Exponential and Logarithmic Functions

1. On a full sheet of graph paper, sketch the graph of \(y = 3^x \). Label intercepts and at least 4 other points with their ordered pairs and the asymptote with the equation of the line. **On the same coordinate system**, sketch the graph of \(y = \log_3 x \). Label intercepts and at least 4 other points with their ordered pairs and the asymptote with the equation of the line.

2. On a full sheet of graph paper, sketch the graph of \(y = 4^x \). Label intercepts and at least 4 other points with their ordered pairs and the asymptote with the equation of the line. **On the same coordinate system**, sketch the graph of \(y = \log_4 x \). Label intercepts and at least 4 other points with their ordered pairs and the asymptote with the equation of the line.

3. On a full sheet of graph paper, sketch the graph of \(y = e^x \). Label intercepts and at least 4 other points with their ordered pairs and the asymptote with the equation of the line. **On the same coordinate system**, sketch the graph of \(y = \ln x \) (= \(\log_e x \)). Label intercepts and at least 4 other points with their ordered pairs and the asymptote with the equation of the line.

4. For each logarithmic equation, write the equivalent exponential equation.

 Example. \(\log_5 25 = 2 \) is equivalent to \(5^2 = 25 \).

 Example. \(\ln z = 5 \) is equivalent to \(e^5 = z \).

 (a) \(\log_7 49 = 2 \)
 (b) \(\log_7 1 = 0 \)
 (c) \(\log_{10} 0.1 = -1 \)
 (d) \(\log_{36} 6 = \frac{1}{2} \)
 (e) \(\ln 2 = x \)
 (f) \(\ln y = 17 \)

5. For each exponential equation, write the equivalent logarithmic equation.

 Example. \(5^{-1} = \frac{1}{5} \) is equivalent to \(\log_5 \left(\frac{1}{5} \right) = -1 \).

 Example. \(e^x = 10 \) is equivalent to \(\ln 10 = x \).

 (a) \(5^4 = 625 \)
 (b) \(10^{-3} = 0.001 \)
 (c) \(125^{1/3} = 5 \)
 (d) \(\left(\frac{1}{4} \right)^{-2} = 16 \)
 (e) \(e^{0.025} = g \)
 (f) \(e^M = Q \)

6. Evaluate each expression without using a calculator or computer (other than your brain!).

 Example. \(\log_{15} \left(\frac{1}{15} \right) = -1 \)

 Example. \(e^{\ln 37} = 37 \)

 (a) \(\log_5 5 \)
 (b) \(\log_{17} 1 \)
 (c) \(\log_2 32 \)
 (d) \(\log_2 \left(\frac{1}{16} \right) \)
 (e) \(\log_2 \sqrt{2} \)
 (f) \(2^{\log_2 5} \)
 (g) \(\ln e \)
 (h) \(\ln e^3 \)
 (i) \(\ln 1 \)
 (j) \(\ln \left(\frac{1}{e} \right) \)
 (k) \(\ln \sqrt{e} \)
 (l) \(e^{\ln 1.023} \)