Solution to Exam 3

Hongcheng Li

1-12. 5 Points each

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>2</td>
<td>B</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>8</td>
<td>C</td>
<td>9</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>5</td>
<td>D</td>
<td>6</td>
<td>D</td>
</tr>
<tr>
<td>10</td>
<td>D</td>
<td>11</td>
<td>D</td>
<td>12</td>
<td>D</td>
</tr>
</tbody>
</table>

13. 4 points each.

a) \(H_0 : \mu = 25 \quad H_1 : \mu > 25 \)

\[\bar{x} = 30.7, \sigma = 7, n = 10 \]

b) \(Z_{\alpha} = Z_{0.10} = 1.28 \).

c) \[Z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} = \frac{30.7 - 25}{7/\sqrt{10}} = 2.57 \]

d) \(P(x > 2.57) = 0.0051 \)

e) Because \(Z = 2.57 > 1.28 \), we have evidence to reject the null hypothesis at the level of significance \(\alpha = 0.10 \). OR

Because \(P(x > 2.57)) = 0.0051 < \alpha = 0.10 \), the \(p \) value is less than the level of significance, therefore we have evidence to reject the null hypothesis at the level of significance \(\alpha = 0.10 \).

14. 5 points each.

a) \(H_0 : \mu = 18,000 \quad H_1 : \mu > 18,000 \)

b) \[t = \frac{18500 - 18000}{121/\sqrt{32}} = \frac{500}{121/\sqrt{32}} = 23.4 \]

c) \(t_{0.10} = 1.309 \) with degree of freedom 31.
d) Because the test statistic \(t = 23.4 > 1.309 = t_{0.10} \), We have enough evidence to support the alternative hypothesis at the level of significance \(\alpha = 0.10 \).

15. 10 points.

a)
\[
\begin{align*}
H_0 : p &= 0.70 \\
H_1 : p &\neq 0.70 \\
\hat{p} &= \frac{746}{1165} = 0.64 \\
Z &= \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \\
&= \frac{0.64 - 0.7}{\sqrt{0.7 \times 0.3/1165}} \\
&= \frac{-0.06}{0.0134} = -4.4689
\end{align*}
\]

b) \(P(z < -4.4689 \text{ or } z > 4.4689) = 2P(z < -4.4689) = 0 \)

c) The \(p \) values is less than \(\alpha = 0.02 \), we have no evidence to support the null hypothesis.

d) We have enough evidence to support the alternative hypothesis at the level of significance of \(\alpha = 0.02 \).