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1 Introduction

The ability to work with existential and universal quantification of logical propositions is one of the
most important and useful tools for accessing a vast array of mathematical ideas. Quantification is,
on the other hand, one of the least often acquired and most rarely understood concepts at all levels,
from secondary school on up even, in many cases, into graduate school.

It is not hard to provide a litany of topics that are very difficult for students and appear to
depend on quantification. At the very elementary level the difference between an algebraic equation
which may have a solution and an identity which is “always” true is the difference between an
existential and a universal quantification. The same is true of the distinction between proof and
counterexample. How many of us have found students puzzled by our rejection of their “proof’
which consists of checking a small number of examples? Is it possible that the difficulty here is
not an inability to differentiate the two, but simply a lack of understanding of what it means for
something to be true for every value of 27

Cornu [A] has suggested that lack of understanding of quantification is an often insurmountable
barrier for students in developing a sophisticated understanding of limits and continuity. Ralston
{B] has expressed the opinion that quantification is too difficult for students in the first two years
of University. If both of these educators are correct, then this could help explain the lack of success
our students have with understanding calculus [C] and a host of other topics.

The list is really very long. It includes linear independence, compactness, and inverses in groups
to mention only a few. These concepts illustrate the very practical necessity for students to be
able to express a quantified proposition in formal language, to negate the statement, and to reason
about both the original statement and its negation. It therefore seems that finding something out
about understanding quantification, how it is learned, and what we as teachers can do to help might
contribute to the goal of improving all students’ understanding of advanced mathematical ideas.

We believe that to understand a mathematical concept an individual must construct something in
her or his own mind; that it is possible, through research, to determine, in detail, ways in which this

can take place; and that one can develop instructional treatments designed explicitly to stimulate



the specific constructions suggested by the research.

It is the purpose of this paper to propose a constructivist analysis of learning the concept of
quantification. In a subsequent paper [N], we will describe an instructional treatment based on this
analysis and making heavy use of orchestrated computer experiences to induce students to make the
constructions described here. The results of that treatment will be reported as well.

Our analysis is based on and contributes to a general theory of mathematical knowledge and
its acquisition that we are attempting to develop from the ideas of Jean Piaget as expressed for
example, in [D]. (For earlier but somewhat more detailed descriptions of our theory, see [E], [F],
[G].) According to this theory, what the individual constructs are schemas. A schema is a more
or less coherent collection of mental objects and mental processes for transforming objects. When
faced with a new situation or, what we may refer to in mathematics as a problem, an individual
is said to be disequilibrated and may attempt to reequilibrate by solving the problem. The process
of equilibration results in the construction or reconstruction of schemas and it is this construction
process (which we refer to generically as reflective abstraction) for various mathematical concepts
that our theory attempts to describe. There are a number of ways in which the constructions can
occur. We will describe them in the next section and examples will be provided in the context of
our application of the general theory to the particular concept, quantification.

It is important to note, however, that this general theory is not the sole source of our analysis.
Obviously, as mathematicians, we have an understanding of quantification and we may have some
awareness of the nature of this understanding. There is no way to avoid the effect, explicit or
implicit, that our own ideas of quantification will have on the analysis. This is useful because any
description of quantification must not only be “mathematically correct” but must also embody all
of the subtleties and ramifications of this complex concept and reflect its varying role in the full
spectrum of mathematical endeavours.

On the other hand, there is more than one way to describe a mathematical idea. As is the case
with the development of number in children [G], not all of these correspond to how an individual
might construct the concept. This can only be determined empirically by observing students in the
process of trying to understand the concept. Their obstacles and successes can give important clues
to the nature of the ongoing construction process which, of course, can only be observed indirectly.

The observations considered in this paper are taken from an informal study of a Discrete Mathe-
matics class taught by the first author in collaboration with the other two authors at the University

of California, Berkeley in Spring, 1986. Quantification was a major topic in this course and the



instructional treatment used computer experiences with the programming language SETL [I]. The
design of the experiences was based on our emerging notion of how this concept could be constructed
by students.

After the topic was covered, each student was given an in-depth interview during which time he
or she was asked to perform certain tasks (i.e., solve problems) connected with quantification and
to explain their reasoning. Excerpts from these interviews will be used in this paper to illustrate
the cognitive development which our analysis attempts to elaborate.

In earlier papers we have discussed how our approach, combining a constructivist analysis with a
particular way of using computer experiences, can be used to help students construct the concept of
mathematical induction ([F],[G]) and other topics in discrete mathematics ([J],(K]). The present work

is an attempt to extend these investigations to another important Mathematics topic, quantification.

2 Generalities on Schemas and their Construction

A schema consists, in the first instance, of mental objects and processes for transforming objects.
These two are not so different as might appear. According to Piagetian theory, the way that an
object is known is through actions which the knower performs on it. This is as true of mental objects
and mental actions as it is of physical objects and their transformations. Thus a part of learning
involves the acquisition, through reaction to experience or even spontaneously, of new actions with
which to know objects. This is a form of construction, of course, but a more profound development
occurs when a person makes an internal construction corresponding to one or more of these actions.
This is a form of reflective abstraction called interiorization and the result is what we are calling a
process in a schema. It is much more than a copy of the external action. It depends on the ob jects
and processes which already exist for the learner and will often involve other schemas which the
learner possesses. It is the intelligent response to an external stimulus and although it “represents”
the external action it also depends on the knowledge of the learner at the time that the interiorization
takes place. Piaget has considered that this construction is more than analogous to the biological
notion of phenotype in evolution theory ([M]). An important class of of interiorizations is generated
in the construction of mental processes corresponding to the actions of functions given by an explicit
algebraic formula or implicit in the analysis of a problem. The ability to do this is a very usefu! tool
in mathematical modelling, understanding composition of functions and many other topics.

Thus, processes come from objects in the sense that they are interiorized actions on objects.

On the other hand, objects are constructed by encapsulating processes which is another form of



reflective abstraction. Encapsulation in this sense is a Piagetian notion which echos a very modern
trend in Mathematics. It occurs, in Piagetian theory, very early in the development of intelligence
with the emergence of the concept of permanent object. This concept consists in the encapsulation of
the process of performing transformations in space which which do not destroy the physical object.
In Mathematics, one of many examples of encapsulation occurs in the construction of the dual of
a vector space. The dual is another vector space whose vectors are obtained by encapsulating the
linear functions (each of which is a process) from the original vector space to the underlying field.

It is also possible to construct new processes from two or more existing processes by linking them
together. This can be done by simple composition or, as in the case of mathematical induction (see
[E]), a more complicated matching of “inputs” and “outputs”. We refer to this kind of reflective
abstraction as coordination.

Finally, there is generalization. It can occur that a problem points to an existing object and a
process which is already present for the learner and the situation suggests that this process may be
applied to this object. If this has not been done before, then, for the subject, both the process and
the object are transformed into slightly more powerful versions and this is also a kind of construction.

These ideas are represented schematically in Figure 1

The schema for mathematical functions is an important example which illustrates this formula-
tion. A student’s function schema at some point may include the transformation of numbers through
the application of algebraic formulas. The objects are numbers and the processes are the algebraic
manipulations. At the same time the student may understand regular geometric shapes such as
equilateral triangles, squares, etc. and be familiar with actions on them such as rotations and re-
flections. When these actions are interiorized to become internal processes, the student can think of
them independently of any physical presence, and can compose or reverse them to imagine additional
processes. These coordinations lead to the construction of a collection of processes for transforming
geometrical objects. If the student comes to think about such transformations as functions whose
domains and ranges are geometrical objects positioned in space — or as permutations of the vertices
which is another kind of function, then the function schema has been generalized. Moreover, the
transformation processes can themselves be encapsulated to become objects and the coordinations
taken as functions or operations on transformations. This is not only a further generalization of the

function schema but leads to the mathematical concept of transformation groups.
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Figure 1: Schemas and their Construction

3 The Quantification Schema

We will use Figure 1 as a model and flesh out, with examples from student protocols, the framework
described in that diagram. In the quantification schema, the objects are propositions and one
kind of processes are interiorizations of logical operations on sets of propositions. Processes are
encapsulated to obtain more complex propositions and in this way, the schema is generalized. Higher
level quantifications are constructed by coordinating two or more quantified propositions.

Another source of processes is the interiorization of, or construction of, an internal process
corresponding to a logical statement presented in natural language, or derived from a situation. The

examples which we will consider in this paper are the following two statements.

Statement 1 For every tire in the library, there is a car in the parking lot such that if the tire
fits the car, then the car is red.

Statement 2 Amongst all the fish flying around the gymnasium, there is one for which there is,
in _e\i:ery Computer Science class, a Physics major who knows how much the fish
weighs.



We will describe the internal processes corresponding to such statements.

Finally, we will consider two kinds of actions on the objects: negation of a proposition and
reasoning about a proposition.

The action of negation will be a major concern in our analysis of quantification. It is extremely
important in Mathematics, for example in making proofs by contradiction or locking for counter-
examples. At a conceptual level, when complex logical statements are used to define a concept,
it may be said that in order to understand what something is, it is essential to understand what
it is not. Throughout the development of quantification the same three methods of negation are
used. We list them here with examples from the preliminary stage in which the objects are simple
declarations, depending on variables and/or built up with logical operations.

¢ The most mechanical method of negating a proposition is to express it in formal language and
apply rules such as DeMorgan’s law from memory. We will call this negation by rules.

¢ A method of negation that is transitonal towards using an understanding of the statement is
what we will call negation by recursion. The statement is “parsed” so that 1t appears as a single
operation between two propositions (which themselves may be composed of other statements).
The idea is that this “top-level” form is negated, either by rules or by meaning, and then the
individual parts are negated. For example, to negate an expression such as

(A= (BAC))=>(CA(AVB)) (1)
the first step is to see it as
P=Q
where P = (A =>(BAC)) and Q = (C A(AV B)). This is negated to obtain P A ~Q, after
which @ is negated and the expression for that and for P are substituted back.

¢ The most powerful, although most difficult, method of negation is to negate the meaning,
that is, the student has a mental representation of a set of situations that correspond to the
statement being true and can then take the complementary set of situations which corresponds
to its falsity. This configuration is then expressed formally, if desired. Here are a few specific
examples.

1. If a statement depends on a variable, then its negation is a statement which depends on
the same variable and has the property that for every value of the variable, the truth
value of the negation is the opposite of the truth value of the original statement.

2. An implication is true except when its hypothesis is true and its conclusion is false.
Therefore the negation of A => B is A A(-B).

3. The conjunction of a list of propositions is the assertion that all of the statements are true.
Therefore, the negation is the assertion that one of them is false, which is the disjunction
of the list of the negations of the statements.

Thus, in its most advanced form, negation amounts to reasoning about a proposition, which
is the second kind of action that we will consider. We will also consider reasoning in the form of
making particular assumptions about a statement and then trying to determine what effect this has
on its truth or falsity. For example, in Statement 1 above, what is known if it is assumed that there

is at least one red car in the parking lot?



Our description of the construction of the quantification schema is divided into three stages.
First, the preliminary stage which concerns the set of schemas which the student should possess in
order to begin to understand and work with quantificaton; second, the single-level quantification in
which an existential or universal quantifier is applied to a set of propositions; and finally, the full
schema in which two or more quantifications are coordinated to form the complex logical statements

of advanced Mathematics.

3.1 Preliminary Stage

At the very beginning, objects are restricted to simple declarations, statements of fact. The only
internal processes that are present consist of checking (a possibly imagined) reality to determine the
truth or falsity of the statement. Negation amounts to checking a different reality.

As the student progresses through this stage, the propositions become more complicated in
two ways: linking two or more propositions by means of the standard logical operations (and,
or, implies, etc.) and the introduction of variables whose values may be unknown or changing.
Both of these give rise to internal processes. For the former, there is the act of coordinating sev-
eral propositions with the logical connectors and for the latter, the student must imagine running
through all values of the variable in its domain set to see what is the declarative statement in
each case. These processes are used, for example, in thinking about the truth or falsity of the
entire statement. The following phrase from Statement 1 illustrates both kinds of proposition.

if the tire fits the car, then the car is red
The variables are tire, car; the two simple declarations are, the tire fits the car, the car is red and
the linking operation is implication.

We can see some indication of how students struggle with these complexities by considering the
following protocols of responses to the question of determining the truth or falsity of Statement 1.
The first student seems to indicate that she is imagining various values of the variables and checking
the corresponding realities.

FOS: It seems like each of these little pieces, it just iterates through each piece. Like it

takes a tire, and then it takes a car and it checks if the tire fits the car and the car
is red. And then it takes the next tire — well, actually it takes the same tire and
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WON:

I:
WON:

She may be confused, however, about the nature of these variables when she assigns Boolean values
to fire and car. As a result, she does not say anything about the domain of these variables and
jumps to a (not correct) negation of the implication. The next student definitely has a concept of

set and applies it to tires but does not seem to iterate a variable through a set. Instead, she goes

...1try to find some value, assign true or false value to it, such that it will make the
sentence false. If I can’t find such value, then the, the sentence is true. But if I can,
I can assign some values to it that make the whole sentence false, then the whole
sentence is false.

: What do you mean when you say “assign values”?
WON:
: To what?
WON:

Assign true or false values to...

Okay, let’s say for every tire in the library I'll assign true. And then there is a car
in the parking lot, and I assign it another value, true or false, and then, I assign
true or false to the car, the tire fits the car and then...

How do you decide whether to assign true or false?

Okay, first I'll make, I'll make a case where this sentence will be false. It’s when,
it’s when, if the tire fits the car, the car is not red.

directly from a single instantiation to the truth or falsity of the entire statement.

I:

REIL

Finally, we have a protocol in which the student is explicit about the set (pile) of tires and of (all of

Okay, now let’s go back to the first statement. Tell me, how would you determine
if the statement were true or not? Or if it can help you, just think of how the
computer would determine if the statement were true or not. What procedure
would you follow?

Okay, it would look at the set of tires and...and look at the set of cars in the parking
lot...and figure out...it would have to match the tires to the car, determine whether
the car was red and if it found one that was red, it would return true ...

the) cars. He is clearly iterating through these sets and checking the truth value in every case.

CHI:

What would you do? You have a pile of tires right here in the library and the cars
are right across in the parking lot. You have to figure out whether its true or false.
Ok, so I'd take all those tires down to the parking lot and...for every tire that’s
there I would test to see whether...

: “For every tire?” How would you select a tire?
CHI:

I would just randomly pick a tire and see if it fits on, say the first car I saw. And
if it fits...er...ok...

: So you would pick a tire. What would you do for that tire?
CHI:

I would put it on one of the cars. And if it fits and it wasn’t red... if the tire fits
and it wasn’t red, then this whole statement is false, because that one tire didn’t
work, and it has to work for all the tires.

: That tire didn’t work if you just find one car for which its false?
CHI:
: You started right. Let’s see, you’re taking a tire...
CHI:

Oh! Oh! Oh! That’s right...ok...I forgot about that. Let’s see...

Oh, and I have to test it on all the cars. And if there is one of them that fits...either
it doesn’t fit all the cars, or if it does fit a car, then that car is red. For every one
of those tires, if that’s true, then the whole thing is true. And if one tire fails to
meet that, then its false. .



At the end, he has difficulty with the quantification, but this is the business of a later section.

In general, students appear to have considerable difficulty with negation. When the statement is
complicated, the student will often focus on negating one part or one value of the variable and not
consider the entire statement. Only after these statements are dealt with (cognitively, not explicitly)
as Boolean valued functions of one or more variables can the student understand the negation of the
statement as a second statement which is another Boolean valued function with the same variables
and having the property that for any set of values of the variables, the truth value of this new
statement (the negation) is exactly opposite to the truth value of the original statement, given the

same set of values for the variables. We will see examples of this in Section 3.3.

3.2 Single-Level Quantification

A single-level quantification is a proposition of one of the following two forms
Vz € S, P(z) JdzeS 3 P(z)

which are read, respectively, for all z in S, P(z) is true and there ezists an z in S such that P(z) is
true. Referring back to our examples of Statements 1 and 2, the following propositions of this kind
appear.

there is a car such that if the tire fits the car, then the car is red

in every computer science class, the rest of the statement is true

We may consider the single level quantification in a more mathematical context. For example, if
b1,...,b; is a list of integers, then b; > 5,...,5; > 5 is a list of propositions and one can use it to

construct the following single proposition,
(b1>5)/\(bz>5)/\---/\(bk>5) (2)

Our concern is that the student should see this expression, not as a piece of formal syntax, but as a

“gignifier” of a situation in which there is a bunch of numbers (k of them, actually) and each one has

a certain relation (positional?) to the number 5. There are variations of this picture, some of them
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In order to construct the quantification schema at this level, we suggest that the student must
coordinate the two developments described in the previous section in connection with simple dec-
larations. A list of propositions as in (2) must first be seen as a Boolean valued function on a set
{1,...,n} of positive integers. For more general propositions, this domain must be generalized to
an arbitrary set. The action of connecting (via conjunction or disjunction) all of the propositions
in the list must be carried over to the more general situation of a proposition which depends on a
variable and then it must be applied to connecting all of the propositions that arise from evaluating
the Boolean valued function at all points in its domain.

The overall result is an interiorized process of iterating through a set of propositions depending
on one or more variables and applying a quantification to form a single proposition whose value is
the truth or falsity of either all of them (univeral quantification) or at least one of them (existential
quantification).

We asked students in this study to explain how they (or the computer) would determine the
truth or falsity of Statements 1 and 2. If this interiorized process has been constructed, then it is
possible that it will be revealed in the form of an explanation that describes an iteration through
a set, and evaluating a proposition at each point. The additional feature that distinguishes this
stage from the end of the preliminary stage is that the iteration is controlled by the quantification.
(Notice how CHI above (page 8) seems to be confused about quantifying his iteration through all of
the cars.) Here is an example of a protocol in which the student, in evaluating Statement 1, does
iterate over the set of tires in the library but, in spite of prompting, does not apply any quantifier
to this iteration.

FAL: Well, all right, I'd go through all the tires that are in the library, and take the tire
and take it out to the parking lot, and if it fits, then see if the car is red.
I: What if it fits and the car is red?
FAL: Then it’s true.
I: And what if it doesn’t fit?
FAL: Okay, if it doesn’t fit, then, er..., then its still true.
I: So when would it be false?
FAL: If the tire fits and the car isn’t red.
I: So, if you find a car for which its true, what would you do next?
FAL: In order to do what?

I: You said you were doing it for all the tires. So you take a tire, you go to the parking
lot, and you said you were going to chieck all the cars. And if you find one for which
the statement is true, what do you do at this point?

FAL: I go on to the next tire. :
I: And if for one tire, you’ve tried all the cars and its false, what do you do?

10



FAL: Let’s see...I just go on to the next tire.
I: And how would you decide whether you return true or false at the end?
FAL: Well...it...I mean. Given any tire, you take a tire out of the library and it says there

is supposed to be a car such that if the tire fits it then it’s red.
Contrast this with the following student. She keeps the tire fixed and seems confused about the
implication, but she does iterate over the set of cars and controls her iteration with an existential
quantifier.

I: 'Well, okay, say I just gave you some. There is a bunch of tires in this room. What
would you have to do to decide if this is a true statement or not?

NGU: Outside of taking it outside and testing it, I guess just...
I: That’s fine, what would you do? How would you test them?
NGU: Take it outside and look for a car that, I guess look for any car that’s red, and then

all the cars that are red, and then test the tire to see if it fits. Okay, and if, if one

?aﬁ :(l;em fits, the statement is true. And if none of them fits, then the statement is
According to our analysis, the next step in the development of single-level quantification is to
encapsulate the interiorized process into an object. Once this is done (or, more accurately, as part
of doing this) actions can be applied to the object. One action is to reason about it, for example,
to realize that if the set over which the variable iterates is empty, then an existential quantification
must be false and a universal quantification must be true. The latter point may be seen as somewhat

arbitrary, so it should be explained in terms of another action—negation. We can consider negation

of a single-level quantification in the context of the three methods of negation described earlier.

e The rule for negating a single-level quantification is to replace the universal (alt. existential)
quantification by an existential (alt. universal) quantification and to replace the Boolean

function by the same function but with its truth values reversed.

e Negation by recursion is very similar to the rule. It consists of making the change of the
quantification and then negating the rest of the statement. This ephemeral distinction becomes

sharper and useful in higher level quantifications.

o Negation of the meaning consists in realizing that a universal (existential) quantification asserts
that every (at least) one of a collection of propositions has the value true, so its negation is

the assertion at at least (every) one of them is false.

In the study we are using in this paper, it is hard to see isolated examples of student difficulties

with negating single-level quantifications since both Statements 1 and 2 have them embedded in
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higher level quantifications. (It is, however, possible to report an unpublished observation with
sophomore Mathematics majors al Clarkson University in which 9 outl of 52 students were unable
1o negate the statement,
Every member of my family is unemployed.

The responses included a wide variety of inlerpretations of the statement and ils negation.)

Before passing on to higher level quantifications it is important to note that the encapsulation
of single-level quantifications is critical for working with several quantifications. The single-level
quantifications must be objects so that an operation (composition) can be applied to them to obtain

a new object.

3.3 Two, Three, Many Quantifications

It is at this point that quantification goes beyond the syllogisms of Aristotle (“All men are mortal”,
“Socrates is a man”, etc.) and moves towards the complex ideas of advanced Mathematics. (For
every ¢, there is a § such that for every z,...). Considering Statement 1 as a whole, we have already
seen examples (REI page 8, NGU page 11) where the student’s explanation (which could be an
indication of their internal process) has little connection with the actual meaning of the statement.
Here is an example with Statement 2.

WON: Well, you look into every Computer Science class and you try if you can find a
student who knows how much a fish weighs in the gymnasium. Any fish in the
gymnasium. Only a student has to know how much that fish, any fish, weighs.

I: Okay, any fish. For any fish?
WON: Yeah, any fish.
I: How many students have to know?
WON: Only one student.
I: Just one student?
WON: Yeah, well it doesn’t, okay, at least one; I could say at least one, not...

3.3.1 Interiorization

So, how is a student to go about reconstructing the quantification schema at this higher level?
Our suggestion is that he or she begins by taking two single-level quantifications which have been
encapsulated and thinks in terms of combining those objects to make a new object. This is done
by returning to the two internal processes corresponding to these two propositions and linking them
together by substituting the entire second propositon for the proposition-valued function that the

first process is quantifying. Then the resulting process is interiorized and finally encapsulated to
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obtain the new object. Thus, the idea is that the schema for a single-level quantification is extended
by coordinating two instances of it to reconstruct it at a higher level.

A major cognitive skill (or act of intelligence) that we feel is required here is the ability to move
back and forth between an internal process and its encapsulation as an object. This specific mental
activity occurs in working with a number of major concepts in Mathematics, in particular, the
concept of function.

Thus, for example, if a student encounters Statement 1 (either explicitly presented or arising in
some context) then we suggest that understanding this statement includes the construction of an
internal process as follows. First the student must decompose the statement into two propositions

such as

For every tire in the library, it is the case that...
there is a car in the parking lot such that if the tire fits the car, then the car is red.

or, to use mathematical symbols to express these two encapsulated processes,
Vie L, A(t)

3c€ P 3 F(t,¢) = R(c)

where V stands for for all, 3 stands for there ezisls, € means is an element of, 3 means suck that,
L is the set of tires in the library, P is the set of cars in the parking lot, A(t) is the truth or falsity
of the statement in the second line, F(t,c) is the truth value of the statement that tire ¢ fits car e,
and R(c) asserts that car c is red.

It is important that the student mentally converts these objects into two dynamic processes. The
first corresponds to iterating ¢ through L, checking the value of A(t) and controlling the iteration
with a universal quantifier. The second requires that a particular ¢ is given and then c is iterated
through P, checking the value of the implication F(t,¢) => R(c) and controlling this iteration with
an existential quantifier. It is these two processes which must be linked together to form a new
internal process that will be the student’s understanding of Statement 1. The linking consists of
replacing A(t) in the first expression by the entire second expression.

If the student has made this construction and is then asked to explain how to determine whether
Statement 1 is true or false, the response might contain some form of a description of this constructed
process. Let us see how it develops by looking at some protocols. We will look for three ingredients;

the iterations, the control with quantifiers, and the proper linking of the two processes.
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In the first protocol, the student is clearly iterating the tires and controlling it with an existentia)
quantification (correctly, because he has switched to the negation). The iteration over cars, however,

is not explicit and there does not appear to be any quantification of it in the student’s mind.

AZU: Run around the library, pick up all the tires, try each tire on a car and see if the
car is red. If you find a tire that fits a car in the parking lot and the car is not red,
then the statement is false.

Note that the final conclusion is incorrect. In the next one, the student is clearly making two
iterations but there is no sign of any quantifiers and, perhaps as a result, the coordination of the

two iterations is very weak.

AOK: Well, you would iterate through every tire in the library and you would look at
every car in the parking lot and see if the tire fits the car and if the car is red. Run
through all the set of tires in the library and cars in the parking lot and see if this
is true or not.

It is possible, as the following example shows, for the student to iterate over both tires and cars but
apply the quantifiers incorrectly.

GRA: The best way would be to go in order, first finding every tire, every tire in the library,
and finding all the cars in the parking lot, and for each tire, taking, physically, taking
every tire and seeing if it fit the car and checking if then the car was red, and if for
each of those tires the car was red, if it fit, that would be true.

Certainly GRA’s quantification over tires is reasonable and one suspects that he can handle single-
level quantification. The second quantification, however, seems to be entirely ignored. Here is a
student who, after some floundering, but without prompting seems to have a reasonable internal

representation of the entire process.

BRE: For the statement to be true, it must be true that...I would basically iterate over
all the cars for all the tires...over all the cars for every tire...and for each tire in the
ileration see if of all the cars, one of them meets the implication, that is, if the tire
fits the car, then the car is red.

There are some rough spots, but the last statement, which we have italicized, suggests that the
desired process may be present in BRE’s mind. Finally, we give two examples of students who
very definitely appear to have the process interiorized correctly. The first lays it out in great detail
(possible making an error by dropping the implication, but the correct earlier phrases suggest that

this is only an oversight).

VLA: I have a set of library tires and then I would have to check one at a time, pick a tire
out of the set of library tires, then g0 over to the parking lot and pick one car and
then check...then for...I would take the first tire out of the set of tires and the first
car and check that if the tire fits on the car then the color of the car is red—and I
would have to repeat this—I would have to...ub...find I would have to go through
this procedure on all the cars in the lot until I find one that fits and then I would
stop because it doesn’t matter and then I would have to repeat this procedure for
all tires.

14



On reading this, one might be convinced that the student is quite confused about the quantifications
until the last phrase and then it is clear that he is very carefully using them to control the iterations.
The second student expresses it quite succinctly as would a mature mathematician.
ELK: Well, let’s see. One way to do it would be to look at every tire in the library and
then go out and find at least one car in the parking lot so that if this tire fits the
car and check to see if the car is red.

The interiorized process corresponding to a two-level quantification must be encapsulated in order
to proceed to three and higher-level quantifications. If there really are, say, three variables present,
then the effect of grouping two of them to form a two-level quantification and then encapsulating
the process is to obtain a proposition valued function of a single variable. This can be quantified
to obtain the process for a three-level quantification. The entire activity can then be repeated
indefinitely for higher level quantifications.

Here are two examples of students who succeed at constructing the two level quantification after
being asked how to determine the truth or falsity of Statement 2 which is a three-level quantification.

LAG: You’d have to go to every Computer Science class and ask the general question:

does anyone know how much a fish weighs in the gym? Just make sure that you ask

every single person and that nobody knows and if nobody knows then the statement

is false, but if it exists in all the CS classes at least one student who does know,

then the statement is true.
LAG is struggling and finally succeeds in constructing a process for the two-level quantification
concerning CS classes and students, but he seems to forget completely about the fish. This might
be because he does not encapsulate the process that he has constructed, so he does not have a
proposition valued function to even think about quantifying. The same thing happens with the
next student. Recall (page 8) that she was not able to deal at all with the two-level quantification,
but now, later in the interview, in the context of a three-level quantification, she at least can
coordinate two of them. This is a common phenomenon in education. A student will have serious
difficulty with a concept but, later (often in the next semester or year), while struggling with a more
difficult concept which includes the original one, is able to handle the latter. This suggests that the
relationship between learning and time may be much more complicated than we think. It is possible
that in working with the more difficult concept, the student is called upon to reflect on the first and
this may be just what is needed.

RET: Okay, you take all this—you would take the set of fish that are in the gym and
the set of students that are in Computer Science—you would take the set of all the
computer science classes and the set of all the students that are in those Computer
Science classes and check to see if there was a student in one of those—in every one
of those—yeah, at least one student in every one of the classes that knew how much
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one of those fish in the gym weighed. And if that were true, you would return true
and if it found one case where that failed, it would be—if there was one class with
no students...

I: Okay. Would you do it exactly the same as...

REIL (Pause) I'd probably go class by class and ask in each class if there was somebody
who didn’t know how much any of the fish in the gym weighed.

I: So you would have skipped the first set—you skip the set of fishes?
REI: Yeah. I think Id probably try and prove it false, rather than trying to prove it true.

It seems that, having correctly constructed an internal process for the two-level quantification with
Computer Science classes and students, REI gets into trouble when she tries to incorporate the fish.
The intervention of the interviewer is not helpful and she simply stops thinking about it. Again
there is no suggestion of encapsulating the two-level quantification and this could be what is lacking.
Now here is a student who is beginning to incorporate the third level.

MUN: I would collect all the fish in thegsym and if one of them...(pause)...I get one fish...you
know, I go through each of the fishes and then all Computer Science students know
how much that fish weighs...for each of the fishes...no, for one of the fishes.

I: One of the fishes.
MUN: If a student in every Computer Science class knows how much that fish weighs.

And, finally, an example in which the encapsulation of the two-level quantification is made and used
explicitly.

VLA: Okay, I would look at a set of fish among the set of all available fishes and I would
have to iterate over that and of course the condition is that as soon as I find the
first one for which the rest of the long expression holds, I stop right then and there.

I: Can you explain to me what would be the rest of the whole expression? How would
you check that?

VLA: Yeah, that was just the first step.
I: Good.

VLA: I got..I’m picking a fish and then I have to start iterating over a set of available
classes. Here I'll have to go through everyone of them for that fish. And then I
would have to go through a set of students in the class. Here we’re dealing with an
exists so that as soon as we find the first one that matches the rest of the conditions,
its fine. And then I would run that function on the student.

I: What would you ask about the student?
VLA: I would ask if the student knows the weight of the fish.

Notice how VLA keeps returning to the particular fish. This suggests that he may be thinking




mislead the student into thinking that the iteration over fish is controlled by a universal quantifier
whereas the meaning of the entire statement forces it to be ezistential, Also, the insertion of the
phrase in every Computer Science class in the middle of the quantification over students is confusing
and could suggest that the order of iteration should be ezists fish, ezists student, for all classes. The
purpose of these traps is to prevent students from interpreting the statement by following strategies
of simple linguistic translation.

This raises another point that might warrant a brief digression. Sinclair in [L] and Freedman
and Stedman in [O] argue that understanding such statements should not be used as an indicator of
children’s ability to reason logically because of the amiguities of language and the fact that words
used in quantifications mean different things linguistically than mathematically. This is certainly
the case, but the point here is that it is the business of mathematical analysis to resolve these
ambiguities, at least in situations that arise in a mathematical context. Statement 2 is given in
phraseology that is intentionally confusing. The issue for the student is not whether he or she
guesses the correct linguistic meaning. The question is whether he or she is able to construct a
mental action and interiorize a process corresponding to the statement. If more than one action is
actually specified by the statement, then ambiguity and uncertainty remain. In this case, however,
as in most mathematical contexts, there is only one possible action that really corresponds to the
statement and that is what resolves the ambiguity. To see this and make the construction is, in our
opinion, a valid test of logical reasoning.

Our interpretation of understanding three-level quantifications is supported by another, overall
observation we can report. In every case in which the student, in explaining how the truth value
of Statement 2 was determined, grouped two of the three iterations, the Computer Science class
iteration was grouped with the Physics major iteration. No other grouping occured. This included
all of the students who were successful in giving a complete explanation as well as those who were able
to construct a two-level quantification but had difficulty incorporating the third. This strengthen

our suggestion that the way this statement is interiorized is to first construct the process,

for all Computer Science classes, there exists a Physics major who knows how much the
fish weighs,

next interiorize this process and then encapsulate it to obtain a proposition valued function of the

single variable fisk and finally to apply an existential quantifier to this function.
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3.3.2 Negation

The above analysis of what it means to understand higher level quantifications is very helpful when
the student attempts to negate the statement. In order to observe this action and see how what the
student does corresponds to the three ways of negating—by rules, by recursion, and by meaning—
described above, we asked the students to negate Statement 1, in their head or using pencil and
paper, and then we asked them to explain how they did it.

First let’s look at some students who were not able to negate correctly. The first student simply
looks at individual parts of the statement and negates them. Her negation does not indicate any
coordination of the separate quantifications.

HEN: There is a tire in the library such that a car that the tire fits, which is parked in
the parking lot is not red.

I: Okay, can you explain what went through your mind as you were domg that?

HEN: Okay, well first of all, there is a, I, I broke it down into, there is a tire, no I mean
that... Okay, for, okay so I saw, for every tire, so I figured that to negate that you
just need one tire that’s not, okay, so okay then, there is a car in the parking lot.
Well, okay, such that if the tire fits the car, then the car is red. So all you need
there is the car still can be in the parking lot. That’s kind of the context of which,
in which the statement is negated. Like that’s, you don’t need to negate that the
car, you don’t have to say that the car is not in the parking lot. It needs to be in
the parking lot for the rest of the statement to be negated. Uh, so then if the tire
fits the car, then the car is red. So basically, you have this car in the parking lot,
and there Just needs to be one tire that fits the car that is not red. I mean when, if
the car is not red, because if the tire doesn’t fit the car, then the whole statement
doesn’t apply because the statement is talking about a tire that fits a car that’s in
there, so you just take the two things that need to be negated, and I know I could,
you know I could put this into an implies and all that stuff and figure it out that
way, but it’s umm, easier for me to do it this way.

Here is a protocol of a student who seems to be using rules. His negation is correct as far as the
quantification goes, but his negation of the implication is not correct.
BOW: There is a tire in the library, such that, for all the cars in the parking lot, if the
tire, if the tire doesn’t fit the car, then the car is red.

I: If the tire doesn’t fit the car, the car is red. Okay, can you explain to me what went
through your mind as you tried to negate the sentence? And if it helps to draw a
picture, go ahead and do so.

BOW: Okay, the first thing was that I remember that the negation of the universal quan-
tlﬁers, 1 guess the for, the for all and there is, is the opposite. Because to me, there
is, for all in the universe set, and the other thing to remember, that p implies q, the
negatlon of that is q and not p. So I tried to negate the first part and then kind of
the second. And that’s basically from applied formulas.
This protocol shows two things wrong with relying on one’s memory for rules: they can be remem-
bered incorrectly (the correct negation of “p implies q” is “p and not q”) and, in the context of

other complications (such as quantification) the remembered rule can be forgotten in the midst of
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applying it (the actual application here is “not p implies q” which is different from the remembered
“q and not p”). Notice also, in the explanation, the coordination between quantifications is lost.

An important observation to report is that several students got the quantification part correct
in their negation but negated the implication incorrectly — and every one of these seemed, in their
explanation, to be using rules. None them said anything that sounded like “negation by recursion”.
On the other hand, every student who did explain her or his procedure by dealing first with negating
the implication and then thinking about “the rest of the statement” (which is what we mean by
recursion) got the negation correct. Here is one example.

AME: There is a tire in the library such that for every car in the parking lot, the tire fits
the car and the car isn’t red. Right?

I 1\l/ery ?good...When you were trying to negate the statement, what went through your
ead?

AME: Well, okay. First of all, Ilooked at it and I said, right, these are familiar constructs—
“for every tire” in the library means, for all tires in the group of them in the library.
And then, “there is a car” means that there exists a car in some other set and then
“if the tire fits the car then the car is red” is an implication. So I sort of broke it
down into parts. :

I: Would you say that you used an explicit procedure to negate this statement?
AME: Oh yes.

I: Can you describe it?
AME: Well, like when I first did it, I recognized these things so I sort of went through it

mechanically. So I knew that if you wanted to negate something, you know “forall
z, P”, then you say “exists z such that not P. And so on for the other two.
Notice how she is very explicit about iterating the variables through sets, breaking the statement
down, but then putting it together by coordinating the quantifications. If we infer that by P she
means the rest of the statement, then this is a precise description of the method of negation by
recursion.
All students who tried to negate the higher level quantifications directly from the meaning became

totally confused. Without a great deal of experience this is probably much too difficult.

3.3.3 Reasoning about propositions

A number of questions were asked to determine if the students were able to think about the meaning
of the statements. They were asked, assuming that Statement 1 is true, to compare the possible
numbers of tires with numbers of cars. Most said (or agreed when prompted) that all three relations
were possible. A similar question was asked about Statement 2 with similar results. Another type
of question was to give the student additional information about the situation (no tire fits a car,

there are no Physics majors taking Computer Science, etc.) and to ask them if this permitted any
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definite conclusions about the truth or falsity of the statement. This was completely different from
anything fhey had experienced in class and proved to be very hard. Here is one of the few examples

in which the student is able to reason.

I: ..Suppose the tire didn’t fit any car.
AZU: I no, okay, if no tire fits the car, at all in the library, then the statement is true

because the implication is, if false then its automatically true despite what the other

part is.
This student is probably not answering the given question since that is about a single tire whereas
he switches it to all tires and a single car. However, in his own context, AZU is not confused by the
quantification and seems to be able to reason correctly that if there is a single car which is not fit

by any tire, then this car may be chosen for every tire and the implication will be true because its

hypothesis is false, so the entire statement must be true.

4 Conclusion

We conclude this paper with a summary of the construction of the quantification schema according
to our analysis. We may call this description a genetic decomposition of quantification (cf. [E,F,G)).

The construction begins with simple declarations that are made more complicated in two ways.
First, two or more declarations are coordinated by linking them with the standard logical connectors.
Second, variables are introduced and the learner interiorizes the process of iterating this variable
through its domain, checking the truth or falsity of the proposition valued function for each value
of the variable.

The transition from this preliminary stage to the stage of single-level quantications is achieved by
coordinating these two extensions. That is, the propositions that are obtained for the various values
of the variable are all connected by a conjunction or they are all connected by a disjunction, in any
case resulting in a single proposition. These connectors are replaced by a universal or existential
quantification. Thus the learner interiorizes a process of a iterating a variable through its domain
to obtain a set of propositions and applying a quantifier to obtain a single proposition.

The transition to two-level quantifications consists of the the encapulation of this last process
to obtain a single proposition as the result of quantifying a proposition valued function. Now when
analyzing a statement which is a two-level quantification involving two variables, the subject begins
by parsing it into two quantifications. There is an inner quantification whose proposition valued
function also depends on an additional variable. There is also an outer quantification over this

same additional variable. The idea is to coordinate these two objects to obtain a third which will
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be a two-level quantification. This proceeds by fixing the additional variable and applying the
single-level quantification schema to the inner quantification and encapsulating the result to obtain
a proposition. But this proposition depends on the value of the additional variable and so there
is a proposition valued function to which the outer quantification may be applied, exercising the
single-level schema once again. Altogether then, the learner has a constructed and interiorized a
process which is a nested iteration over two variables. This process is again encapsulated to a single
proposition so it is possible to proceed to higher-level quantifications.

Given a statement which is a three-level quantification, the subject groups the two inner quan-
tifications and applies the two-level schema to again obtain a proposition which depends on the
outermost variable. This proposition valued function is then quantified as before to obtain a single
quantification.

The entire procedure can now be repeated indefinitely and with an awareness of this possibility,

the learner has constructed a schema which can handle quantifications which are nested to any level.
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