Outline	Summability Methods	A Bit of History	

Summability in Topological Spaces

H. Çakalli, Maltepe Univ., Istanbul, Turkey, M. Kazim Khan Kent State Univ., Kent Ohio.

University of North Florida, Jacksonville, FL. October 29-30, 2010

Outline	Summability Methods	The Setup 0000	A Bit of History	Abelian Side	Tauberian Side
Outline					

Summability Methods

2 The Setup

3 A Bit of History

4 Abelian Side

Outline	Summability Methods	The Setup 0000	A Bit of History	Abelian Side	Tauberian Side
Applica	ations of Summat	oility Metho	ds		

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Summability theory has historically been concerned with the notion of assigning a limit to a <u>linear space</u>-valued sequences, especially if the sequence is divergent.

Outline	Summability Methods	The Setup	A Bit of History	Abelian Side	Tauberian Side
Applica	ations of Summal	bility Metho	ds		

This underlying linearity naturally leads to the use of matrices as potential summability methods. However, in general, a summability method need not be a matrix method.

(日) (日) (日) (日) (日) (日) (日)

Outline	Summability Methods	The Setup	A Bit of History	Abelian Side	Tauberian Side
Applic	ations of Summal	bility Metho	ds		

This underlying linearity naturally leads to the use of matrices as potential summability methods. However, in general, a summability method need not be a matrix method.

Most of the famous applications therefore are cast in exactly this context. For instance,

• The weak and the strong laws of large numbers of probability theory.

Outline	Summability Methods ●0000	The Setup 0000	A Bit of History	Abelian Side	Tauberian Side
Applic	ations of Summal	bilitv Metho	ds		

This underlying linearity naturally leads to the use of matrices as potential summability methods. However, in general, a summability method need not be a matrix method.

Most of the famous applications therefore are cast in exactly this context. For instance,

• The weak and the strong laws of large numbers of probability theory.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Fejer's theorem on convergence of Fourier series.

Outline	Summability Methods ●○○○○	The Setup 0000	A Bit of History	Abelian Side	Tauberian Side
Applic	ations of Summa	bilitv Metho	ds		

This underlying linearity naturally leads to the use of matrices as potential summability methods. However, in general, a summability method need not be a matrix method.

Most of the famous applications therefore are cast in exactly this context. For instance,

• The weak and the strong laws of large numbers of probability theory.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Fejer's theorem on convergence of Fourier series.
- Komlos' theorem for L^1 -bounded sequences

And so on · · · .

Outline	Summability Methods	The Setup 0000	A Bit of History	Abelian Side	Tauberian Side
F 0		1-			

Four Summability Methods

Problem (Four Types of Summability Methods)

The question is: "How do you introduce summability notion in a general topological spaces where there is no binary operation of "addition" nor any natural partial order?

Outline	Summability Methods		A Bit of History	
	00000			
Four S	Summability Meth	ods		

The question is: "How do you introduce summability notion in a general topological spaces where there is no binary operation of "addition" nor any natural partial order?

Answer: Out of the four classical summability methods, only one of them requires neither the "addition" operation nor the "partial order" concept. In this sense it is the most primitive of them all.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Outline	Summability Methods		A Bit of History	
	0000			
Four S	Summability Meth	ods		

The question is: "How do you introduce summability notion in a general topological spaces where there is no binary operation of "addition" nor any natural partial order?

Answer: Out of the four classical summability methods, only one of them requires neither the "addition" operation nor the "partial order" concept. In this sense it is the most primitive of them all.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

More precisely, consider the following classical summability methods.

• (a) Strong convergence,

Outline	Summability Methods		A Bit of History	
	0000			
Four S	Summability Meth	ods		

The question is: "How do you introduce summability notion in a general topological spaces where there is no binary operation of "addition" nor any natural partial order?

Answer: Out of the four classical summability methods, only one of them requires neither the "addition" operation nor the "partial order" concept. In this sense it is the most primitive of them all.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- (a) Strong convergence,
- (b) Statistical convergence,

Outline	Summability Methods ○●○○○	The Setup	A Bit of History	Abelian Side	Tauberian Side
Four S	ummability Meth	ods			

The question is: "How do you introduce summability notion in a general topological spaces where there is no binary operation of "addition" nor any natural partial order?

Answer: Out of the four classical summability methods, only one of them requires neither the "addition" operation nor the "partial order" concept. In this sense it is the most primitive of them all.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- (a) Strong convergence,
- (b) Statistical convergence,
- (c) Distributional convergence,

Outline	Summability Methods ○●○○○	The Setup	A Bit of History	Abelian Side	Tauberian Side
Four S	ummability Meth	ods			

The question is: "How do you introduce summability notion in a general topological spaces where there is no binary operation of "addition" nor any natural partial order?

Answer: Out of the four classical summability methods, only one of them requires neither the "addition" operation nor the "partial order" concept. In this sense it is the most primitive of them all.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- (a) Strong convergence,
- (b) Statistical convergence,
- (c) Distributional convergence,
- (d) classical matrix summability.

Outline	Summability Methods	The Setup	A Bit of History	Abelian Side	Tauberian Side
A-Stro	ng and A-Stat Co	nvergence			

Thoughout assume that $A = [a_{nk}]$ is a nonnegative regular summability method. Not much loss takes place to assume that the row sums equal to one.

Definition (A-strong convergence)

We say that $x = (x_k)$ is A-strongly summable to α if

$$\lim_{n\to\infty}\sum_{k}|x_{k}-\alpha|\,a_{nk}=0.$$

Outline	Summability Methods	The Setup 0000	A Bit of History	Abelian Side	Tauberian Side
A-Stroi	ng and A-Stat Co	nvergence			

Thoughout assume that $A = [a_{nk}]$ is a nonnegative regular summability method. Not much loss takes place to assume that the row sums equal to one.

Definition (A-strong convergence)

We say that $x = (x_k)$ is *A*-strongly summable to α if

$$\lim_{n\to\infty}\sum_{k}|\mathbf{x}_{k}-\alpha|\,\mathbf{a}_{nk}=\mathbf{0}.$$

Definition (A-stat convergence)

We say $x = (x_k)$ is A-statistically convergent to α if for any $\epsilon > 0$, we have

$$\lim_{n\to\infty}\sum_{k:|x_k-\alpha|\geq\epsilon}a_{nk}=0.$$

Outline	Summability Methods	A Bit of History	
	00000		

A-Dist Convergence & A-Suammbility

Definition (A-distributional convergence)

If x is a real sequence, we say x is A-distributionaly convergent to F, where F is a probability distribution on \Re and

$$\lim_{n\to\infty}\sum_{k:x_k\leq t}a_{nk}=F(t),$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

for all t in the continuity set of the distribution F.

Outline	Summability Methods	A Bit of History	
	00000		

A-Dist Convergence & A-Suammbility

Definition (A-distributional convergence)

If x is a real sequence, we say x is A-distributionaly convergent to F, where F is a probability distribution on \Re and

$$\lim_{n\to\infty}\sum_{k:x_k\leq t}a_{nk}=F(t),$$

for all t in the continuity set of the distribution F.

Definition (A-summability)

Finally, we say that x is A summable to α if

$$\lim_{n\to\infty}\sum_k x_k \, a_{nk} = \alpha.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Outline	Summability Methods ○○○○●	The Setup 0000	A Bit of History	Abelian Side	Tauberian Side
A-stati:	stical convergend	e			

At a first glance <u>all</u> of the four methods seem to be using a linear, or group or order structure. For instance, the classic matrix summability uses group

structure having an operation of addition. The A-distributional convergence uses order.

(日)

Outline	Summability Methods ○○○○●	The Setup	A Bit of History	Abelian Side	Tauberian Side
A-stati	stical convergence	e.			

ື

At a first glance <u>all</u> of the four methods seem to be using a linear, or group or order structure. For instance, the classic matrix summability uses group

structure having an operation of addition. The A-distributional convergence uses order.

The remaining two, *A*-strong convergence and *A*-stat convergence, use distance structure since they both use

$$\|\mathbf{x}_k - \alpha\|, \qquad \rho(\mathbf{x}_k, \alpha).$$

Outline	Summability Methods		A Bit of History		
	00000	0000	000	0000	000000000
A-stati	stical convergence	e			

At a first glance <u>all</u> of the four methods seem to be using a linear, or group or order structure. For instance, the classic matrix summability uses group

structure having an operation of addition. The A-distributional convergence uses order.

The remaining two, A-strong convergence and A-stat convergence, use distance structure since they both use

 $\|\mathbf{x}_k - \alpha\|, \qquad \rho(\mathbf{x}_k, \alpha).$

This then leads one to consider general topological structures by replacing $\rho(\mathbf{x}_k, \alpha) \geq \epsilon$ by its natural counterpart,

$$\mathbf{x}_k \notin U_{\alpha},$$

where U_{α} is any open set containing α . So, how do you bring the summability structure into the topological space?

Outline	Summability Methods	The Setup ●OOO	A Bit of History	Abelian Side 0000	Tauberian Side

Mathematical Structure

Let (X, \mathcal{B}, τ) be any topological space, where \mathcal{B} is the Borel sigma field generated by the open sets. In order to define a summability notion in X, we will inject several probability measures μ_n defined over \mathcal{B} with the help of a nonnegative regular summability matrix $A = (a_{nk})$.

Outline	Summability Methods	The Setup ●000	A Bit of History	Abelian Side 0000	Tauberian Side

Mathematical Structure

Let (X, \mathcal{B}, τ) be any topological space, where \mathcal{B} is the Borel sigma field generated by the open sets. In order to define a summability notion in X, we will inject several probability measures μ_n defined over \mathcal{B} with the help of a nonnegative regular summability matrix $A = (a_{nk})$.

Consider ([0, 1], M, λ) be the usual Lebesgue measure. Partition the interval [0, 1] by $A_{n,0} = [0, a_{n0})$, and

$$A_{n,k} = \left[\sum_{j=0}^{k-1} a_{nj}, \sum_{j=0}^{k} a_{nj}\right), \qquad k = 1, 2, \cdots.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $f_n : [0, 1] \to \mathbb{N} := \{0, 1, 2 \cdots \}$, where $f_n(\omega) = k$ for $\omega \in A_{n,k}$. Over the sigma field of powerset of \mathbb{N} this f_n induced a measure ν_n defined by $\nu_n(k) = \lambda(A_{n,k}) = a_{nk}$.

Outline	Summability Methods	The Setup ●000	A Bit of History	Abelian Side 0000	Tauberian Side

Mathematical Structure

Let (X, \mathcal{B}, τ) be any topological space, where \mathcal{B} is the Borel sigma field generated by the open sets. In order to define a summability notion in X, we will inject several probability measures μ_n defined over \mathcal{B} with the help of a nonnegative regular summability matrix $A = (a_{nk})$.

Consider ([0, 1], M, λ) be the usual Lebesgue measure. Partition the interval [0, 1] by $A_{n,0} = [0, a_{n0})$, and

$$A_{n,k} = \left[\sum_{j=0}^{k-1} a_{nj}, \sum_{j=0}^{k} a_{nj}\right), \qquad k = 1, 2, \cdots.$$

Let $f_n : [0, 1] \to \mathbb{N} := \{0, 1, 2 \cdots \}$, where $f_n(\omega) = k$ for $\omega \in A_{n,k}$. Over the sigma field of powerset of \mathbb{N} this f_n induced a measure ν_n defined by $\nu_n(k) = \lambda(A_{n,k}) = a_{nk}$. Any function $x : \mathbb{N} \to X$ is automatically $2^{\mathbb{N}}/\mathcal{B}$ measureable. Now consider

the sequence of compositions

 $x(f_n): [0,1] \rightarrow X$, with $x(k) = x_k \in X$.

This brings with it a sequence of measures μ_n over \mathcal{B} . Note that

$$\mu_n(B) := \lambda(\mathbf{x}(f_n) \in B) = \lambda(f_n \in \mathbf{x}^{-1}(B)) = \sum_{\substack{j \in \mathbf{x}^{-1}(B) \\ \langle \Box \rangle + \langle \Box \rangle +$$

Outline	Summability Methods	The Setup O●OO	A Bit of History	Abelian Side	Tauberian Side
Mather	matical Structure				

In fact, in the last setup we may as well consider double arrays, if we like, without encountering much difficulties. That is, let $x^{(n)} : \mathbb{N} \to X$ with $x^{(n)}(k) = x_{nk} \in X$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

Outline	Summability Methods	The Setup O●OO	A Bit of History	Abelian Side	Tauberian Side
Mathe	matical Structure				

In fact, in the last setup we may as well consider double arrays, if we like, without encountering much difficulties. That is, let $x^{(n)} : \mathbb{N} \to X$ with $\mathbf{x}^{(n)}(\mathbf{k}) = \mathbf{x}_{nk} \in \mathbf{X}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Outline	Summability Methods	The Setup O●OO	A Bit of History	Abelian Side	Tauberian Side
Mathe	matical Structure				

In fact, in the last setup we may as well consider double arrays, if we like, without encountering much difficulties. That is, let $x^{(n)} : \mathbb{N} \to X$ with $x^{(n)}(k) = x_{nk} \in X$.

So, we get

$$\mu_n(B) := \lambda(\mathbf{x}^{(n)}(f_n) \in B) = \sum_{j: \mathbf{x}_{nj} \in B} \mathbf{a}_{nj}, \quad \text{ for all } B \in \mathcal{B}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Outline	Summability Methods	The Setup ○○●○	A Bit of History	Abelian Side	Tauberian Side
A-Stat	istical Convergen	ice			

So for any nonnegative regular summability matrix $A = [a_{nk}]$ with row sums one, and any double array $x = (x_{nk})$ in X, we get a sequence of measure spaces

$$(X, \mathcal{B}, \mu_n), \qquad \mu_n(B) = \sum_{j: \mathbf{x}_{nj} \in B} \mathbf{a}_{nj}, \qquad B \in \mathcal{B}$$

We say $x = (x_{nk})$ is A-statistically convergent to $\alpha \in X$ if for every open set U_{α} that contains α , we have

$$\lim_{n\to\infty}\mu_n(U^c_\alpha) = 0.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

To avoid the usual non-uniqueness issues, we will assume throughout that the space X is at least T_2 (Hausforff).

Outline	Summability Methods	The Setup ○○●○	A Bit of History	Abelian Side	Tauberian Side
A-Stati	istical Convergen	ce			

So for any nonnegative regular summability matrix $A = [a_{nk}]$ with row sums one, and any double array $x = (x_{nk})$ in X, we get a sequence of measure spaces

$$(X, \mathcal{B}, \mu_n), \qquad \mu_n(B) = \sum_{j: \mathbf{x}_{nj} \in B} \mathbf{a}_{nj}, \qquad B \in \mathcal{B}$$

We say $x = (x_{nk})$ is A-statistically convergent to $\alpha \in X$ if for every open set U_{α} that contains α , we have

$$\lim_{n\to\infty}\mu_n(U^c_\alpha) = 0.$$

To avoid the usual non-uniqueness issues, we will assume throughout that the space X is at least T_2 (Hausforff).

By the way, one could introduce ideals, instead of the *A*-density zero sets. Our goal here is to see separation of notions injected by summability method *A* versus inherent topological notions.

Outline	Summability Methods	The Setup ○○●○	A Bit of History	Abelian Side	Tauberian Side
A-Stati	istical Convergen	ce			

So for any nonnegative regular summability matrix $A = [a_{nk}]$ with row sums one, and any double array $x = (x_{nk})$ in X, we get a sequence of measure spaces

$$(X, \mathcal{B}, \mu_n), \qquad \mu_n(B) = \sum_{j: \mathbf{x}_{nj} \in B} \mathbf{a}_{nj}, \qquad B \in \mathcal{B}$$

We say $x = (x_{nk})$ is A-statistically convergent to $\alpha \in X$ if for every open set U_{α} that contains α , we have

$$\lim_{n\to\infty}\mu_n(U^c_\alpha) = 0.$$

To avoid the usual non-uniqueness issues, we will assume throughout that the space X is at least T_2 (Hausforff).

By the way, one could introduce ideals, instead of the *A*-density zero sets. Our goal here is to see separation of notions injected by summability method *A* versus inherent topological notions.

Outline	Summability Methods	The Setup ○○○●	A Bit of History	Abelian Side	Tauberian Side

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

A-Statistical convergence

In todays talk we will address the following questions/issues.

• (i) Is this notion regular?

Outline	Summability Methods	The Setup	A Bit of History	
		0000		
A Stat	intiant convergen	~~		

A-Statistical convergence

In todays talk we will address the following questions/issues.

- (i) Is this notion regular?
- (ii) As Fridy showed, for real/complex sequences statistical convergence can be characterized through a convergent subsequence outside a set of density zero. Does such a characterization hold for arbitrary T₂ topological spaces?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Outline	Summability Methods	The Setup ○○○○	A Bit of History	Abelian Side	Tauberian Side

A-Statistical convergence

In todays talk we will address the following questions/issues.

- (i) Is this notion regular?
- (ii) As Fridy showed, for real/complex sequences statistical convergence can be characterized through a convergent subsequence outside a set of density zero. Does such a characterization hold for arbitrary T₂ topological spaces?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

• (iii) What kind of Abelian theory does this spawn?

Outline	Summability Methods	The Setup ○○○○	A Bit of History	Abelian Side	Tauberian Side

A-Statistical convergence

In todays talk we will address the following questions/issues.

- (i) Is this notion regular?
- (ii) As Fridy showed, for real/complex sequences statistical convergence can be characterized through a convergent subsequence outside a set of density zero. Does such a characterization hold for arbitrary T₂ topological spaces?

- (iii) What kind of Abelian theory does this spawn?
- (iv) And of course, what kind of Tauberian theory does this spawn?

Outline	Summability Methods	The Setup 0000	A Bit of History ●○○	Abelian Side	Tauberian Side
History	: Summability in	topological	groups		

During 1967-1969 Prullage wrote a series of articles involving ordinary summability notions in topological groups.

Outline	Summability Methods	The Setup 0000	A Bit of History ●○○	Abelian Side	Tauberian Side
History	/: Summability in	topological	aroups		

During 1967-1969 Prullage wrote a series of articles involving ordinary summability notions in topological groups.

Around 1995, 1996 Çakalli studied lacunary statistical convergence in topological groups where its convergence field is compared with the convergence field of Cesàro statistical convergence.

Outline	Summability Methods	The Setup	A Bit of History	Abelian Side	Tauberian Side
	00000	0000	000	0000	000000000
Histor	: Summability in	topological	aroups		

During 1967-1969 Prullage wrote a series of articles involving ordinary summability notions in topological groups.

Around 1995, 1996 Çakalli studied lacunary statistical convergence in topological groups where its convergence field is compared with the convergence field of Cesàro statistical convergence.

Around 2005 Lahiri and Das took this notion in the language of I-convergence, which is a bit more generalized form of statistical convergence, in which the ideal, *I*, may not satisfy all the properties of the class of sets of *A*-density zero.
Outline	Summability Methods	The Setup	A Bit of History ●○○	Abelian Side	Tauberian Side
Histor	: Summability in	topological	aroups		

During 1967-1969 Prullage wrote a series of articles involving ordinary summability notions in topological groups.

Around 1995, 1996 Çakalli studied lacunary statistical convergence in topological groups where its convergence field is compared with the convergence field of Cesàro statistical convergence.

Around 2005 Lahiri and Das took this notion in the language of I-convergence, which is a bit more generalized form of statistical convergence, in which the ideal, *I*, may not satisfy all the properties of the class of sets of *A*-density zero.

All of the above references are concerned with the nature of the convergence field. Of course summability theory goes in two opposite directions — the Abelian side and the Tauberian side —.

Outline	Summability Methods	The Setup 0000	A Bit of History ○●○	Abelian Side	Tauberian Side
History	: The Abelian sid	le			

Statistical convergence, contrary to usual attributions, seems to have been used by R. C. Buck in 1946, although he did not give it the current name of "statistical convegence".

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Outline	Summability Methods	The Setup	A Bit of History ○●○	Abelian Side	Tauberian Side
History	: The Abelian sic	le			

Statistical convergence, contrary to usual attributions, seems to have been used by R. C. Buck in 1946, although he did not give it the current name of "statistical convegence".

Actually probabilists would object to this attribution on the grounds that statistical convergence is a very special notion of convergence in probability (to a constant) and hence was in the literature for atleast fifty years prior to Buck when Chebyshev proved the Weak Law of Large Numbers. Anways, in 1951 H. Fast gave it the name of "statistical convegence" and then Schoenberg, Salat and others picked up and popularized this name.

Outline	Summability Methods	The Setup	A Bit of History ○●○	Abelian Side	Tauberian Side
History	: The Abelian sic	le			

Statistical convergence, contrary to usual attributions, seems to have been used by R. C. Buck in 1946, although he did not give it the current name of "statistical convegence".

Actually probabilists would object to this attribution on the grounds that statistical convergence is a very special notion of convergence in probability (to a constant) and hence was in the literature for atleast fifty years prior to Buck when Chebyshev proved the Weak Law of Large Numbers. Anways, in 1951 H. Fast gave it the name of "statistical convegence" and then Schoenberg, Salat and others picked up and popularized this name.

Towards the Abelian direction, *A*-statistical convergence raises the fundamental issue of whether it can be characterized via a <u>convergent</u> <u>subsequence</u> whose indicies form a set of *A*-density one. It is not difficult to show that over <u>metric spaces</u> this is possible along the same lines as shown by Fridy. We will have a bit more to say for topological spaces here.

Outline	Summability Methods	The Setup 0000	A Bit of History ○○●	Abelian Side	Tauberian Side
History	: The Tauberian	side			

• Over spaces with <u>linear and order structure</u> the one-sided Tauberian theory has been studied for over one hundred years and the theory is most refined.

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

Outline	Summability Methods	The Setup 0000	A Bit of History ○○●	Abelian Side	Tauberian Side
History	: The Tauberian	side			

• Over spaces with <u>linear and order structure</u> the one-sided Tauberian theory has been studied for over one hundred years and the theory is most refined.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• When only a <u>metric structure</u> is available the two-sided Tauberian theorems exist, at least for statistical convergence.

Outline	Summability Methods	The Setup 0000	A Bit of History ○○●	Abelian Side	Tauberian Side
History:	The Tauberian	side			

- Over spaces with <u>linear and order structure</u> the one-sided Tauberian theory has been studied for over one hundred years and the theory is most refined.
- When only a <u>metric structure</u> is available the two-sided Tauberian theorems exist, at least for statistical convergence.
- Then there are gap Tauberian theorems that seem to exist in parallel to the above two varieties. However, what seems to be missed is that, for statistical convergence, neither the linear structure nor the metric structure are at its core.

Outline	Summability Methods	The Setup 0000	A Bit of History ○○●	Abelian Side	Tauberian Side
History	: The Tauberian	side			

- Over spaces with <u>linear and order structure</u> the one-sided Tauberian theory has been studied for over one hundred years and the theory is most refined.
- When only a <u>metric structure</u> is available the two-sided Tauberian theorems exist, at least for statistical convergence.
- Then there are gap Tauberian theorems that seem to exist in parallel to the above two varieties. However, what seems to be missed is that, for statistical convergence, neither the linear structure nor the metric structure are at its core.

A classic result of Paul Erdös says that gap Tauberian theorems need not exist for matrix methods. The classic example being the Borel method. When gap Tauberian theorems do exist, the Tauberian condition is intimately dependent on the underlying row structure of the summability matrix.

Outline	Summability Methods	The Setup	A Bit of History ○○●	Abelian Side	Tauberian Side
History	: The Tauberian	side			

- Over spaces with <u>linear and order structure</u> the one-sided Tauberian theory has been studied for over one hundred years and the theory is most refined.
- When only a <u>metric structure</u> is available the two-sided Tauberian theorems exist, at least for statistical convergence.
- Then there are gap Tauberian theorems that seem to exist in parallel to the above two varieties. However, what seems to be missed is that, for statistical convergence, neither the linear structure nor the metric structure are at its core.

A classic result of Paul Erdös says that gap Tauberian theorems need not exist for matrix methods. The classic example being the Borel method. When gap Tauberian theorems do exist, the Tauberian condition is intimately dependent on the underlying row structure of the summability matrix. Statistical Tauberian theory, although is distinctly different from linear/matrix-Tauberian theory, the two share some common features.

Outline	Summability Methods	The Setup 0000	A Bit of History ○○●	Abelian Side	Tauberian Side
History:	The Tauberian	side			

- Over spaces with <u>linear and order structure</u> the one-sided Tauberian theory has been studied for over one hundred years and the theory is most refined.
- When only a <u>metric structure</u> is available the two-sided Tauberian theorems exist, at least for statistical convergence.
- Then there are gap Tauberian theorems that seem to exist in parallel to the above two varieties. However, what seems to be missed is that, for statistical convergence, neither the linear structure nor the metric structure are at its core.

A classic result of Paul Erdös says that gap Tauberian theorems need not exist for matrix methods. The classic example being the Borel method. When gap Tauberian theorems do exist, the Tauberian condition is intimately dependent on the underlying row structure of the summability matrix. Statistical Tauberian theory, although is distinctly different from linear/matrix-Tauberian theory, the two share some common features. Over topological spaces, as we will see, gap Tauberian theory happens to be the most natural thing to build.

Outline	Summability Methods	The Setup 0000	A Bit of History	Abelian Side ●000	Tauberian Side
A-Stati	istical convergend	ce			

Why is A-stat convergence regular in a topological space?

Outline	Summability Methods	The Setup 0000	A Bit of History	Abelian Side ●000	Tauberian Side
A-Stati	istical convergen	ce.			

Why is A-stat convergence regular in a topological space?

The answer is easy. Yes. If $\overline{x_k}$ is convergent to α in X, then for any open set U_α containing α , we can find an N such that $x_k \in U_\alpha$ for all k > N. Therefore,

$$\mu_n(U^c_{lpha}) = \sum_{k: x_k
ot\in U^c_{lpha}} a_{nk} \leq \sum_{k=0}^N a_{nk}.$$

Since $A = [a_{nk}]$ is regular, we see that

$$\lim_{n\to\infty}\mu_n(U^c_{\alpha}) \leq \lim_{n\to\infty}\sum_{k=0}^N a_{nk} = 0.$$

Outline	Summability Methods	The Setup 0000	A Bit of History	Abelian Side ●000	Tauberian Side
A-Stati	istical convergen	ce.			

Why is A-stat convergence regular in a topological space?

The answer is easy. Yes. If $\overline{x_k}$ is convergent to α in X, then for any open set U_α containing α , we can find an N such that $x_k \in U_\alpha$ for all k > N. Therefore,

$$\mu_n(U^c_{lpha}) = \sum_{k: x_k
ot\in U^c_{lpha}} a_{nk} \leq \sum_{k=0}^N a_{nk}.$$

Since $A = [a_{nk}]$ is regular, we see that

$$\lim_{n\to\infty}\mu_n(U^c_{\alpha}) \leq \lim_{n\to\infty}\sum_{k=0}^N a_{nk} = 0.$$

When X happens to be metrizable, with metric ρ , this notion can be written as follows. For any $\epsilon > 0$ there exists an N so that

$$\lim_{n\to\infty}\sum_{k:\,\rho(\mathbf{x}_k,\alpha)>\epsilon}a_{nk} = 0.$$

Outline	Summability Methods	The Setup 0000	A Bit of History	Abelian Side ○●○○	Tauberian Side
Density	y convergence pr	operty			

Let *A* be a nonnegative regular summability method and let $x = (x_k)$ be a sequence taking values in a T_2 topological space *X*. If there exists a set $E \subseteq \mathbb{N}$ such that

$$\delta_{\mathcal{A}}(E) := \lim_{n \to \infty} \sum_{k \in E} a_{nk} = 0,$$

and x is convergent to some α over E^c , then we will say that x has A-density convergence property (DCP(A) for short).

Outline	Summability Methods		A Bit of History	Abelian Side	
	00000	0000	000	0000	00000000
Densit	y convergence pr	operty			

Let *A* be a nonnegative regular summability method and let $x = (x_k)$ be a sequence taking values in a T_2 topological space *X*. If there exists a set $E \subseteq \mathbb{N}$ such that

$$\delta_{\mathcal{A}}(\mathcal{E}) := \lim_{n \to \infty} \sum_{k \in \mathcal{E}} a_{nk} = 0,$$

and x is convergent to some α over E^c , then we will say that x has A-density convergence property (DCP(A) for short).

It is easy to see that if x has the DCP(A) then x is A-statistically convergent to α , where α is its subsequential limit over its E^{c} .

Outline	Summability Methods	The Setup 0000	A Bit of History	Abelian Side ○●○○	Tauberian Side
Density	/ convergence pr	operty			

Let *A* be a nonnegative regular summability method and let $x = (x_k)$ be a sequence taking values in a T_2 topological space *X*. If there exists a set $E \subseteq \mathbb{N}$ such that

$$\delta_{\mathcal{A}}(\mathcal{E}) := \lim_{n \to \infty} \sum_{k \in \mathcal{E}} a_{nk} = 0,$$

and x is convergent to some α over E^c , then we will say that x has A-density convergence property (DCP(A) for short).

It is easy to see that if x has the DCP(A) then x is A-statistically convergent to α , where α is its subsequential limit over its E^{c} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The issue is whether the converse can hold. This is partially addressed by the following theorem.

Outline	Summability Methods	A Bit of History	Abelian Side	
			0000	

Density convergence property

Theorem (DCP(A) vs. A-stat convergence)

Let X be a topological space and let $\alpha \in X$ have a <u>countable base</u>. Then for any nonnegative regular summability matrix A, any A-statistically convergent sequence to α has the DCP(A).

Outline	Summability Methods	A Bit of History	Abelian Side	
			0000	

Density convergence property

Theorem (DCP(A) vs. A-stat convergence)

Let X be a topological space and let $\alpha \in X$ have a <u>countable base</u>. Then for any nonnegative regular summability matrix A, any A-statistically convergent sequence to α has the DCP(A).

We are unable to drop the assumption on the countability of the base of α , however one can construct examples outside the countability condition. The general problem seems to be still open over arbitrary T_2 spaces and nonnegative regular matrices A.

Outline	Summability Methods	The Setup 0000	A Bit of History	Abelian Side ○○○●	Tauberian Side

DCP is a topological property

The next result shows that the DCP is a topological property.

Theorem

Let X, Y be homeomorphic topological spaces, and let A be any nonnegative regular matrix. If every A-statistically convergent sequence in X has the DCP(A) then every A-statistically convergent sequence in Y also has the DCP(A).

Outline	Summability Methods	The Setup 0000	A Bit of History	Abelian Side	Tauberian Side ●೦೦೦೦೦೦೦೦
Gap Ta	auberian conditio	n			

Let $\gamma : \mathbb{N} \to \mathbb{N}$ denote an increasing function with $\gamma(0) = 0$. Let

 $G(\gamma) = \{x = (x_k) : x_k \neq x_{k+1} \text{ implies there exists } r \in \mathbb{N} \text{ such that } k = \gamma(r)\}$

Definition

For a nonnegative regular matrix A, we say that $G(\gamma)$ is an A-statistical gap Tauberian condition if $x \in G(\gamma)$ and x is A-statistically convergent to some α together imply that x is convergent.

Outline	Summability Methods	The Setup 0000	A Bit of History	Abelian Side	Tauberian Side ○●○○○○○○○
Topolo	gical invariance				

Our first result in the Tauberian direction shows topological invariance for statistical gap Tauberian theorems. That is they do not depend on the underlying topological structure at all. They are truely controlled by the summability method used!

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 のへぐ

Outline	Summability Methods	The Setup 0000	A Bit of History	Abelian Side	Tauberian Side ○●○○○○○○○
Topolo	gical invariance				

Our first result in the Tauberian direction shows topological invariance for statistical gap Tauberian theorems. That is they do not depend on the underlying topological structure at all. They are truely controlled by the summability method used!

Theorem

Let A be a nonnegative regular matrix. The following statements are equivalent.

 G(γ) is an A-statistical gap Tauberian condition for real valued sequences.

Outline	Summability Methods	The Setup	A Bit of History	Abelian Side	Tauberian Side ○●○○○○○○○
Topolo	gical invariance				

Our first result in the Tauberian direction shows topological invariance for statistical gap Tauberian theorems. That is they do not depend on the underlying topological structure at all. They are truely controlled by the summability method used!

Theorem

Let A be a nonnegative regular matrix. The following statements are equivalent.

- G(γ) is an A-statistical gap Tauberian condition for real valued sequences.
- G(γ) is an A-statistical gap Tauberian condition for any Hausdorff topological space valued sequences.

Outline	Summability Methods	A Bit of History	Tauberian Side
			000000000

An idea of Connor (1993) can now be used to get the following characterizations. For a metric space valued sequence $x = (x_k)$ we say x is strongly *A*-summable to α if

$$\lim_{n\to\infty}\sum_{k=0}^{\infty}a_{nk}\rho(\mathbf{x}_k,\alpha)=0.$$

Corollary

Let A be a nonnegative regular matrix. The following statements are equivalent.

 G(γ) is an A-statistical gap Tauberian condition for any T₂ topological space valued sequences.

Outline	Summability Methods	A Bit of History	Tauberian Side
			000000000

An idea of Connor (1993) can now be used to get the following characterizations. For a metric space valued sequence $x = (x_k)$ we say x is strongly *A*-summable to α if

$$\lim_{n\to\infty}\sum_{k=0}^{\infty}a_{nk}\rho(\mathbf{x}_k,\alpha)=0.$$

Corollary

Let A be a nonnegative regular matrix. The following statements are equivalent.

- G(γ) is an A-statistical gap Tauberian condition for any T₂ topological space valued sequences.
- G(γ) is a gap Tauberian condition for A-strong convergence for metric spaces.

・ロト・日本・日本・日本・日本・今日・

Outline	Summability Methods	A Bit of History	Tauberian Side
			000000000

An idea of Connor (1993) can now be used to get the following characterizations. For a metric space valued sequence $x = (x_k)$ we say x is strongly *A*-summable to α if

$$\lim_{n\to\infty}\sum_{k=0}^{\infty}a_{nk}\rho(\mathbf{x}_k,\alpha)=0.$$

Corollary

Let A be a nonnegative regular matrix. The following statements are equivalent.

- G(γ) is an A-statistical gap Tauberian condition for any T₂ topological space valued sequences.
- G(γ) is a gap Tauberian condition for A-strong convergence for metric spaces.
- For all increasing subsequences of {*n_r*} of natural numbers,

$$\limsup_{n} \sum_{r} \sum_{k \in (\gamma(n_r), \gamma(n_r+1)]} a_{nk} > 0.$$

・ロト・日本・日本・日本・日本

Outline	Summability Methods	The Setup	A Bit of History	Abelian Side	Tauberian Side
	00000	0000	000	0000	00000000

An idea of Connor (1993) can now be used to get the following characterizations. For a metric space valued sequence $x = (x_k)$ we say x is strongly *A*-summable to α if

$$\lim_{n\to\infty}\sum_{k=0}^{\infty}a_{nk}\rho(\mathbf{x}_k,\alpha)=0.$$

Corollary

Let A be a nonnegative regular matrix. The following statements are equivalent.

- G(γ) is an A-statistical gap Tauberian condition for any T₂ topological space valued sequences.
- G(γ) is a gap Tauberian condition for A-strong convergence for metric spaces.
- For all increasing subsequences of $\{n_r\}$ of natural numbers,

$$\limsup_{n} \sum_{r} \sum_{k \in (\gamma(n_r), \gamma(n_r+1)]} a_{nk} > 0.$$

So the race is on: find these $\gamma(k)$ for various classical summability methods = -2

Outline	Summability Methods	The Setup 0000	A Bit of History	Abelian Side	Tauberian Side 000●00000
Gap co	onditions				

Outline	Summability Methods	The Setup 0000	A Bit of History	Abelian Side	Tauberian Side ○○○●○○○○○
Gan co	nditions				

In the next three results provide the appropriate gap functions of the Tauberian theorems for most of the classical summability methods, such as the Euler-Borel class and the Hausdorff class. The following is an extension of Fridy's gap Tauberian theorem.

Outline	Summability Methods	The Setup 0000	A Bit of History	Abelian Side	Tauberian Side ○○○●○○○○○
Gap co	onditions				

In the next three results provide the appropriate gap functions of the Tauberian theorems for most of the classical summability methods, such as the Euler-Borel class and the Hausdorff class. The following is an extension of Fridy's gap Tauberian theorem.

Theorem

Let $\{k(1), k(2), \dots\}$ be an increasing sequence of positive integers such that

$$\liminf_{i} \frac{k(i+1)}{k(i)} > 1, \tag{1}$$

and let x be a sequence in a topological space such that x remains constant over the gaps (k(i), k(i + 1)]. If x is C₁-statistical convergent to α then x converges to α .

Here C_1 stands for the Cesàro matrix.

Outline	Summability Methods	The Setup 0000	A Bit of History	Abelian Side	Tauberian Side ○○○●○○○○○
Gap co	onditions				

In the next three results provide the appropriate gap functions of the Tauberian theorems for most of the classical summability methods, such as the Euler-Borel class and the Hausdorff class. The following is an extension of Fridy's gap Tauberian theorem.

Theorem

Let $\{k(1), k(2), \dots\}$ be an increasing sequence of positive integers such that

$$\liminf_{i} \frac{k(i+1)}{k(i)} > 1, \tag{1}$$

and let x be a sequence in a topological space such that x remains constant over the gaps (k(i), k(i + 1)]. If x is C₁-statistical convergent to α then x converges to α .

Here C_1 stands for the Cesàro matrix. In fact, as the following theorem shows, the Cesàro matrix can be replaced by a general nonnegative regular Hausdorff matrix.

Outline	Summability Methods	The Setup 0000	A Bit of History	Abelian Side 0000	Tauberian Side 0000●0000

Gap conditions: Hausdorff

Theorem

Let H_{ϕ} be a regular Hausdorff method with a nondecreasing weight function ϕ . Again assume

$$\liminf_i \frac{k(i+1)}{k(i)} > 1,$$

holds. If x is a sequence in a topological space such that x remains constant over the gaps (k(i), k(i + 1)] and if x is H_{ϕ} -statistical convergent to α then x converges to α .

Outline	Summability Methods	The Setup 0000	A Bit of History	Abelian Side	Tauberian Side 0000●0000

Gap conditions: Hausdorff

Theorem

Let H_{ϕ} be a regular Hausdorff method with a nondecreasing weight function ϕ . Again assume

$$\liminf_i \frac{k(i+1)}{k(i)} > 1,$$

holds. If x is a sequence in a topological space such that x remains constant over the gaps (k(i), k(i + 1)] and if x is H_{ϕ} -statistical convergent to α then x converges to α .

In this theorem we may take $\gamma(t) = ct$ for any constant c > 1. The Tauberian condition can be improved if the weight function ϕ of the Hausdorff method has a point of jump.

Outline	Summability Methods	A Bit of History	Tauberian Side
			000000000

Gap conditions: Hausdorff with jumps

Theorem

Let H_{ϕ} be a regular Hausdorff method with a nondecreasing weight function ϕ , having a point of jump at some $r \in (0, 1)$. Let $\{k(1), k(2), \dots\}$ be an increasing sequence of positive integers such that

$$\liminf_{i} \frac{k(i+1) - k(i)}{\sqrt{k(i)}} > 0.$$
 (2)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

If x is a sequence in a topological space such that x remains constant over the gaps (k(i), k(i + 1)] and if x is H_{ϕ} -statistically convergent to α then x converges to α .

Outline	Summability Methods	A Bit of History	Tauberian Side
			000000000

Gap conditions: Hausdorff with jumps

Theorem

Let H_{ϕ} be a regular Hausdorff method with a nondecreasing weight function ϕ , having a point of jump at some $r \in (0, 1)$. Let $\{k(1), k(2), \dots\}$ be an increasing sequence of positive integers such that

$$\liminf_{i} \frac{k(i+1) - k(i)}{\sqrt{k(i)}} > 0.$$
 (2)

If x is a sequence in a topological space such that x remains constant over the gaps (k(i), k(i + 1)] and if x is H_{ϕ} -statistically convergent to α then x converges to α .

In this result we may take $\gamma(t) = ct^2$ with c > 0. This theorem, in particular, provides a Tauberian theorem for the Euler-statistical convergence. Since the Euler method is also a member of the convolution methods, it is natural to suspect that it may have an analog for the convolution methods. This is indeed the case.

Outline	Summability Methods	A Bit of History	Tauberian Side
			000000000

Gap conditions: Convolution methods

Theorem

Let { $k(1), k(2), \dots$ } be an increasing sequence of positive integers satisfying (2), and let $A = [a_{nk}]$ be a regular convolution method with finite variance. If x is a sequence in a topological space such that x remains constant over the gaps (k(i), k(i + 1)] and if x is A-statistically convergent to α then x converges to α .
Outline	Summability Methods	The Setup	A Bit of History	Abelian Side	Tauberian Side ○○○○○○●○
Lacuna	arv vs. dan rates				

Outline	Summability Methods	The Setup	A Bit of History	Abelian Side	Tauberian Side ○○○○○○●○
Lacuna	ary vs. gap rates				

Recall that a sequence $\theta = (k_r)$ of positive integers, such that $k_0 = 0$ and $k_r - k_{r-1} \rightarrow \infty$, is called a lacunary sequence.

Outline	Summability Methods	The Setup	A Bit of History	Abelian Side	Tauberian Side 0000000●0
Lacuna	arv vs. dap rates				

Recall that a sequence $\theta = (k_r)$ of positive integers, such that $k_0 = 0$ and $k_r - k_{r-1} \rightarrow \infty$, is called a lacunary sequence.

We say that $x = (x_k)$ is lacunary statistically convergent to α if for each open set *U* containing α , we have

$$\lim_{r\to\infty}\frac{|\{k\in (k_{r-1},k_r]: x_k\notin U\}|}{k_r-k_{r-1}}=0.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline	Summability Methods	The Setup	A Bit of History	Abelian Side	Tauberian Side ○○○○○○●○
Lacuna	arv vs. dap rates				

Recall that a sequence $\theta = (k_r)$ of positive integers, such that $k_0 = 0$ and $k_r - k_{r-1} \rightarrow \infty$, is called a lacunary sequence.

We say that $x = (x_k)$ is lacunary statistically convergent to α if for each open set *U* containing α , we have

$$\lim_{r\to\infty}\frac{|\{k\in (k_{r-1},k_r]: x_k\notin U\}|}{k_r-k_{r-1}}=0.$$

The issue is: what is the relationship between the gaps of a lacunary version of a summability method and the gaps of the corresponding Tauberian theorem?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline	Summability Methods	A Bit of History	Tauberian Side
			00000000

Proposition

Let X be a T_2 space, and let θ be any lacunary sequence. Then the following statements are equivalent.

 Every X-valued C₁-statistically convergent sequence is also θ-lacunary statistically convergent.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline	Summability Methods	A Bit of History	Tauberian Side
			00000000

Proposition

Let X be a T_2 space, and let θ be any lacunary sequence. Then the following statements are equivalent.

 Every X-valued C₁-statistically convergent sequence is also θ-lacunary statistically convergent.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $\liminf_{r \in k_{r+1} - k_r} \frac{k_r}{k_r} > 0.$

Outline	Summability Methods	A Bit of History	Tauberian Side
			00000000

Proposition

Let X be a T_2 space, and let θ be any lacunary sequence. Then the following statements are equivalent.

- Every X-valued C₁-statistically convergent sequence is also θ-lacunary statistically convergent.
- $\liminf_{r \in k_{r+1} k_r} \frac{k_r}{k_r} > 0.$

Note that the second condition happens to be the same as the gap-Tauberian condition for the Cesàro method (C_1).

Outline	Summability Methods	A Bit of History	Tauberian Side
			00000000

Proposition

Let X be a T_2 space, and let θ be any lacunary sequence. Then the following statements are equivalent.

- Every X-valued C₁-statistically convergent sequence is also θ-lacunary statistically convergent.
- $\liminf_{r \in k_{r+1} k_r} \frac{k_r}{k_r} > 0.$

Note that the second condition happens to be the same as the gap-Tauberian condition for the Cesàro method (C_1).

This raises the issue if similar results can be constructed for general *A*-statistical convergence and their lacunary counterparts. This is also still an open problem.