) and indicating all behavior clearly.

- 17. (25 points) Let $f(x) = x^3 3x^2 9x$.
 - (a) Find the y-intercept(s) of f. Show work. Give the ordered pair(s).

$$f(0) = 03 - 3.0^{2} - 9.0 = 0$$

$$(0,0)$$

(b) Find f'(x).

$$f(x) = 3x^2 - 6x - 9$$

(c) Find the critical number(s) of f. Show work.

$$f'(x) = 0 \leftarrow \text{key}$$

$$3x^2 - 6x - 9 = 0$$

$$3(x^2 - 2x - 3) = 0$$

$$3(x - 3)(x + 1) = 0$$

$$x - 3 = 0 \text{ or } x + 1 = 0$$

$$x = 3$$
(d) Find the result of the second of the secon

(d) Find the y-coordinates of all critical points of f. Show work.

$$f(-1) = (-1)^{3} - 3(-1)^{2} - 4(-1) \qquad (-1,5)$$

$$= -1 - 3 + 9 = 5$$

$$f(3) = 3^{3} - 3 \cdot 3^{2} - 9 \cdot 3 \qquad (3,-27)$$

$$= -27$$

(e) Construct a sign chart (with all factors as in class) for f'(x) and indicate the corresponding behavior of f.

	$(-\infty,-1)$	(-1,3)	(3, ∞)
3	+	1 +	+++
X-3		- 6	7
×+	- 4	> +	+
f(x)	+ 0	· _ c	° +
f(x)	inc	dec	inc

(f) Find f''(x).

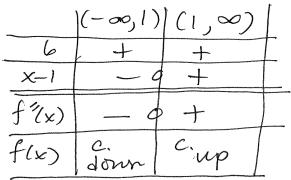
(g) Find the potential inflection point(s) of f. Show

F''(x) = 0 \ key
$$6x - b = 0$$

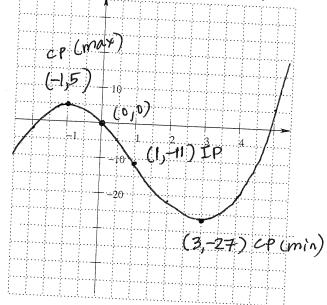
$$6(x - 1) = 0$$

$$x - 1 = 0$$

$$x = 1$$


(h) Find the y-coordinates of all potential inflection points of f. Show work.

$$f(1) = 1^{3} - 2.1^{2} - 9.1 \quad (1, -11)$$


$$= 1 - 3 - 9$$

$$= -11$$

(i) Construct a sign chart (with all factors as in class) for f''(x) and indicate the corresponding behavior of f.

(j) Sketch the graph y=f(x). Plot and label (with ordered pairs) all important points. Illustrate all aspects of the behavior of f found above clearly.

