IATH 11022–006 Trigonometry 'R 11:00 Trigonometry		
	Exam Score:	/100
	110 pts	available
	Trigonometry	Trigonometry Dr Spri Exam Score: 110 pts

Exam 2: Thursday, March 13, 2014

Show all work. Give exact values, simplified. Use proper notation. NO CALCULATORS.

- 1. (15 points)
 - (a) *DERIVE* the Pythagorean Identity involving sine and cosine from the definitions of the trig functions. *Sketch a diagram. Give a reason for each step.*

(b) Use your answer above and other basic identities to *DERIVE* either of the other two Pythagorean Identities. *Give a reason for each step.*

2. (10 points)

(a) State the Sum formula for sine.

 $\sin(u+v) =$

(b) Use your answer above, basic identities, and algebra to *DERIVE* the Difference formula for sine, that is, the familiar formula for sin(u - v). Give a reason for each step.

3. (10 points) Use Sum or Difference Formulas to evaluate each of the following. Write out each step.

(a) Find the exact value, simplified:
$$\sin \frac{7\pi}{12}$$

(b) Find the exact value : $\cos 94^\circ \cos 4^\circ + \sin 94^\circ \sin 4^\circ$

4. (10 points) Use the following Double Angle Formula for cosine to *DERIVE* another Double Angle Formula involving only the sine function. *Provide a reason for each step.*

 $\cos 2x = \cos^2 x - \sin^2 x$

Solution:

^{5. (10} points) *DERIVE* the Cofunction Identity for $\sec\left(\frac{\pi}{2} - \theta\right)$ from the right triangle definitions of the trig functions. *Sketch a diagram. Explain your reasoning in full sentences.*

6. (10 points) Verify the following identity. Give a reason for each step. Do not skip steps.

$$\tan^2\theta \left(1 + \cot^2\theta\right) = \frac{1}{1 - \sin^2\theta}$$

Proof:

7. (15 points) Suppose $\sec \theta = -5$ and the terminal side of θ lies in quadrant III. Find the values of the other 5 trig functions of θ . Show your work clearly. Give exact answers, simplified.

(a) $\sin \theta =$ (c) $\tan \theta =$ (e) $\sec \theta = -5$

8.	(30 points) Consider the function $f(x) = 1 - 2\sin(x)$	$\left(\frac{2}{3}x - \right)$	$\left(\frac{\pi}{6}\right)$	$=1-2\sin$	$\frac{2}{3}\left(x\right)$	$-\frac{\pi}{4}\Big)\bigg].$	

- (a) Find each of the following.
 - i. *(3 pts)* amplitude: _____
 - ii. *(3 pts)* period: _____
 - iii. *(3 pts)* phase shift (horizontal translation): _____
 - iv. (3 pts) vertical translation:
- (b) (12 pts) Sketch the graph y = f(x). Fill out the whole coordinate grid.
- (c) (6 pts) Plot and label (with their ordered pairs) the 5 important points in one period.

