Trading Under Illiquidity Risk

Mohammad Kazim Khan

Kent State University.
Outline

1. Overview & Subfields
2. Trading the Line Strategy
3. Analysis
4. Trinomial Model
5. Conclusions
Abstract

Financial trading is mostly a proprietary business. Their trading algorithms are seldom shared with the general academic world and hence their analysis is not possible. There are, however, a few algorithms that are well studied, two of which being the stop-loss and the trading-the-line strategies. In this talk we will present a probabilistic platform under which their performances can be studied analytically.
Subfields of Finance

- **Portfolio Theory.** (How people may combine assets. Diversification, mean-variance analysis, CAPM).
- **Pricing Theory.** (Derivatives, Arbitrage, Risk-neutral measures).
- **Trading Strategies.** (Short-term positions, times to engage, amounts to engage).
- **Asset Pricing.** (Using how portfolios are formed, assets may be priced using the supply and demand implications)
- **Risk Management.** (Quantification of “risk”, modeling, and management)
- **Public/International/Corporate Finance.** (We won’t go there at all).
Example (Insurance – Stop-Loss contract)

So that we don’t confuse some terms, which seem to have similar names, consider an insurance contract.
In your insurance contract, there is something called a deductible, (say K). If you suffer a damage of amount S, then the insurance will cover $(S - K)^+$ amount. That is, you will exercise this option (go to the insurance company and demand that it pay $(S - K)^+$) when it is positive. Otherwise, you will keep quiet (will not exercise your option).

Insurance people call it a **stop-loss contract** and looks like the usual call option in option pricing theory. But, it differs from the call option in a fundamental way. Call option is based on an underlying which is openly traded, whereas your insurance contract is based on your own accident loss — not a traded entity.
Example (Trading – Stop-Loss strategy)

Stop-loss trading strategy is somewhat different. It seems to be quoted quite a bit, however, its performance is almost never compared with more sophisticated strategies. A quick Google search shows an un-ending list of links to this strategy.

Stop-Loss strategy simply involves setting a limit (a barrier) to take action as soon as the underlying process hits the barrier.
Trading

Pricing theory uses risk-free investment opportunity and the concept of arbitrage to define prices of derived securities. Under this structure, the price of many derived securities is a discounted conditional expectation of the payoff function.

In contrast a day-to-day trader faces a different structure. Since his trades are often of very short duration, the impact of any interest on the investment is negligible. Therefore, his main goal is to make money by employing the age old cliche, buy low and sell high. That is, decide when to get in, and when to get out.

In a fully functional market knowing the future price of any traded asset or option is any one’s guess (assuming there is no insider information). In such a situation the mathematical problem is to define stopping rules that indicate the getting in time and the getting out times.
There is a large volume of literature on various trading strategies. One can get a glimpse of this by simply doing a simple “Google search”.

Our aim here is not to recommend one trading strategy over another, but rather to give a platform over which one can compare the performance of these strategies to have a better feeling of pluses and minuses of any of these strategies.

Even with this simple goal in mind, the problem is surprisingly complicated as far as mathematical analysis is concerned.
Steve Ross said:

Every financial disaster begins with a theory.

His point being, I think, that those who invent theory usually fall in love with it and ignore common sense, when it is needed the most.

Theory is needed simply to explain/model the reality in all its complexity, and not to focus only on the beautiful mathematics that it entails.

Having said this, the talk is primarily focused on the mathematical aspects, along with some unsolved issues.
To just gain a foot hold into this extremely complex field, one can start off by using the binomial tree, or trinomial tree or the Black-Scholes model (or more sophisticated the so called jump-diffusion processes) for the price dynamics. Then study the salient features of the trading strategies.

Each process has its own benefits and drawbacks. Hopefully, the results obtained will not differ much. However, should the results differ, then such a trading strategy would be very sensitive to the correct modeling of the price dynamics, and hence would need to be used with extreme caution.

Principle 1: So, as a first step, don’t be ashamed to study a trading strategy under **ANY** pseudo-realistic price process.
Trading Strategies

When one makes the decision to buy an asset, the hope is that the asset value will rise. This entry time is crucial of course. Since one cannot see the future, humans rely on other ways to gain advantage, such as

- Scientifically model the problem.
- Speculate.
- Seek some insider information.
- Seek the help of their gods (who come in surprisingly large varieties, shapes and forms).

Without commenting on the last three, our aim is to focus on the first one. There are some obvious ways mathematics should be able to help.
Two Examples

Before you can study a strategy,

Principle 2: Make sure that a trading strategy is fully defined.

Every one has his/her favorite “strategy”. The problem is that they are often not well defined. We can only focus on the “well defined ones”.

There are three well known strategies for which mathematics can be very helpful.

- **Stop-loss strategy,**
- **Trailing stop strategy**, (also known as the trading the line strategy). In this strategy one “rides” the price curve as long as it goes in the trader’s favor. This strategy also sets a barrier, but the barrier is moved as long as the price curve moves in the favor of the trader. Otherwise, the position is closed once the barrier is hit. (in quality control literature it is precisely the CUSUM procedure.)
- **Religion (rumour) based strategy,** i.e., mathematically speaking, the stopping time N may be taken to be probabilistically independent of the price-information filtration.
Avoid comparing apples with oranges,

Principle 3: State the statistic(s) on which the strategies are being compared.

The problem is multi-dimensional. If N is the duration till entry/exit, then among the basic issues are:

- The expected level of the price at the exit time, called the stopped value, i.e., $E(S_N)$, where $\{S_n, n \geq 1\}$ is the log-price process.
- The variance of the stopped value, $Var(S_N)$.
- Obtain the expected duration, $E(N)$.
- The variance of the trading duration of the strategy, $Var(N)$.
- The correlation between the stopped amount and the duration of the trading strategy, $Corr(N, S_N)$.
- The sensitivity of the above parameters to any “tuning constants” of the trading strategy.
- The sensitivity of the above parameters to the various price dynamics.
- Comparison of the strategies for these (and other) statistics.
Whats known?

Don’t re-invent the wheel,

Principle 4: Know what’s known.

Historically, the continuous time settings have been used to study the properties of stopping times along with the stopped processes, (for CuSum and other stopping times) and the results are often implicit in terms of the solutions of ordinary differential equations.

In discrete time, the literature is still in its infancy. Although CuSum and SPRT have been studied by statisticians for a long time, their focus has been quite different.

For instance, when the price process follows a log-normal model, a closed form expression for the expected stopping time for the trailing stops strategy in discrete time settings is still an open problem.

Fortunately, most of the above cited statistics do already have the necessary mathematics well-developed (although in a different language) for both binomial and trinomial random walk models and both stop-loss and trading the line strategies. Even some other models can be handled as well.
In a rather informal language, let me ask you a question.

- if a blind person is not allowed to use his stick to feel what is in front of him, how can he walk and detect if the path ahead is going to go up or go down?
In a rather informal language, the trading the line strategy says that

- the blind person should use his stick behind him and try to detect if the slope in the immediate past is upward or downwards and make a decision.
Let us fix the notation first. Let Y_1, Y_2, \cdots, be independent and identically distributed random variables representing the returns of the security that is being traded. The random variables Y_i could be discrete or continuous. Let $S_n = Y_1 + \cdots + Y_n$, and let $P_n = P_0 e^{S_n}$, $n \geq 1$, be the price.

Trading the line strategy can be defined in several ways. For instance, by using the log of the price process, S_n, for the get out position, we may define the stopping rule

$$L_h := \inf \left\{ n \geq 1 : \max_{k \leq n} S_k - S_n \geq h \right\},$$

where $h > 0$ is the specified amount by which the log-price has to drop to trigger sellout. The corresponding trailing stops strategy to get in is

$$N_h := \inf \left\{ n \geq 1 : S_n - \min_{k \leq n} S_k \geq k \right\},$$

where $k > 0$ is the specified amount by which the log-price has to rise to trigger getting in.
One can use the two trailing stop strategies in tandem. That is, use N_h to trigger getting in. After getting in, start the getting out strategy. Once the get-out-strategy triggers, get out and start the getting-in strategy. So on, the circle continues. Hopefully, at each junction one makes enough money in the process to pay off the transaction costs and still makes some profit.
It turns out that both of the above trading strategies have been studied by Statisticians under somewhat different circumstances, such as quality control, and queuing theory, where they are given different names.

The main tool in their analysis is another stopping rule, called the Wald’s sequential probability ratio test, (SPRT). It is defined as

\[\tau_{a,h} := \inf \{ n \geq 1 : S_n \notin (a, h) \}, \]

where \(S_0 = 0 \) and \(a < 0 < h \). (Its one-sided version gives the stop-loss strategy.)

It says to stop as soon as the log price hits either of the upper or lower barriers. Of course, it does not say what course of action should one take. All it indicates is that there is perhaps some sort of shift taking place in the price dynamics, which the trader should avail.
Recently, Shiryaev and his group have discovered some optimal strategies when a condition of finite time horizon is enforced.

More precisely, if the trader is not allowed to keep his positions open for more than a day, one can consider a day as one unit of time and the trader must get out by the end of the day, regardless of his position. Under this scenario, it is known that the “optimal” strategy is the following

\[A_h := \inf \left\{ t > 0 : \max_{s < t} S(s) - S(t) \geq h\sqrt{1 - t} \right\}. \]

Note its resemblance with the discrete time trailing stops strategy \(L_h \).
Religion/Rumor Strategy: For the sake of comparison, we start off by considering a trading strategy, ν, that is independent of the log price process, \(\{ S_n, n \geq 0 \} \). The following result shows how the correlation of \(S_\nu \) and ν is dependent on the basic statistics of the stopping rule.

Let \(Y_1, Y_2, \cdots \) be any sequence of independent and identically distributed random variables with \(E(Y_1^2) < \infty \). If ν is any stopping rule independent of the log return process, \(Y_1, Y_2, \cdots \), having positive finite variance, and\n\[
S_n = Y_1 + \cdots + Y_n,
\]
then the correlation between ν and \(S_\nu \) is,
\[
Corr(\nu, S_\nu) = \frac{E(Y_1)}{\sqrt{E(Y_1^2) + Var(Y_1)E(\nu)/Var(\nu)}}.
\]

Next consider the adapted case.
Let Y_1, Y_2, \cdots be any sequence of independent and identically distributed random variables with $0 < E(Y_1^2) < \infty$, $E(Y_1) \neq 0$ and let $S_n = Y_1 + \cdots + Y_n$. If ν is any stopping rule adapted to the filtration $\sigma(Y_1, Y_2, \cdots, Y_n)$, $n \geq 1$, having finite positive variance, then

$$Corr(\nu, S_\nu) = \frac{Var(S_\nu) + (E(Y_1))^2 Var(\nu) - Var(Y_1)E(\nu)}{2E(Y_1) \sqrt{Var(\nu) \ Var(S_\nu)}}.$$
The above two propositions show that the key statistics are $E(\nu)$, $\text{Var}(\nu)$, $\text{Var}(S_{\nu})$ and the Laplace transform $E(e^{-s\nu})$ for any trading strategy ν. In our case the trading strategy is N_h, which is adapted to the filtration $\mathcal{F}_n = \sigma(Y_1, Y_2, \cdots, Y_n)$, $n \geq 1$.

Once again, the key statistics that are needed are the average amount of time the position will remain open, $E(N_h)$, the variance of the time the position will remain open, $\text{Var}(N_h)$, $\text{Var}(S_{N_h})$, and the Laplace transform $E(e^{-sN_h})$, for appropriate values of s. In order to study the properties of the short position trailing stops, N_h, and the corresponding stopped log price, S_{N_h}, and the time discounted gain/loss $P_0 - e^{-rN_h}P_{N_h}$, the SPRT,

$$\tau_{a,h} := \inf \{ n \geq 1 : S_n \notin (a, h) \},$$

plays an important role, where $a < 0 < h$.
Identity

The stopping rules N_h and $\tau_{0,h}$ are related through the following identity.

$$N_h = \tau_{0,h} + N_{h,\tau_{0,h}} I(S_{\tau_{0,h}} \leq 0),$$

where $N_{h,\tau_{0,h}}$ is an identical copy of N_h which is independent of $S_{\tau_{0,h}}$ when $\tau_{0,h}$ is given. Here and elsewhere $I(A)$ is the indicator random variable taking value one when A occurs and zero otherwise. With the help of this link we easily deduce the Laplace transform of N_h in terms of the Laplace transform of the SPRT. Therefore the statistics of N_h are, in turn, linked to the statistics of the SPRT.
For any $s > 0$, we have

$$E(e^{-sN_h}) = \frac{E(e^{-s\tau_0,h}) - E(e^{-s\tau_0,h} I(S_{\tau_0,h} \leq 0))}{1 - E(e^{-s\tau_0,h} I(S_{\tau_0,h} \leq 0))}.$$

The above Laplace transform of N_h and its relationship with $\tau_{0,h}$ has been known in the quality control literature for some time. The main stumbling block has been the calculations of the expressions on the right hand side.
Assumptions

Consider a random walk, whose iid components, Y_i, obey the following assumptions:

- (A1). The moment generating function of log returns, $\phi(\theta) = E(e^{\theta Y_i})$, exists.

- (A2). For each small $s > 0$, there exist two values of θ, say $\theta_1(s), \theta_2(s)$ so that $\phi(\theta) = e^s$ holds for $\theta = \theta_1(s), \theta_2(s)$.

- (A3). There exist functions $K(\theta), k(x), R(\theta), g(x)$, so that for $\theta = 0, \theta_1, \theta_2$,

$$
H(x) := E(e^{\theta Y_1}I(Y_1 \leq x)) = K(\theta)k(x)e^{\theta x}, \quad x < 0,
$$

$$
G(x) := E(e^{\theta Y_1}I(Y_1 \geq x)) = R(\theta)g(x)e^{\theta x}, \quad x > 0.
$$

Here, in the notation $H(x), G(x)$, we suppress the dependence on θ and s.
As examples, the binomial, trinomial, two-sided geometric and double exponential models, for the log-returns, obey the above sets of conditions.

Under the above mentioned assumptions, the following two theorems are the main results that give the probabilistic properties of the trailing stops strategy for the short position.

Analogous results can be obtained, by replacing Y_i by $-Y_i$, for the trailing stops strategy in the long position, we therefore omit the straightforward details.
(Nondegenerate case) Under the above mentioned assumptions, when \(K(\theta), R(\theta) \) are not constant functions (non-degenerate case), the short position trailing stops strategy, \(N = N_h \), has the following Laplace transform, mean and variance.

\[
E(e^{-sN}) = \frac{R(0)\{K(\theta_1) - K(\theta_2)\}}{\{K(\theta_1) - K(0)\}R(\theta_2)e^{\theta_2 h} - \{K(\theta_2) - K(0)\}R(\theta_1)e^{\theta_1 h}}, \quad s > 0,
\]

\[
E(N) = \frac{1}{E(Y)} \left\{ h + \frac{R'(0)}{R(0)} - \frac{K'(0)\{R(0) - R(\theta^*)e^{\theta^* h}\}}{R(0)(K(0) - K(\theta^*))} \right\}, \quad E(Y) \neq 0,
\]

where \(\theta_1(s) \to 0 \) and \(\theta_2(s) \to \theta^* \) as \(s \to 0 \). When \(E(Y) = 0 \), we get

\[
E(N) = \frac{1}{\text{Var}(Y)} \left\{ h^2 + h \frac{2R'(0)K'(0) - R(0)K''(0)}{R(0)K'(0)} + \frac{K'(0)R''(0) - R'(0)K''(0)}{R(0)K'(0)} \right\}.
\]

Furthermore, when \(\theta'_1(s) + \theta'_2(s) = 0 \) in a neighborhood of zero, and \(E(Y) \neq 0 \), the variance simplifies to

\[
\text{Var}(N) = \frac{1}{(E(Y))^2} \left\{ \text{Var}(Y)E(N) + 2(E(Y)E(N) - h) \frac{K'(0) + K'(\theta^*)}{K(0) - K(\theta^*)} \right\}
\]

\[
+ (E(Y)E(N) - h)^2 + \frac{K''(0)\{R(0) - R(\theta^*)e^{\theta^* h}\}}{R(0)(K(0) - K(\theta^*))} - \frac{R''(0)}{R(0)}
\]

\[
- 2\frac{K'(\theta^*)R'(0) - K'(0)R'(\theta^*)e^{\theta^* h}}{R(0)(K(0) - K(\theta^*))} + 4h \frac{K'(0)R(\theta^*)e^{\theta^* h}}{R(0)(K(0) - K(\theta^*))} \right\}.
\]
Results

(Degenerate case) When \(Y \) is an integer valued random variable and \(K(\theta), R(\theta) \) are constants, the trailing stops strategy for the short position, \(N = N_h \), has the following Laplace transform, mean and variance

\[
\begin{align*}
E(e^{-sN}) &= \frac{e^{\theta_2} - e^{\theta_1}}{(1 - e^{\theta_1})e^{\theta_2(h+1)} - (1 - e^{\theta_2})e^{\theta_1(h+1)}}, \quad s > 0, \\
E(N) &= \frac{1}{E(Y)} \left\{ h + \frac{1 - e^{\theta^* h}}{1 - e^{-\theta^*}} \right\}, \quad E(Y) \neq 0, \\
E(N) &= \frac{h(h+1)}{\text{Var}(Y)}, \quad E(Y) = 0.
\end{align*}
\]

Furthermore, when \(\theta_1'(s) + \theta_2'(s) = 0 \) in a neighborhood of zero, where \(\theta_1(s) \to 0 \) and \(\theta_2(s) \to \theta^* \) as \(s \to 0 \), and \(E(Y) \neq 0 \), the variance simplifies to

\[
\text{Var}(N) = \frac{\text{Var}(Y)}{(E(Y))^3} \left\{ h + \frac{1 - e^{\theta^* h}}{1 - e^{-\theta^*}} \right\} + \frac{\{ e^{\theta^* (h+1)} + 3 \} \{ e^{\theta^* h} - 1 \}}{(E(Y))^2(1 - e^{-\theta^*})(e^{\theta^*} - 1)} + \frac{4he^{\theta^* (h+1)}}{(E(Y))^2(1 - e^{\theta^*})}.
\]
Recall the Cox, Ross, Rubinstein (CRR) model of option pricing. In this model, the log returns, Y_i, can take two possible values, say $-1, 1$ for simplicity, with respective probabilities q, p. In the trinomial case, we allow 0 as another possibility with probability $1 - p - q$.

Assume that the price process has some drift, $E(Y_1) = p - q \neq 0$. One can give analytic expressions for the expected open position, $E(N_h)$, the expected stopped log-price, $E(S_{N_h})$, and the variance of the stopped log-price, $Var(S_{N_h})$. With some effort, one can also compute the correlation between the duration of the position and the log-price at the stopping time, $Corr(N_h, S_{N_h})$.

It turns out that the correlation between N_h and S_{N_h} is negative when $E(Y_1) = 0$, indicating that the longer N_h remains open, the lower the log price is going to be at the stopping time.
Simulation

The glimpse of the last results indicates some of the type of mathematics one can do. The problem is that sooner or later mathematics will become intractable. In such situations simulation (Monte Carlo) methods become the last resort, which we now explain. For instance, consider the following results from a trinomial model.

When $h = 1$,

<table>
<thead>
<tr>
<th>Trinomial Model</th>
<th>$E(S_{Nh})$</th>
<th>$Var(S_{Nh})$</th>
<th>$E(N_h)$</th>
<th>$Var(N_h)$</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p = 0.06, q = 0.56$</td>
<td>−8.33</td>
<td>96.44</td>
<td>16.67</td>
<td>261.11</td>
<td></td>
</tr>
<tr>
<td>Simulation</td>
<td>−8.17</td>
<td>89.48</td>
<td>16.36</td>
<td>241.69</td>
<td>1222</td>
</tr>
<tr>
<td>Error %</td>
<td>−1.93</td>
<td>−7.22</td>
<td>−1.84</td>
<td>−7.44</td>
<td></td>
</tr>
</tbody>
</table>

When $h = 2$,

$p = 0.12, q = 0.42$	−13.75	263.81	45.83	1916	
Simulation	−13.52	266.01	44.90	1930.9	1336
Error %	−1.69	0.83	−2.03	0.78	
Simulation

The amount of expected gain/loss, when $P_0 = 1$, is presented in the following table.

\[p = 0.06, \quad q = 0.10, \quad h = 1 \]

<table>
<thead>
<tr>
<th>r</th>
<th>$1 - E(e^{-rN_h + S_{Nh}})$</th>
<th>Std.Err</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.0855</td>
<td>0.03</td>
<td>1168</td>
</tr>
<tr>
<td>0.04</td>
<td>0.0193</td>
<td>0.03</td>
<td>1188</td>
</tr>
<tr>
<td>0.03</td>
<td>-0.0358</td>
<td>0.03</td>
<td>1171</td>
</tr>
<tr>
<td>0.02</td>
<td>-0.1419</td>
<td>0.03</td>
<td>1219</td>
</tr>
<tr>
<td>0.01</td>
<td>-0.2549</td>
<td>0.03</td>
<td>1242</td>
</tr>
</tbody>
</table>
Note that $E(Y_1) = p - q = -0.04$, which might suggest that a short position might be profitable. However, note that $E(e^{Y_1}) = 1.0399$ and $E(e^{Y_1}) > e^r$ if and only if $r < 0.0391$. Hence, it seems as if the short position trailing stops strategy requires that $E(e^{Y_1}) < e^r$ to remain profitable, and not just that $E(Y_1) < 0$. Needless to say that the corresponding conclusion goes for the long position of the trailing stops strategy, as well.
To compute the correlation, $\text{Corr}(N_h, S_{Nh})$, we use the results of the last section. For a given $s > 0$, we may solve $\phi(\theta) = e^s$, and get two solutions for θ.

$$e^{\theta_1} = \frac{e^s - \sqrt{e^{2s} - 4p(1 - p)}}{2p}, \quad e^{\theta_2} = \frac{e^s + \sqrt{e^{2s} - 4p(1 - p)}}{2p}.$$

Note that $\theta'_1 + \theta'_2 = 0$. When $p < \frac{1}{2}$, we see that $\theta_1 \to 0$ and $\theta_2 \to \theta^* = \ln(q/p)$.

The Laplace transform

\[E(e^{-sN_h}) = \frac{e^{\theta_2} - e^{\theta_1}}{(1 - e^{\theta_1})e^{\theta_2(h+1)} - (1 - e^{\theta_2})e^{\theta_1(h+1)}}, \quad s > 0. \]

The Laplace transform completely characterizes the probability distribution of the duration \(N_h \). In principle the probability distribution can be obtained by the standard inversion theory of Laplace transforms. The moments of the trading strategy can be obtained via differentiation. For instance,

\[E(N_h) = - \frac{d}{ds} E(e^{-sN_h}) \bigg|_{s=0}. \]
Higher moments are obtained similarly by taking higher order derivatives of the Laplace transform and then inserting $s = 0$. After omitting the simple, but a substantial amount of algebra, the following moments of the trading strategy can be deduced from the above stated Laplace transform.

\[
E(N_h) = \frac{h}{p - q} + \frac{q}{(p-q)^2} \{ (q/p)^h - 1 \}, \quad p \neq \frac{1}{2},
\]

\[
E(N_h) = h(h+1), \quad p = \frac{1}{2},
\]

\[
Var(N_h) = \frac{4p(1-p)}{(2p-1)^3} \left\{ h + \frac{1 - ((1-p)/p)^h}{1 - (p/(1-p))} \right\} + \frac{4ph((1-p)/p)^{h+1}}{(2p-1)^3}
\]

\[
+ \frac{p(1-p)\{(1-p)/p\}^{h+1} + 3\{(1-p)/p\}^h - 1}{(2p-1)^4}, \quad p < \frac{1}{2},
\]

\[
Var(N_h) = \frac{h(h+1)}{3} \left(2h^2 + 2h - 1 \right), \quad p \to \frac{1}{2}.
\]
By Wald’s equation, we see that

\[
E(S_{Nh}) = E(Y_1)E(N_h) = h - \frac{1 - p}{2p - 1} \{1 - ((1 - p)/p)^h\}, \quad p \neq \frac{1}{2},
\]

\[
E(S_{Nh}) = 0, \quad p = \frac{1}{2},
\]

\[
\text{Var}(S_{Nh}) = \frac{1 - p}{2p - 1} \left\{ 1 - ((1 - p)/p)^h + (1 - p) \frac{((1 - p)/p)^h - 1}{2p - 1} \right\}, \quad p \neq \frac{1}{2},
\]

\[
\text{Var}(S_{Nh}) = h(h + 1) = E(N_h), \quad p = \frac{1}{2},
\]

\[
\text{Corr}(N_h, S_{Nh}) = \frac{\text{Var}(S_{Nh}) - E(N_h)\text{Var}(Y_1) + (E(Y_1))^2\text{Var}(N_h)}{2E(Y_1)\sqrt{\text{Var}(N_h)\text{Var}(S_{Nh})}},
\]

\[
\text{Corr}(N_h, S_{Nh}) = -\frac{(2h + 1)}{\sqrt{3(2h(h + 1) - 1)}}, \quad p \to \frac{1}{2}.
\]

The last expression shows that the correlation between \(N_h\) and \(S_{Nh}\) is negative when \(E(Y_1) = 0\), indicating that the longer the short position remains open, the lower the log price is going to be at the stopping time. In a short position the lower \(S_{Nh}\) is the less the loss will be.
The sign of the correlation between S_ν and ν is always controlled by the factor

$$\frac{\text{Var}(S_\nu) + (E(Y_1))^2\text{Var}(\nu) - \text{Var}(Y_1)E(\nu)}{E(Y_1)}$$

for any trading strategy that is adapted to the log returns filtration, $\sigma(Y_1, \cdots, Y_n), n \geq 1$. As shown by the binomial and trinomial models, when $E(Y_1) < 0$, this amount is negative and rather close to negative one for the trading the line strategy, $\nu = N_h$. The same conclusions seem to hold for all the other models.
Monotonicity ($\mu < 0$)

$E(S_{N_h})$ is a decreasing function of h, when $E(Y_1) < 0$. Indeed, consider $\nu_2 = N_{h_2}$, and $\nu_1 = N_{h_1}$, when $h_2 > h_1$. Now, $S_n - nE(Y_1)$, being a martingale,

$$E(S_{\nu_2} - S_{\nu_1} \mid F_{\nu_1}) = E(S_{\nu_2} - S_{\nu_1} - (\nu_2 - \nu_1)E(Y_1) \mid F_{\nu_1})$$

$$+ E(\nu_2 - \nu_1 \mid F_{\nu_1}) E(Y_1)$$

$$\leq 0,$$

(1)

where F_{ν_1} is the information up to time N_{h_1}. The last inequality follows since $\nu_2 = N_{h_2} \geq N_{h_1} = \nu_1$ and $E(Y_1) < 0$. The inequality becomes strict if $N_{h_2} < N_{h_1}$ with positive probability. Hence, $E(S_{N_h})$ is a nonincreasing function of the triggering constant h, whenever $E(Y_1) < 0$. However, as the last item (below) explains, this does not necessarily mean that we will gain more with h_2 versus h_1, when $E(Y_1) < 0$.

If $E(Y_1) = 0$, i.e., no drift in the log returns, then for any strategy, ν, that is independent of the filtration of the log returns, $Corr(\nu, S_\nu) = 0$. However, this is not so when $\nu = N_h$. For the models we presented, $Corr(N_h, S_{N_h}) < 0$, even when $E(Y_1) = 0$. This means that the longer we wait with the trailing stop strategy, N_h, the more we expect to gain, when $E(Y_1) \leq 0$.

Even when $E(Y_1) > 0$ and small, the correlation of N_h, S_{N_h} did not change sign in the examples for which we were able to find a closed form expression for $Corr(N_h, S_{N_h})$ and as well as via simulation for the other examples. Therefore, we may conclude that $Corr(N_h, S_{N_h}) < 0$ for all values of $E(Y_1)$ in a neighborhood of zero (and not just at zero), since the correlation is a continuous function of $E(Y_1)$. When $E(Y_1) > 0$, by a similar argument as above, we should remark that $E(S_{N_h})$ becomes a nondecreasing function of h.

Corr Sign ($\mu \geq 0$)
The variance of the duration that the position remains open, $\text{Var}(N_h)$, seems to have a parabolic relationship with the expected duration, $E(N_h)$. The coefficients of the parabola are functions of the trigger size h. Furthermore, the larger we pick the triggering constant, h, the larger is the expected duration and, in turn, the more unstable the strategy becomes.

The variance of S_{Nh} also seems to have a parabolic relation with $E(S_{Nh})$. For instance, for both the binomial and trinomial models,

$$\text{Var}(S_{Nh}) = h - E(S_{Nh}) + (E(S_{Nh}) - h)^2.$$

Since $E(S_{Nh}) = E(Y_1)E(N_h)$, we also have

$$\text{Var}(S_{Nh}) = h - E(Y_1)E(N_h) + (E(Y_1)E(N_h) - h)^2.$$

This indicates that, when $E(Y_1) < 0$, one cannot hope to find an optimal h that simultaneously minimizes the expected stopped amount, $E(S_{Nh})$, and also minimizes the variance, $\text{Var}(S_{Nh})$.

Gains ($\mu < 0$)

- It seems reasonable to propose that the distribution of a constant multiple of N_h, when $E(Y) < 0$, is approximately a geometric random variable, at least when the assumptions (A1), (A2), and (A3) hold. This should be compared to the known approximation of N_h, which states that $N_h e^{-\theta^* h}$ is approximately an exponential random variable, as h gets large.

- If the price dynamics are assumed to follow geometric random walk, even when $E(Y_1) < 0$, any trading strategy in short position, that is independent of the filtration $\sigma(Y_1, \cdots, Y_n)$, $n \geq 1$, will give time discounted gains to be negative provided $E(e^{Y_1}) > e^r$, where r is the continuously compounding discount rate. That is, for those price dynamics in which $E(Y_1) < 0$ and $E(e^{Y_1}) > e^r$, there cannot exist a trading strategy, that is independent of the log returns process, and gives positive time discounted gains. In fact, this result remains valid for a wide class of adaptive strategies. A similar observation holds for the long position trading strategies.
Short vs Long Position

For the trailing stops strategy, N_h, adapted to the filtration, $\sigma(Y_1, \cdots, Y_n)$, $n \geq 1$, we observe the phenomenon of the last item. In fact, for the geometric model this observation takes even a more acute form. This is due to the fact that, on the one hand, the geometric random variable can take arbitrarily large values and, on the other hand, the price can never go below zero, regardless of how large a magnitude of the negative values of the double sided geometric random variable is. Since, in a short position, by investing $1, one cannot hope to gain more than one dollar, however, there is no limit to how much one may lose. Hence, the short position is inherently more risky than the long position. Furthermore, an indicator of a possible gain is the criterion, $E(e^{Y_1}) < e^r$, where r is the risk free rate, and not just that $E(Y_1) < 0.$

THANK YOU

Any Questions?