\qquad

EXAM 1: Tuesday, February 11, 2014

Academic Honesty Pledge

Your signature at the bottom indicates your agreement to abide by the following rules.

1. All purses, bags, books, notes, and other papers are placed in the back of the room.
2. All cell phones and other electronic devices are placed in the back of the room.
3. Calculators are not permitted on this exam.
4. I will not communicate with other students during the exam.
5. I will not seek help from or give help to others during the exam.
6. I will turn my exam in and will not take it from the classroom.
7. I will not discuss the exam outside of class with another student who has not yet taken the exam.
8. I will not cheat in any other way.
9. I will follow any other instructions from my professor.

Signature: \qquad

Exam 1

Show your reasoning for full credit. Use standard notation correctly. Give exact values, simplified.

1. (10 pts) Consider the right triangle pictured. Figure is not drawn to scale.
(a) Find b. Give an exact value, simplified.

(b) Evaluate each of the following. Give exact values, simplified. You need not rationalize denominators.
i. $\sin \theta=$
iii. $\tan \theta=$
v. $\csc \theta=$
ii. $\cos \theta=$
iv. $\sec \theta=$
vi. $\cot \theta=$
2. (10 pts) A tourist is standing 1000 feet from the base of the Eiffel Tower in Paris. She sights the top of the tower and finds the angle of elevation to be 46.7°. Find and simplify an expression for the height h of the Eiffel Tower.
3. (6 pts)
(a) Convert 400° to radians.
(b) Convert $\frac{\pi}{36}$ radians to degrees.
4. (5 pts) Find the length s of an arc of a circle of radius 5 cm associated with an angle of $\frac{7 \pi}{10}$ radians.
5. (15 pts) Consider $\theta=330^{\circ}$.
(a) Find the reference angle for θ.
(b) Find a negative angle coterminal with θ.
(c) Sketch θ in standard position.

(d) Evaluate each of the following. Give exact values, simplified. You need not rationalize denominators.
i. $\sin 330^{\circ}=$
iii. $\tan 330^{\circ}=$
v. $\sec 330^{\circ}=$
ii. $\cos 330^{\circ}=$
iv. $\cot 330^{\circ}=$
vi. $\csc 330^{\circ}=$
6. (15 pts) Consider $\theta=-\frac{5 \pi}{4}$.
(a) Find the reference angle for θ.
(b) Find a positive angle coterminal with θ.
(c) Sketch θ in standard position.

(d) Evaluate each of the following. Give exact values, simplified. You need not rationalize denominators.
i. $\sin \left(-\frac{5 \pi}{4}\right)=$
iii. $\tan \left(-\frac{5 \pi}{4}\right)=$
v. $\sec \left(-\frac{5 \pi}{4}\right)=$
ii. $\cos \left(-\frac{5 \pi}{4}\right)=$
iv. $\cot \left(-\frac{5 \pi}{4}\right)=$
vi. $\csc \left(-\frac{5 \pi}{4}\right)=$
7. (25 pts) Consider the function $f(x)=\cos x$.
(a) $\operatorname{dom}(\cos)=$
(b) range $(\cos)=$
(c) Is cosine an odd function, an even function, or neither?
(d) Label each of the following on the x-axis of the coordinate system below.
i. 2π
iii. $\frac{\pi}{3}$
v. $\frac{\pi}{6}$
vii. $\frac{3 \pi}{2}$
ix. $\frac{3 \pi}{4}$
ii. $\frac{\pi}{2}$
iv. $\frac{\pi}{4}$
vi. $-\frac{\pi}{2}$
viii. $\frac{5 \pi}{3}$
x. $\frac{7 \pi}{6}$
(e) Give the exact values for each of the following.
i. $\cos (0)=$
iv. $\cos \left(\frac{\pi}{2}\right)=$
vii. $\cos \left(\frac{\pi}{3}\right)=$
ii. $\cos (\pi)=$
v. $\cos \left(\frac{-\pi}{2}\right)=$
iii. $\cos (2 \pi)=$
vi. $\cos \left(\frac{3 \pi}{2}\right)=$
viii. $\cos \left(\frac{2 \pi}{3}\right)=$
ix. $\cos \left(\frac{4 \pi}{3}\right)=$
(f) Sketch the graph $y=\cos x$. Fill out the whole coordinate grid.
(g) Plot and label (with their ordered pairs) the points corresponding to question 2 above.

8. (20 pts) Consider the function $f(x)=\tan x$.
(a) $\operatorname{dom}(\tan)=$
(b) range $(\tan)=$
(c) Is tangent an odd function, an even function, or neither?
(d) Give the exact values for each of the following, or state "dne" (for "does not exist").
i. $\tan (0)=$
iv. $\tan \left(\frac{\pi}{2}\right)=$
vi. $\tan \left(\frac{\pi}{4}\right)=$
ii. $\tan (\pi)=$
iii. $\tan (-\pi)=$
v. $\tan \left(\frac{-\pi}{2}\right)=$
vii. $\tan \left(-\frac{\pi}{4}\right)=$
viii. $\tan \left(\frac{3 \pi}{4}\right)=$
(e) Sketch the graph $y=\tan x$. Fill out the whole coordinate grid.
(f) Plot and label (with their ordered pairs) the points corresponding to question 2 above as well as all asymptotes (with their equations) appearing in the given grid.

