Some Subgroups of Finite Algebra Groups: Normalizers of Algebra Subgroups

(preliminary report)

Darci L. Kracht
darci@math.kent.edu

Advisor: Stephen M. Gagola, Jr.
Kent State University

AMS Central Section Meeting
University of Notre Dame
November 7, 2010
Definition

Let F be a field of characteristic p and order q. Let J be a finite-dimensional, nilpotent, associative F-algebra. Define $G = 1 + J$ (formally). Then G is a finite p-group. Groups of this form are called F-algebra groups. We will assume this notation throughout.

Example

Unipotent upper-triangular matrices over F

Theorem (Isaacs (1995))

All irreducible characters of algebra groups have q-power degree.
Algebra subgroups and strong subgroups

- Subgroups: $1 + X$ where $X \subseteq J$ is closed under the operation $(x, y) \mapsto x + y + xy$
- X need not be an algebra.

Definitions

- If L is a subalgebra of J, then $1 + L$ is an algebra subgroup of $G = 1 + J$.
- If $H \leq G$ such that $|H \cap K|$ is a q-power for all algebra subgroups K of G, then H is a strong subgroup of G.

Fact

Algebra subgroups are strong.
Strong subgroups as point stabilizers

Theorem (Isaacs (1995))

Under certain conditions, character stabilizers are strong.

- If $J^p = 0$, $N \trianglelefteq G$ is an ideal subgroup, and $\theta \in \text{Irr}(N)$, then the stabilizer in G of θ is strong.
- If $N \trianglelefteq G$ is an ideal subgroup, and λ is a linear character of N, then the stabilizer in G of λ is strong.

Question

Are normalizers of algebra subgroups strong?
When $J^p = 0$: The Exponential Map

- If $J^p = 0$, define $\exp: J \to 1 + J$ and $\log: 1 + J \to J$ by the usual power series.

Definitions

- For $x \in J$ and $\alpha \in F$, define $(1 + x)^\alpha = \exp(\alpha \log(1 + x))$.
- We define an F-exponent subgroup to be a subgroup of the following form:
 - $(1 + x)^F = \{(1 + x)^\alpha | \alpha \in F\}$
 - or equivalently
 - $\exp(F \hat{x}) = \{\exp(\alpha \hat{x}) | \alpha \in F\}$

Fact

F-exponent subgroups are strong.
Exponentially closed subgroups

Definition

The subgroup H is said to be **exponentially closed** if $\exp(Fx) \subseteq H$ whenever $\exp(x) \in H$.

- Also called **partitioned** subgroups

Fact

Exponentially closed subgroups are strong.
Suppose $J^p = 0$. If H is an algebra subgroup of $G = 1 + J$, then $N_G(H)$ is exponentially closed (hence strong).

Sketch of proof.

- Let $H = \exp(L)$ be an algebra subgroup of G.
- To show: if $\exp(x) \in N_G(H)$, then $\exp(\alpha x) \in N_G(H)$ for all $\alpha \in F$.
- Key: $N_G(H) = \exp N_J(L)$ where $N_J(L) = \{ x : [L, x] \subseteq L \}$.
 - $y^{(\exp x)^{-1}} = y^{\exp(-x)} = \exp(\text{ad } x)(y)$.
 - $\exp(x) \in N_G(H) \iff \exp(\text{ad } x)$ stabilizes L
 - $\iff \text{ad } x$ stabilizes L
A generalization of the exponential map.

Goal

To find an analog of \(\exp\) that works if \(x^p \neq 0\).

- From the study of Witt rings and \(p\)-adic analysis:

Definition

Fix a prime \(p\) and a nilpotent algebra \(X\) over a field of characteristic 0. The *Artin-Hasse exponential function*, \(\text{hexp}: X \to 1 + X\), is defined by

\[
\text{hexp}(x) = \exp \left(x + \frac{x^p}{p} + \frac{x^{p^2}}{p^2} + \frac{x^{p^3}}{p^3} + \cdots \right) \\
= \exp (x) \exp \left(\frac{x^p}{p} \right) \exp \left(\frac{x^{p^2}}{p^2} \right) \exp \left(\frac{x^{p^3}}{p^3} \right) \cdots
\]
Another formula for \(\text{hexp} \)

Miracle

The coefficients in \(\text{hexp}(x) \) are \(p \)-integral.

Sketch of proof.

\[\text{hexp}(x) = \sum \frac{| \bigcup \text{Syl}_p(S_n) |}{n!} x^n \]

- Frobenius: The highest power of \(p \) that divides \(n! = |S_n| \) also divides \(| \bigcup \text{Syl}_p(S_n) | \).

- \(\text{hexp} \) makes sense in characteristic \(p \)
hexp lacks some nice properties of exp

- Suppose $xy = yx$. Then $\exp(x) \exp(y) = \exp(x + y)$.
- Does $\hexp(x) \hexp(y) = \hexp(x + y)$?
- Not usually:
 $$(\exp \left(x + \frac{x^p}{p} + \frac{x^p^2}{p^2} + \cdots \right)) \left(\exp \left(y + \frac{y^p}{p} + \frac{y^p^2}{p^2} + \cdots \right) \right) \neq \left(\exp \left((x + y) + \frac{(x+y)^p}{p} + \frac{(x+y)^p^2}{p^2} + \cdots \right) \right)$$
- We have

 $$\hexp(x) \hexp(y) = \hexp(s_1) \hexp(s_p) \hexp(s_p^2) \cdots$$

 where $s_1 = x + y$

 $$s_p = \frac{x^p + y^p - (x + y)^p}{p}$$

 and the remaining polynomials s_{p^n} can be shown to have p-integral coefficients.
Hexponent and hexponentially closed subgroups

Definitions

- A **hexponent subgroup** is defined to be a subgroup of the following form: \(\text{hexp}(Fx) \text{hexp}(Fx^p) \text{hexp}(Fx^{p^2}) \cdot \cdots \).
- A subgroup \(H \) is said to be **hexponentially closed** if \(\text{hexp}(\gamma x) \in H \) for all \(\gamma \in F \) whenever \(\text{hexp}(x) \in H \).

Facts

- **Hexponent and hexponentially closed subgroups are strong.**
- **Hexponent subgroups are not necessarily hexponentially closed.**
- **If** \(J^{2p-1} = 0 \), **then** \(\text{hexp}(Fx) \text{hexp}(Fx^p) \) **is hexponentially closed.**
Question

Can we use the hexponential map to show normalizers of algebra subgroups are strong?

Answer

Only if $J^{p+1} = 0$.

Theorem

Let H be an algebra subgroup of $G = 1 + J$.

- If $J^{p+1} = 0$, then $N_G(H)$ is hexponentially closed (hence strong).
- If $J^{p+1} \neq 0$, then examples exist for which $|N_G(H)| = p \cdot q^a$, and so $N_G(H)$ need not be strong.
Sketch of proof

- We find a function had analogous to ad so that $\text{hexp}(x) \in N_G(H)$
 \[\iff \text{hexp}(\text{had} x) \text{ stabilizes } L \iff \text{had} x \text{ stabilizes } L \]

- $\text{had} x = \text{ad} x + \delta_x$ where δ_x is not linear

- If $J^{2p-1} = 0$, $\delta_x = \frac{L_x^p - R_x^p - (L_x - R_x)^p}{p}$, where L_x, R_x are left and right multiplication by x, respectively.

- $\delta_x(y) \in J^{p+1}$

- $J^{p+1} = 0 \implies$
 - $\text{had} x = \text{ad} x$
 - $\text{had} x$ stabilizes $L \iff \text{had}(\alpha x) \text{ stabilizes } L \text{ for all } \alpha \in F$
 - $N_G(H)$ is hexponentially closed (hence strong)
Suppose $J^{p+1} \neq 0$.

$\text{hexp}(\alpha x) \in N_G(H) \iff \text{had}(\alpha x) = \alpha \text{ad} x + \alpha^p \delta_x$ stabilizes L

Now $\text{had} x = \text{ad} x + \delta_x$ stabilizes $L \iff \alpha^p \text{had} x = \alpha^p (\text{ad} x + \delta_x) = \alpha^p \text{ad} x + \alpha^p \delta_x$ stabilizes L for all α.

So $\text{had}(\alpha x)$ stabilizes $L \iff (\alpha^p - \alpha) \text{ad} x$ stabilizes L

Examples exist (for all p) for which this happens $\iff \alpha \in GF(p)$ and so $|N_G(H)| = p \cdot q^a$.

So if $J^{p+1} \neq 0$ and $|F| = q > p$, examples exist for which normalizers of algebra subgroups are not strong.
Other uses for hexp?

- Algebra subgroups are strong, but is the converse true? Are strong subgroups at least isomorphic to algebra subgroups?
- Not necessarily.
- Suppose $x^{p+1} = 0$, but $x^p \neq 0$; $H = \text{hexp}(Fx) \text{hexp}(Fx^p)$.
- H is a strong subgroup of exponent p^2.
- Assume there is an isomorphism $H \rightarrow 1 + A$, some F-algebra group.
- $\dim_F(A) = 2$
- There is some $u \in A$ with $o(1 + u) = p^2$, so u, u^2, \ldots, u^p are non-zero, linearly independent, a contradiction, if p is odd.
- Similar example exists for $p = 2$.