Trigonometry

Dr. Kracht Spring 2014

Name (print neatly): _

Score: /100 (106 pts available)

EXAM 1: Tuesday, February 11, 2014

Academic Honesty Pledge

Your signature at the bottom indicates your agreement to abide by the following rules.

- 1. All purses, bags, books, notes, and other papers are placed in the back of the room.
- 2. All cell phones and other electronic devices are placed in the back of the room.
- 3. Calculators are not permitted on this exam.
- 4. I will not communicate with other students during the exam.
- 5. I will not seek help from or give help to others during the exam.
- 6. I will turn my exam in and will not take it from the classroom.
- 7. I will not discuss the exam outside of class with another student who has not yet taken the exam.
- 8. I will not cheat in any other way.
- 9. I will follow any other instructions from my professor.

Signature: _____

Exam 1

Show your reasoning for full credit. Use standard notation correctly. Give exact values, simplified.

- 1. (10 pts) Consider the right triangle pictured. Figure is not drawn to scale.
 - (a) Find b. Give an exact value, simplified.

(b) Evaluate each of the following. Give exact values, simplified. You need not rationalize denominators.

i. $\sin \theta =$	iii. $\tan \theta =$	v. $\csc \theta =$
ii. $\cos \theta =$	iv. $\sec \theta =$	vi. $\cot \theta =$

2. (10 pts) A tourist is standing 1000 feet from the base of the Eiffel Tower in Paris. She sights the top of the tower and finds the angle of elevation to be 46.7° . Find and simplify an expression for the height h of the Eiffel Tower.

3. (6 pts)

(a) Convert 400° to radians.

```
(b) Convert \frac{\pi}{36} radians to degrees.
```

4. (5 pts) Find the length s of an arc of a circle of radius 5 cm associated with an angle of $\frac{7\pi}{10}$ radians.

- 5. (15 pts) Consider $\theta = 330^{\circ}$.
 - (a) Find the reference angle for θ .
 - (b) Find a negative angle coterminal with θ .

- (c) Sketch θ in standard position.
- (d) Evaluate each of the following. Give exact values, simplified. You need not rationalize denominators.

i. $\sin 330^\circ =$	iii. $\tan 330^\circ =$	v. $\sec 330^\circ =$
ii. $\cos 330^\circ =$	iv. $\cot 330^\circ =$	vi. $\csc 330^\circ =$

- 6. (15 pts) Consider $\theta = -\frac{5\pi}{4}$.
 - (a) Find the reference angle for θ .
 - (b) Find a positive angle coterminal with θ .

- (c) Sketch θ in standard position.
- (d) Evaluate each of the following. Give exact values, simplified. You need not rationalize denominators.

i.
$$\sin\left(-\frac{5\pi}{4}\right) =$$
 iii. $\tan\left(-\frac{5\pi}{4}\right) =$ v. $\sec\left(-\frac{5\pi}{4}\right) =$

ii.
$$\cos\left(-\frac{5\pi}{4}\right) =$$
 iv. $\cot\left(-\frac{5\pi}{4}\right) =$ vi. $\csc\left(-\frac{5\pi}{4}\right) =$

- 7. (25 pts) Consider the function $f(x) = \cos x$.
 - (a) $\operatorname{dom}(\cos) =$
 - (b) range(cos) =
 - (c) Is cosine an odd function, an even function, or neither?
 - (d) Label each of the following on the x-axis of the coordinate system below.
 - i. 2π iii. $\frac{\pi}{3}$ v. $\frac{\pi}{6}$ vii. $\frac{3\pi}{2}$ ix. $\frac{3\pi}{4}$ ii. $\frac{\pi}{2}$ iv. $\frac{\pi}{4}$ vi. $-\frac{\pi}{2}$ viii. $\frac{5\pi}{3}$ x. $\frac{7\pi}{6}$
 - (e) Give the exact values for each of the following.

i.
$$\cos(0) =$$
iv. $\cos\left(\frac{\pi}{2}\right) =$ vii. $\cos\left(\frac{\pi}{3}\right) =$ ii. $\cos(\pi) =$ v. $\cos\left(\frac{-\pi}{2}\right) =$ viii. $\cos\left(\frac{2\pi}{3}\right) =$ iii. $\cos(2\pi) =$ vi. $\cos\left(\frac{3\pi}{2}\right) =$ ix. $\cos\left(\frac{4\pi}{3}\right) =$

- (f) Sketch the graph $y = \cos x$. Fill out the whole coordinate grid.
- (g) Plot and label (with their ordered pairs) the points corresponding to question 2 above.

- 8. (20 pts) Consider the function $f(x) = \tan x$.
 - (a) $\operatorname{dom}(\operatorname{tan}) =$
 - (b) range(tan) =
 - (c) Is tangent an odd function, an even function, or neither?
 - (d) Give the exact values for each of the following, or state "dne" (for "does not exist").

i.
$$\tan(0) =$$

ii. $\tan\left(\frac{\pi}{2}\right) =$
iii. $\tan\left(\pi\right) =$
iii. $\tan\left(-\pi\right) =$
v. $\tan\left(\frac{-\pi}{2}\right) =$
vii. $\tan\left(-\frac{\pi}{4}\right) =$
viii. $\tan\left(-\frac{\pi}{4}\right) =$
viii. $\tan\left(\frac{3\pi}{4}\right) =$

- (e) Sketch the graph $y = \tan x$. Fill out the whole coordinate grid.
- (f) Plot and label (with their ordered pairs) the points corresponding to question 2 above as well as all asymptotes (with their equations) appearing in the given grid.

