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Applications of Summability Methods

Summability theory has historically been concerned with the notion of
assigning a limit to a linear space-valued sequences, especially if the
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Applications of Summability Methods

Summability theory has historically been concerned with the notion of
assigning a limit to a linear space-valued sequences, especially if the
sequence is divergent.

This underlying linearity naturally leads to the use of matrices as potential
summability methods. However, in general, a summability method need not
be a matrix method.

Most of the famous applications therefore are cast in exactly this context. For
instance,

The weak and the strong laws of large numbers of probability theory.

Fejer’s theorem on convergence of Fourier series.

Komlos’ theorem for L1-bounded sequences

And so on · · · .
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Four Summability Methods

Problem (Four Types of Summability Methods)

The question is: “How do you introduce summability notion in a general
topological spaces where there is no binary operation of “addition” nor any
natural partial order?
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The question is: “How do you introduce summability notion in a general
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natural partial order?

Answer: Out of the four classical summability methods, only one of them
requires neither the “addition” operation nor the “partial order” concept. In this
sense it is the most primitive of them all.

More precisely, consider the following classical summability methods.
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Four Summability Methods

Problem (Four Types of Summability Methods)

The question is: “How do you introduce summability notion in a general
topological spaces where there is no binary operation of “addition” nor any
natural partial order?

Answer: Out of the four classical summability methods, only one of them
requires neither the “addition” operation nor the “partial order” concept. In this
sense it is the most primitive of them all.

More precisely, consider the following classical summability methods.

(a) Strong convergence,

(b) Statistical convergence,

(c) Distributional convergence,

(d) classical matrix summability.
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A-Strong and A-Stat Convergence

Thoughout assume that A = [ank ] is a nonnegative regular summability
method. Not much loss takes place to assume that the row sums equal to
one.

Definition (A-strong convergence)

We say that x = (xk ) is A-strongly summable to α if

lim
n→∞

X

k

|xk − α| ank = 0.
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A-Strong and A-Stat Convergence

Thoughout assume that A = [ank ] is a nonnegative regular summability
method. Not much loss takes place to assume that the row sums equal to
one.

Definition (A-strong convergence)

We say that x = (xk ) is A-strongly summable to α if

lim
n→∞

X

k

|xk − α| ank = 0.

Definition (A-stat convergence)

We say x = (xk ) is A-statistically convergent to α if for any ǫ > 0, we have

lim
n→∞

X

k :|xk−α|≥ǫ

ank = 0.
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A-Dist Convergence & A-Suammbility

Definition (A-distributional convergence)

If x is a real sequence, we say x is A-distributionaly convergent to F , where F
is a probability distribution on ℜ and

lim
n→∞

X

k :xk≤t

ank = F (t),

for all t in the continuity set of the distribution F .
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A-Dist Convergence & A-Suammbility

Definition (A-distributional convergence)

If x is a real sequence, we say x is A-distributionaly convergent to F , where F
is a probability distribution on ℜ and

lim
n→∞

X

k :xk≤t

ank = F (t),

for all t in the continuity set of the distribution F .

Definition (A-summability)

Finally, we say that x is A summable to α if

lim
n→∞

X

k

xk ank = α.
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A-statistical convergence

At a first glance all of the four methods seem to be using a linear, or group or
order structure. For instance, the classic matrix summability uses group

structure having an operation of addition. The A-distributional convergence
uses order.
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A-statistical convergence

At a first glance all of the four methods seem to be using a linear, or group or
order structure. For instance, the classic matrix summability uses group

structure having an operation of addition. The A-distributional convergence
uses order.

The remaining two, A-strong convergence and A-stat convergence, use
distance structure since they both use

‖xk − α‖, ρ(xk , α).

This then leads one to consider general topological structures by replacing
ρ(xk , α) ≥ ǫ by its natural counterpart,

xk 6∈ Uα,

where Uα is any open set containing α. So, how do you bring the summability

structure into the topological space?
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Mathematical Structure

Let (X ,B, τ ) be any topological space, where B is the Borel sigma field
generated by the open sets. In order to define a summability notion in X , we
will inject several probability measures µn defined over B with the help of a
nonnegative regular summability matrix A = (ank).
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Mathematical Structure

Let (X ,B, τ ) be any topological space, where B is the Borel sigma field
generated by the open sets. In order to define a summability notion in X , we
will inject several probability measures µn defined over B with the help of a
nonnegative regular summability matrix A = (ank).
Consider ([0, 1],M, λ) be the usual Lebesgue measure. Partition the interval
[0, 1] by An,0 = [0, an0), and

An,k =

2

4

k−1
X

j=0

anj ,

k
X

j=0

anj

1

A , k = 1, 2, · · · .

Let fn : [0, 1] → N := {0, 1, 2 · · · }, where fn(ω) = k for ω ∈ An,k . Over the
sigma field of powerset of N this fn induced a measure νn defined by
νn(k) = λ(An,k) = ank .
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Let (X ,B, τ ) be any topological space, where B is the Borel sigma field
generated by the open sets. In order to define a summability notion in X , we
will inject several probability measures µn defined over B with the help of a
nonnegative regular summability matrix A = (ank).
Consider ([0, 1],M, λ) be the usual Lebesgue measure. Partition the interval
[0, 1] by An,0 = [0, an0), and

An,k =

2

4

k−1
X

j=0

anj ,

k
X

j=0

anj

1

A , k = 1, 2, · · · .

Let fn : [0, 1] → N := {0, 1, 2 · · · }, where fn(ω) = k for ω ∈ An,k . Over the
sigma field of powerset of N this fn induced a measure νn defined by
νn(k) = λ(An,k) = ank .
Any function x : N → X is automatically 2N/B measureable. Now consider
the sequence of compositions

x(fn) : [0, 1] → X , with x(k) = xk ∈ X .

This brings with it a sequence of measures µn over B. Note that

µn(B) := λ(x(fn) ∈ B) = λ(fn ∈ x−1(B)) =
X

j∈x−1(B)

anj =
X

j:xj∈B

anj .
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Mathematical Structure

In fact, in the last setup we may as well consider double arrays, if we like,
without encountering much difficulties. That is, let x (n) : N → X with
x (n)(k) = xnk ∈ X .
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Mathematical Structure

In fact, in the last setup we may as well consider double arrays, if we like,
without encountering much difficulties. That is, let x (n) : N → X with
x (n)(k) = xnk ∈ X .

-

?

Q
Q

Q
Q

Q
Q

Qs

([0, 1],M, λ) (N, 2N, νn)

(X ,B, µn)

fn

x (n)

x (n)(fn)

So, we get

µn(B) := λ(x (n)(fn) ∈ B) =
X

j:xnj∈B

anj , for all B ∈ B.



Outline Summability Methods The Setup A Bit of History Abelian Side Tauberian Side

A-Statistical Convergence

So for any nonnegative regular summability matrix A = [ank ] with row sums
one, and any double array x = (xnk ) in X , we get a sequence of measure
spaces

(X ,B, µn), µn(B) =
X

j:xnj∈B

anj , B ∈ B.

We say x = (xnk ) is A-statistically convergent to α ∈ X if for every open set
Uα that contains α, we have

lim
n→∞

µn(U
c
α) = 0.

To avoid the usual non-uniqueness issues, we will assume throughout that
the space X is at least T2 (Hausforff).
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By the way, one could introduce ideals, instead of the A-density zero sets.
Our goal here is to see separation of notions injected by summability method
A versus inherent topological notions.
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A-Statistical convergence

In todays talk we will address the following questions/issues.

(i) Is this notion regular?

(ii) As Fridy showed, for real/complex sequences statistical convergence
can be characterized through a convergent subsequence outside a set
of density zero. Does such a characterization hold for arbitrary T2

topological spaces?

(iii) What kind of Abelian theory does this spawn?

(iv) And of course, what kind of Tauberian theory does this spawn?
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I-convergence, which is a bit more generalized form of statistical
convergence, in which the ideal, I, may not satisfy all the properties of the
class of sets of A-density zero.
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History: Summability in topological groups

During 1967-1969 Prullage wrote a series of articles involving ordinary
summability notions in topological groups.

Around 1995, 1996 Çakalli studied lacunary statistical convergence in
topological groups where its convergence field is compared with the
convergence field of Cesàro statistical convergence.

Around 2005 Lahiri and Das took this notion in the language of
I-convergence, which is a bit more generalized form of statistical
convergence, in which the ideal, I, may not satisfy all the properties of the
class of sets of A-density zero.

All of the above references are concerned with the nature of the convergence
field. Of course summability theory goes in two opposite directions — the
Abelian side and the Tauberian side —.
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Statistical convergence, contrary to usual attributions, seems to have been
used by R. C. Buck in 1946, although he did not give it the current name of
“statistical convegence”.
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Statistical convergence, contrary to usual attributions, seems to have been
used by R. C. Buck in 1946, although he did not give it the current name of
“statistical convegence”.

Actually probabilists would object to this attribution on the grounds that
statistical convergence is a very special notion of convergence in probability
(to a constant) and hence was in the literature for atleast fifty years prior to
Buck when Chebyshev proved the Weak Law of Large Numbers. Anways, in
1951 H. Fast gave it the name of “statistical convegence” and then
Schoenberg, Salat and others picked up and popularized this name.
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History: The Abelian side

Statistical convergence, contrary to usual attributions, seems to have been
used by R. C. Buck in 1946, although he did not give it the current name of
“statistical convegence”.

Actually probabilists would object to this attribution on the grounds that
statistical convergence is a very special notion of convergence in probability
(to a constant) and hence was in the literature for atleast fifty years prior to
Buck when Chebyshev proved the Weak Law of Large Numbers. Anways, in
1951 H. Fast gave it the name of “statistical convegence” and then
Schoenberg, Salat and others picked up and popularized this name.

Towards the Abelian direction, A-statistical convergence raises the
fundamental issue of whether it can be characterized via a convergent
subsequence whose indicies form a set of A-density one. It is not difficult to
show that over metric spaces this is possible along the same lines as shown
by Fridy. We will have a bit more to say for topological spaces here.
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Tauberian theory has at least three major varieties.

Over spaces with linear and order structure the one-sided Tauberian
theory has been studied for over one hundred years and the theory is
most refined.
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exist for matrix methods. The classic example being the Borel method. When
gap Tauberian theorems do exist, the Tauberian condition is intimately
dependent on the underlying row structure of the summability matrix.
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History: The Tauberian side

Tauberian theory has at least three major varieties.

Over spaces with linear and order structure the one-sided Tauberian
theory has been studied for over one hundred years and the theory is
most refined.

When only a metric structure is available the two-sided Tauberian
theorems exist, at least for statistical convergence.

Then there are gap Tauberian theorems that seem to exist in parallel to
the above two varieties. However, what seems to be missed is that, for
statistical convergence, neither the linear structure nor the metric
structure are at its core.

A classic result of Paul Erdös says that gap Tauberian theorems need not
exist for matrix methods. The classic example being the Borel method. When
gap Tauberian theorems do exist, the Tauberian condition is intimately
dependent on the underlying row structure of the summability matrix.
Statistical Tauberian theory, although is distinctly different from
linear/matrix-Tauberian theory, the two share some common features.
Over topological spaces, as we will see, gap Tauberian theory happens to be
the most natural thing to build.
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A-Statistical convergence

Why is A-stat convergence regular in a topological space?
The answer is easy. Yes. If xk is convergent to α in X , then for any open set
Uα containing α, we can find an N such that xk ∈ Uα for all k > N. Therefore,

µn(U
c
α) =

X

k :xk 6∈Uc
α

ank ≤
N

X

k=0

ank .

Since A = [ank ] is regular, we see that

lim
n→∞

µn(U
c
α) ≤ lim

n→∞

N
X

k=0

ank = 0.
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A-Statistical convergence

Why is A-stat convergence regular in a topological space?
The answer is easy. Yes. If xk is convergent to α in X , then for any open set
Uα containing α, we can find an N such that xk ∈ Uα for all k > N. Therefore,

µn(U
c
α) =

X

k :xk 6∈Uc
α

ank ≤
N

X

k=0

ank .

Since A = [ank ] is regular, we see that

lim
n→∞

µn(U
c
α) ≤ lim

n→∞

N
X

k=0

ank = 0.

When X happens to be metrizable, with metric ρ, this notion can be written as
follows. For any ǫ > 0 there exists an N so that

lim
n→∞

X

k : ρ(xk ,α)>ǫ

ank = 0.
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Density convergence property

Let A be a nonnegative regular summability method and let x = (xk ) be a
sequence taking values in a T2 topological space X . If there exists a set
E ⊆ N such that

δA(E) := lim
n→∞

X

k∈E

ank = 0,

and x is convergent to some α over Ec , then we will say that x has A-density
convergence property (DCP(A) for short).
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Density convergence property

Let A be a nonnegative regular summability method and let x = (xk ) be a
sequence taking values in a T2 topological space X . If there exists a set
E ⊆ N such that

δA(E) := lim
n→∞

X

k∈E

ank = 0,

and x is convergent to some α over Ec , then we will say that x has A-density
convergence property (DCP(A) for short).

It is easy to see that if x has the DCP(A) then x is A-statistically convergent to
α, where α is its subsequential limit over its Ec .

The issue is whether the converse can hold. This is partially addressed by
the following theorem.
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Density convergence property

Theorem (DCP(A) vs. A-stat convergence)

Let X be a topological space and let α ∈ X have a countable base. Then for
any nonnegative regular summability matrix A, any A-statistically convergent
sequence to α has the DCP(A).
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Density convergence property

Theorem (DCP(A) vs. A-stat convergence)

Let X be a topological space and let α ∈ X have a countable base. Then for
any nonnegative regular summability matrix A, any A-statistically convergent
sequence to α has the DCP(A).

We are unable to drop the assumption on the countability of the base of α,
however one can construct examples outside the countability condition. The
general problem seems to be still open over arbitrary T2 spaces and
nonnegative regular matrices A.
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DCP is a topological property

The next result shows that the DCP is a topological property.

Theorem

Let X , Y be homeomorphic topological spaces, and let A be any nonnegative
regular matrix. If every A-statistically convergent sequence in X has the
DCP(A) then every A-statistically convergent sequence in Y also has the
DCP(A).
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Gap Tauberian condition

Let γ : N → N denote an increasing function with γ(0) = 0. Let

G(γ) = {x = (xk ) : xk 6= xk+1implies there exists r ∈ N such that k = γ(r)}

Definition

For a nonnegative regular matrix A, we say that G(γ) is an A-statistical gap
Tauberian condition if x ∈ G(γ) and x is A-statistically convergent to some α
together imply that x is convergent.
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Topological invariance

Our first result in the Tauberian direction shows topological invariance for
statistical gap Tauberian theorems. That is they do not depend on the
underlying topological structure at all. They are truely controlled by the
summability method used!
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Our first result in the Tauberian direction shows topological invariance for
statistical gap Tauberian theorems. That is they do not depend on the
underlying topological structure at all. They are truely controlled by the
summability method used!

Theorem

Let A be a nonnegative regular matrix. The following statements are
equivalent.

G(γ) is an A-statistical gap Tauberian condition for real valued
sequences.
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Topological invariance

Our first result in the Tauberian direction shows topological invariance for
statistical gap Tauberian theorems. That is they do not depend on the
underlying topological structure at all. They are truely controlled by the
summability method used!

Theorem

Let A be a nonnegative regular matrix. The following statements are
equivalent.

G(γ) is an A-statistical gap Tauberian condition for real valued
sequences.

G(γ) is an A-statistical gap Tauberian condition for any Hausdorff
topological space valued sequences.
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Topological invariance

An idea of Connor (1993) can now be used to get the following
characterizations. For a metric space valued sequence x = (xk ) we say x is
strongly A-summable to α if

lim
n→∞

∞
X

k=0

ankρ(xk , α) = 0.

Corollary

Let A be a nonnegative regular matrix. The following statements are
equivalent.

G(γ) is an A-statistical gap Tauberian condition for any T2 topological
space valued sequences.
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Topological invariance

An idea of Connor (1993) can now be used to get the following
characterizations. For a metric space valued sequence x = (xk ) we say x is
strongly A-summable to α if

lim
n→∞

∞
X

k=0

ankρ(xk , α) = 0.

Corollary

Let A be a nonnegative regular matrix. The following statements are
equivalent.

G(γ) is an A-statistical gap Tauberian condition for any T2 topological
space valued sequences.

G(γ) is a gap Tauberian condition for A-strong convergence for metric
spaces.
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Topological invariance

An idea of Connor (1993) can now be used to get the following
characterizations. For a metric space valued sequence x = (xk ) we say x is
strongly A-summable to α if

lim
n→∞

∞
X

k=0

ankρ(xk , α) = 0.

Corollary

Let A be a nonnegative regular matrix. The following statements are
equivalent.

G(γ) is an A-statistical gap Tauberian condition for any T2 topological
space valued sequences.

G(γ) is a gap Tauberian condition for A-strong convergence for metric
spaces.

For all increasing subsequences of {nr} of natural numbers,

lim sup
n

X

r

X

k∈(γ(nr ),γ(nr +1)]

ank > 0.
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Topological invariance

An idea of Connor (1993) can now be used to get the following
characterizations. For a metric space valued sequence x = (xk ) we say x is
strongly A-summable to α if

lim
n→∞

∞
X

k=0

ankρ(xk , α) = 0.

Corollary

Let A be a nonnegative regular matrix. The following statements are
equivalent.

G(γ) is an A-statistical gap Tauberian condition for any T2 topological
space valued sequences.

G(γ) is a gap Tauberian condition for A-strong convergence for metric
spaces.

For all increasing subsequences of {nr} of natural numbers,

lim sup
n

X

r

X

k∈(γ(nr ),γ(nr +1)]

ank > 0.

So the race is on: find these γ(k) for various classical summability methods.
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Gap conditions

In 1993 Connor had already provided such a function, γ, for the regular Riesz
methods.
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Gap conditions

In 1993 Connor had already provided such a function, γ, for the regular Riesz
methods.
In the next three results provide the appropriate gap functions of the
Tauberian theorems for most of the classical summability methods, such as
the Euler-Borel class and the Hausdorff class. The following is an extension
of Fridy’s gap Tauberian theorem.
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Gap conditions

In 1993 Connor had already provided such a function, γ, for the regular Riesz
methods.
In the next three results provide the appropriate gap functions of the
Tauberian theorems for most of the classical summability methods, such as
the Euler-Borel class and the Hausdorff class. The following is an extension
of Fridy’s gap Tauberian theorem.

Theorem

Let {k(1), k(2), · · · } be an increasing sequence of positive integers such that

lim inf
i

k(i + 1)

k(i)
> 1, (1)

and let x be a sequence in a topological space such that x remains constant
over the gaps (k(i), k(i + 1)]. If x is C1-statistical convergent to α then x
converges to α.

Here C1 stands for the Cesàro matrix.
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Gap conditions

In 1993 Connor had already provided such a function, γ, for the regular Riesz
methods.
In the next three results provide the appropriate gap functions of the
Tauberian theorems for most of the classical summability methods, such as
the Euler-Borel class and the Hausdorff class. The following is an extension
of Fridy’s gap Tauberian theorem.

Theorem

Let {k(1), k(2), · · · } be an increasing sequence of positive integers such that

lim inf
i

k(i + 1)

k(i)
> 1, (1)

and let x be a sequence in a topological space such that x remains constant
over the gaps (k(i), k(i + 1)]. If x is C1-statistical convergent to α then x
converges to α.

Here C1 stands for the Cesàro matrix. In fact, as the following theorem
shows, the Cesàro matrix can be replaced by a general nonnegative regular
Hausdorff matrix.
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Gap conditions: Hausdorff

Theorem

Let Hφ be a regular Hausdorff method with a nondecreasing weight function
φ. Again assume

lim inf
i

k(i + 1)

k(i)
> 1,

holds. If x is a sequence in a topological space such that x remains constant
over the gaps (k(i), k(i + 1)] and if x is Hφ-statistical convergent to α then x
converges to α.
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Gap conditions: Hausdorff

Theorem

Let Hφ be a regular Hausdorff method with a nondecreasing weight function
φ. Again assume

lim inf
i

k(i + 1)

k(i)
> 1,

holds. If x is a sequence in a topological space such that x remains constant
over the gaps (k(i), k(i + 1)] and if x is Hφ-statistical convergent to α then x
converges to α.

In this theorem we may take γ(t) = ct for any constant c > 1. The Tauberian
condition can be improved if the weight function φ of the Hausdorff method
has a point of jump.
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Gap conditions: Hausdorff with jumps

Theorem

Let Hφ be a regular Hausdorff method with a nondecreasing weight function
φ, having a point of jump at some r ∈ (0, 1). Let {k(1), k(2), · · · } be an
increasing sequence of positive integers such that

lim inf
i

k(i + 1) − k(i)
p

k(i)
> 0. (2)

If x is a sequence in a topological space such that x remains constant over
the gaps (k(i), k(i + 1)] and if x is Hφ-statistically convergent to α then x
converges to α.
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Gap conditions: Hausdorff with jumps

Theorem

Let Hφ be a regular Hausdorff method with a nondecreasing weight function
φ, having a point of jump at some r ∈ (0, 1). Let {k(1), k(2), · · · } be an
increasing sequence of positive integers such that

lim inf
i

k(i + 1) − k(i)
p

k(i)
> 0. (2)

If x is a sequence in a topological space such that x remains constant over
the gaps (k(i), k(i + 1)] and if x is Hφ-statistically convergent to α then x
converges to α.

In this result we may take γ(t) = ct2 with c > 0. This theorem, in particular,
provides a Tauberian theorem for the Euler-statistical convergence. Since the
Euler method is also a member of the convolution methods, it is natural to
suspect that it may have an analog for the convolution methods. This is
indeed the case.
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Gap conditions: Convolution methods

Theorem

Let {k(1), k(2), · · · } be an increasing sequence of positive integers satisfying
(2), and let A = [ank ] be a regular convolution method with finite variance. If x
is a sequence in a topological space such that x remains constant over the
gaps (k(i), k(i + 1)] and if x is A-statistically convergent to α then x
converges to α.
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Lacunary vs. gap rates

In the end we point out a somewhat interesting phenomenon regarding the
gap Tauberian rates and the gaps in the lacunary statistical convergence.
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In the end we point out a somewhat interesting phenomenon regarding the
gap Tauberian rates and the gaps in the lacunary statistical convergence.

Recall that a sequence θ = (kr ) of positive integers, such that k0 = 0 and
kr − kr−1 → ∞, is called a lacunary sequence.
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Lacunary vs. gap rates

In the end we point out a somewhat interesting phenomenon regarding the
gap Tauberian rates and the gaps in the lacunary statistical convergence.

Recall that a sequence θ = (kr ) of positive integers, such that k0 = 0 and
kr − kr−1 → ∞, is called a lacunary sequence.

We say that x = (xk ) is lacunary statistically convergent to α if for each open
set U containing α, we have

lim
r→∞

|{k ∈ (kr−1, kr ] : xk 6∈ U}|

kr − kr−1
= 0.
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Lacunary vs. gap rates

In the end we point out a somewhat interesting phenomenon regarding the
gap Tauberian rates and the gaps in the lacunary statistical convergence.

Recall that a sequence θ = (kr ) of positive integers, such that k0 = 0 and
kr − kr−1 → ∞, is called a lacunary sequence.

We say that x = (xk ) is lacunary statistically convergent to α if for each open
set U containing α, we have

lim
r→∞

|{k ∈ (kr−1, kr ] : xk 6∈ U}|

kr − kr−1
= 0.

The issue is: what is the relationship between the gaps of a lacunary version
of a summability method and the gaps of the corresponding Tauberian
theorem?
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Lacunary vs. gap rates

Proposition

Let X be a T2 space, and let θ be any lacunary sequence. Then the following
statements are equivalent.

Every X-valued C1-statistically convergent sequence is also θ-lacunary
statistically convergent.
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Let X be a T2 space, and let θ be any lacunary sequence. Then the following
statements are equivalent.

Every X-valued C1-statistically convergent sequence is also θ-lacunary
statistically convergent.

lim infr (kr+1 − kr )/kr > 0.
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Lacunary vs. gap rates

Proposition

Let X be a T2 space, and let θ be any lacunary sequence. Then the following
statements are equivalent.

Every X-valued C1-statistically convergent sequence is also θ-lacunary
statistically convergent.

lim infr (kr+1 − kr )/kr > 0.

Note that the second condition happens to be the same as the gap-Tauberian
condition for the Cesàro method (C1).
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Lacunary vs. gap rates

Proposition

Let X be a T2 space, and let θ be any lacunary sequence. Then the following
statements are equivalent.

Every X-valued C1-statistically convergent sequence is also θ-lacunary
statistically convergent.

lim infr (kr+1 − kr )/kr > 0.

Note that the second condition happens to be the same as the gap-Tauberian
condition for the Cesàro method (C1).

This raises the issue if similar results can be constructed for general
A-statistical convergence and their lacunary counterparts. This is also still an
open problem.


	Outline
	Summability Methods
	

	The Setup
	

	A Bit of History
	

	Abelian Side
	

	Tauberian Side
	


